
Using hard constraints for representing soft

constraints

Jean-Charles Régin

Université de Nice - Sophia Antipolis, I3S - CNRS
930 Route des Colles - BP 145

06903 Sophia Antipolis Cedex, France
jcregin@gmail.com

Abstract. Most of the current algorithms dedicated to the resolution
of over-constrained problems, as PFC-MRDAC, are based on the search
for a support for each value of each variable taken independently. The
structure of soft constraints is only used to speed-up such a search, but
not to globally deduce the existence or the absence of support. These
algorithms do not use the �ltering algorithms associated with the soft
constraints.
In this paper we present a new schema where a soft constraint is repre-
sented by a hard constraint in order to automatically bene�t from the
pruning performance of the �ltering algorithm associated with this con-
straint and from the incremental aspect of these �ltering algorithms. In
other words, thanks to this schema every �ltering algorithm associated
with a constraint can still be used when the constraint is soft. The PFC-
MRDAC (via the Satis�ability Sum constraint) algorithm and the search
for disjoint con�ict sets are then adapted to this new schema.

1 Introduction

A constraint network (CN) consists of a set of variables, each of them associated
with a domain of possible values, and a set of constraints linking the variables and
de�ning the set of allowed combinations of values. The search for an assignment
of values to all variables that satis�es all the constraints is called the Constraint
Satisfaction Problem (CSP). Such an assignment is a solution of the CSP.

Unfortunately, the CSP is an NP-Hard problem. Thus, many works have been
carried out in order to try to reduce the time needed to solve a CSP. Some of the
suggested methods turn the original CSP into a new one, which has the same
set of solutions, but which is easier to solve. The modi�cations are done through
�ltering algorithms, which remove from domains values that cannot belong to
any solution of the current CSP. If the cost of such an algorithm is less than
the time required by the backtrack algorithm to discover many times the same
inconsistency, then the solving will be accelerated.

It often happens that a CSP has no solution. In this case we say that the
problem is over-constrained, and the goal is then to �nd a good compromise.
One of the most usual theoretical frameworks is called the Maximal Constraint

Satisfaction Problem (Max-CSP). A solution of a Max-CSP is a total assignment
that minimizes the number of constraint violations.

Almost all existing techniques for solving Max-CSP, as PFC-MRDAC [2],
consider that the �ltering algorithm associated with a constraint can be used
only to speed up the search for, or the proof of absence of, a support. Since
the constraints are soft (i.e. they can be violated) it is considered that it is not
possible to directly use the �ltering algorithm associated . Only two existing
approaches exploit the structure of the constraints: the search for con�ict sets
(i.e. a set of soft constraints which leads to a failure if all these constraints are
considered hard) [5] and the design of speci�c �ltering algorithms for global soft
constraints [3], for instance the alldi� constraint. Our goal is to explain how a
�ltering algorithm associated with a constraint can be used in an e�cient way
even if the constraint can be violated.

In this paper, we propose a general schema, called S2H (Soft to Hard), which
is able to use every �ltering algorithm associated with a constraint when the
constraint is soft. The originality of our approach is to represent each soft con-
straint by a hard constraint and to manage the detection of failures. Each hard
constraint is de�ned on new variables that are linked to the variables involved
in a soft constraint by a speci�c hard constraint. This speci�c hard constraint
will take into account the possible failure of the hard constraint representing the
soft one. This approach has two advantages: �rst it can be easily used by any
constraint programming solver system provided that the failure can be caught,
second we immediately and automatically bene�t from the pruning performance
of the �ltering algorithm associated with the soft constraint, because this is
managed by the solver. Moreover, we will show how we can bene�t from the in-
cremental aspect of the �ltering algorithms. The main interest of this approach
is that it could lead to an improvement of the resolution of real world applica-
tions involving soft constraints similar as the improvement obtained with solvers
when the �ltering algorithms associated with constraints have been introduced.

Furthermore, we give two possible instantiations of this schema corresponding
to two di�erent �ltering algorithms that have been proposed to improve the
resolution of over-constrained problems: the partition based �ltering and the
con�ict sets based �ltering.

This paper is organized as follows. First we recall some notions about con-
straint programming, and the principle of the �ltering algorithms associated
with the Satis�ability sum constraint that deals with the soft constraints of a
problem. Then, we emphasize on an example the usefulness of the structure of
a constraint. Next, the S2H-Schema is presented in details. We explain how the
S2H-Schema can be instantiated in order to e�ciently implement the best �l-
tering algorithm for over constrained problems. At last, we discuss about the
implementation of the S2H-Schema in a solver.

2 Background

2.1 Constraint network

A constraint network N is de�ned as a set of n variables X = {x1, . . . , xn}, a
set of domains D = {D(x1), . . . , D(xn)} where D(xi) is the �nite set of possible
values for variable xi, and a set C of constraints between variables. A constraint

C on the ordered set of variables X(C) = (xi1 , . . . , xir) is a subset T (C) of the
Cartesian product D(xi1)× · · · ×D(xir) that speci�es the allowed combinations
of values for the variables xi1 , . . . , xir . An element of D(xi1) × · · · × D(xir) is
called a tuple on X(C). |X(C)| is the arity of C. A value a for a variable x is
often denoted by (x, a). A tuple τ on X(C) is valid if ∀(x, a) ∈ τ, a ∈ D(x). C is
consistent i� there exists a tuple τ of T (C) which is valid. A value a ∈ D(x) is
consistent with C i� x 6∈ X(C) or there exists a valid tuple τ of T (C) in which
a is the value assigned to x.

2.2 Satis�ability Sum Constraint

Max-CSP can be expressed by a satis�ability sum constraint [5]:

De�nition 1 Let C = {Ci, i ∈ {1, . . . ,m}} be a set of constraints, and S[C] = {si, i ∈
{1, . . . ,m}} be a set of variables and unsat be a variable, such that a one-to-one map-

ping is de�ned between C and S[C]. A Satis�ability Sum Constraint is the constraint

ssc(C, S[C], unsat) de�ned by:

[unsat =

m∑
i=1

si] ∧
m∧
i=1

[(Ci ∧ (si = 0)) ∨ (¬Ci ∧ (si = 1))]

Notation 1 Given a ssc(C, S[C], unsat), a variable x, a value a ∈ D(x) and K ⊆ C:
• max(D(unsat)) is the highest value of current domain of unsat;

• min(D(unsat)) is the lowest value of current domain of unsat;

• minUnsat(C, S[C]) is the minimum value of unsat consistent with ssc(C, S[C], unsat);
• S[K] is the subset of S[C] equal to the projection of variables S[C] on K;
• X(C) is the union of X(Ci), Ci ∈ C.

The variables S[C] are used in order to express which constraints of C must be
violated or satis�ed: value 0 assigned to s ∈ S[C] expresses that its corresponding
constraint C is satis�ed, whereas 1 expresses that C is violated1. Variable unsat
represents the objective, that is, the number of violations in C, equal to the
number of variables of S[C] whose value is 1. Note that no hypothesis is made on
the arity of constraints C. And if a value is assigned to si ∈ S[C], then a �ltering
algorithm associated with Ci ∈ C (resp. ¬Ci) can be used in a way similar to
classical CSPs. Similarly if all values of a variable x are not consistent with Ci

(resp. ¬Ci) then si = 1 (resp. 0).

1 An extension of the model can be performed [4], in order to deal with Valued CSPs
[1]. Basically it consists of de�ning larger domains for variables in S[C].

Throughout this formulation, a solution of a Max-CSP is an assignment that
satis�es the ssc with the minimal possible value of unsat. A lower bound of the
objective of a Max-CSP corresponds to a necessary consistency condition of the
ssc.
From the de�nition of minUnsat(C, S[C]) we have:

Property 1 If minUnsat(C, S[C]) > max(D(unsat)) then ssc(C, S[C], unsat)
is not consistent.

Thus, any lower bound of minUnsat(C, S[C]) provides a necessary condition of
consistency of a ssc.
The di�erent domain reduction algorithms established for Max-CSP correspond
to speci�c �ltering algorithms associated with the ssc.

2.3 Ssc: Partition Based Filtering

A possible way for computing a lower bound is to perform a sum of independent
lower bounds of violations, one per variable (See [2].) For each variable a lower
bound can be de�ned by:

De�nition 2 Given x a variable, a a value of D(x), K a set of constraints of C,
#inc((x, a),K) = |{C ∈ K s.t. (x, a) is not consistent with C}|.
#inc(x,K) = mina∈D(x)(#inc((x, a),K)).

The sum of these minima with K = C cannot lead to a lower bound of the
total number of violations, because some constraints can be taken into account
more than once2. In this case, the lower bound can be overestimated, and an
inconsistency could be detected while the ssc is consistent. Consequently, for
each variable, an independent set of constraints must be considered.
Such a result is obtained by associating with each constraint C one and only
one variable x involved in the constraint: C is then taken into account only for
computing the #inc counter of x. Therefore, the constraints are partitioned w.r.t
the variables that are associated with:

De�nition 3 Given a set of constraints C, a var-partition of C is a partition P(C) =
{P (x1), ..., P (xk)} of C in |X(C)| sets such that ∀P (xi) ∈ P(C) : ∀C ∈ P (xi), xi ∈
X(C).

Given a var partition P(C), the sum of all #inc(xi, P (xi)) is a lower bound of
the total number of violations, because all sets belonging to P(C) are disjoint;
thus we have:

De�nition 4 ∀P(C) = {P (x1), ..., P (xk)},
LB(P(C)) =

∑
xi∈X(C) #inc(xi, P (xi)).

2 For instance, given a constraint C and two variables x and y involved in C, C can
be counted in #inc(x, C) and also in #inc(y, C).

Property 2 ∀P(C) = {P (x1), ..., P (xk)}, If LB(P(C)) > max(D(unsat))

then ssc(C, S[C], unsat) is not consistent.

The quality of such a lower bound depends on the var-partition that is chosen.
The lower bound of Property 2 can also be used to detect some inconsistent
values of a variable x:

Theorem 1 ∀P(C) a var-partition of C, ∀x ∈ X(C), ∀a ∈ D(x), if #inc((x, a), P (x))+

LB(P(C − P (x))) > max(D(unsat)) then a can be removed from its domain.

2.4 Ssc: Con�ict Set Based Filtering

Some inconsistencies are not taken into account by the previous �ltering al-
gorithm because it is based on counters of direct violations of constraints by
values. Therefore another �ltering algorithm based on successive computations
of disjoint con�ict sets were proposed in [5].

De�nition 5 A con�ict set is a subset K of C which satis�es:

minUnsat(K, S[K]) > 0.

A con�ict set leads to at least one violation in C. Consequently, if there are
q disjoint con�ict sets of C then q is a lower bound of minUnsat(C, S[C]). They
must be disjoint to guarantee that all violations are independent.

Property 3 Let Q be a set of disjoint con�ict sets of C. If |Q| > max(D(unsat))
then ssc(C, S[C], unsat) is not consistent.

3 The S2H Schema

The main issue of algorithms dedicated to the resolution of over constrained
problems is the necessity to detect if a given value is consistent with a constraint.
Indeed, it is necessary to know which values are violated by a soft constraint,
for instance to update #inc counters.

In existing solvers, each constraint is associated with a �ltering algorithm,
which is able to remove some values that are not consistent with the constraint,
and to perform this operation only when an event, which can lead to some re-
moval, arises. Using the �ltering algorithm to detect some inconsistent values
is an e�cient way, better than systematically and individually check for consis-
tency. Moreover, without loss ogf generality we can consider that any CP solver
(which is programmable) provides:

� a way to automatically notify a variable that one of its values has been
removed when applying a �ltering algorithm

� a way to call some �ltering algorithms when some events on the domain of
variables happen.

Thus, if a constraint is considered as hard, then we can use the solver in order
to update data structures only when speci�c values are removed. Therefore, if
we represent soft constraints by hard constraints we will be able to bene�t from
all these mechanisms.

Currently, solvers do not use complex mechanisms for dealing with soft con-
straints. They are usually limited to basic behaviors. Disjunctive constraints is a
good example. Gecode, Comet or ILOG Solver do not implement the construc-
tive disjunction [6]. They mainly implement disjunctive constraints by checking
whether each part of the disjunction is satis�ed or not. Consider for instance, the
constraint (C1 or C2). The �ltering algorithms associated with each constraint
are not used. The solver just checks if the constraints C1 or C2 are violated. There
is no �ltering code which is used, so there is no need to catch some possible fail-
ures because the mechanism does not call any internal code that could fail. Such
a mechanism is clearly weak and insu�cient for implementing the constraints
we mentioned in Section 2, because we want to use the existing algorithms as-
sociated with constraints even if there are soft. The constructive disjunction is
complex to implement this is why it is rarely implemented. For some cases, it is
possible to implement it in a speci�c way, because we have only one constraint
that could fail. However, the problem we consider is much more general than
constructive disjunction and we need a more general mechanism

The representation of soft constraints by hard constraints is not an easy
task because a soft constraint should not necessarily be satis�ed in all solutions
whereas a hard constraint should have to. Thus, if we want to represent a soft
constraint by a hard constraint, then we are faced to the following two main
problems:

� The deductions made by a �ltering algorithm are not necessary valid because
the constraint is not obligatorily satis�ed. Hence, these modi�cations cannot
be e�ective on the variables on which the soft constraint is de�ned.

� The hard constraint corresponding to a soft constraint can fail and this
failure is not a reason to backtrack.

The S2H (Soft to Hard) Schema deals with these problems. Consider a set S
of soft constraints. Roughly, the principle of this schema is to copy the variables
involved in constraints of S and then to add to the solver as hard constraints
the constraints of S de�ned on the copied variables. Then some mechanisms are
added in order to be able to:

• update the copied variables when the original variables are modi�ed,

• use the modi�cations which occur on the domains of the copied variables

• catch some possible failure of a constraint of S.

If such a failure happens, then the S2H schema is able to remove all the hard
constraints corresponding to the soft ones that have been added and to continue
the search as if these hard constraints have never been added.

The S2H schema is based on 2 operations:

1. creation: the hardening of soft constraints operation is applied
2. catch of a failure and deletion: if certain constraints fail then the solver does

not consider that a global inconsistent state is detected. Then, some hard
constraints must be removed from the solver in order to continue the search.

3.1 Hardening of soft constraints

De�nition 6 Given S a set of soft constraints involving the variables X(S) =
{x1, ..., xk}, SoftManager a manager of soft constraints associated with 2 noti-

�cation methods: whenDomainReduction, whenFail. The hardening of soft

constraints is the operation that consists in:

1. for each variable x ∈ X(S) creating a new variable dcopy(x,S), called the

directed copy of x.
2. for each constraint C ∈ S adding to the problem as hard constraint the

constraint hard(C) which is the constraint C de�ned on the directed copies

of the variables of X(C). Hard(S) denotes the set of these constraints.

3. adding between each pair of variables {x, dcopy(x,S)} a constraint

varToCopiedVarCt(x, dcopy(x,S)) stating that D(x) ⊇ D(dcopy(x,S)).
DcopyCt(S) denotes the set of these constraints.

4. for each variable dcopy(x,S) linking the noti�cation method whenDomainRe-

duction to dcopy(x,S). This method is called each time the domain of

dcopy(x,S) is modi�ed by a constraint hard(C) of Hard(S) and noti�es

SoftManager of the modi�cations. The parameters of this method are

SoftManager,x,a and the constraint C.

5. for each constraint CH ∈ Hard(S) ∪ DcopyCt(S) linking the noti�cation

method whenFail to CH . This method is called when the constraint CH

fails. The parameters of this method are SoftManager, S.

An example of the application of the Hardening of soft constraints is given
by Figure 1.

The constraint varToCopiedVarCt(x, dcopy(x,S)) ensures that, when x is
modi�ed, dcopy(x,S) is accordingly modi�ed. When a directed copy dcopy(x,S)
is modi�ed we cannot modify x and we use noti�cation mechanism. The noti�ca-
tion methods are used to update some data structures required to e�ciently im-
plement the �ltering algorithms associated with the Satis�ability sum constraint.
These data structures are encapsulated in the manager of soft constraints.

More precisely, each time a value a is removed from the domain of dcopy(x,S),
a directed copy of x, whenDomainReduction is called. It noti�es the manager
of soft constraints that the constraint C is violated by (x, a). Thus, this method
establishes a link from the directed copy of variable to the variable. Since the
hardening of a soft constraint is a hard constraint we bene�t from its pruning
performance and from its incremental mechanism of triggering of the �ltering
algorithm associated with it. Therefore, there is no need to ask for each value

Consider two variables x and y with D(x) = [0..10] and D(y) = [0..9], three hard
constraints (x > 5), (y < 5) and (x < 10), one soft constraint (x < y), and
softManager a manager of soft constraints.

Suppose that whenDomainReduction prints the domain of the copied vari-
able and that whenFail prints the constraints that are de�ned soft; and that
SoftManager.addSoft(x < y) involves the hardening of the soft constraint (x < y).
Then, we can trace the behavior of the following pseudo-code:

De�ne x with D(x) = [0..10] and y with D(y) = [0..9]
SoftManager.addSoft(x < y)

begin trace: create x′ with D(x′) = [0..10]; y′ with D(y′) = [0..9]
add varToCopiedVarCt(x, x′) and varToCopiedVarCt(y, y′)
add (x′ < y′); this constraint modi�es the domains of x′ and y′

x′ is modi�ed then whenDomainReduction is called and prints D(x′) =
[0..8]; y′ is modi�ed then whenDomainReduction is called and prints
D(x′) = [1..9]. end trace

add(x > 5)

begin trace: D(x) = [6..10]
constraint varToCopiedVarCt(x, x′) is triggered and D(x′) = [6..8]; func-
tion whenDomainReduction is called and prints D(x′) = [6..8]; constraint
(x′ < y′) is triggered and y′ is modi�ed; function whenDomainReduction

is called and prints D(y′) = [7..9]. end trace

add(y < 5)

begin trace: D(y) = [0..4]
constraint varToCopiedVarCt(y, y′) is triggered and fails; function when-
Fail is called and prints (x < y); the constraints varToCopiedVarCt(x, x′),
varToCopiedVarCt(y, y′) and (x′ < y′) are removed. end trace

add(x < 10)

begin trace: D(x) = [6..9]; There is no other constraints to trigger and the
program continues normally. end trace

Fig. 1. an Example of hardening of soft constraints.

the constraints it violates. This result is automatically obtained by using the
noti�cation method.

Similarly, if a constraint in Hard(S) ∪DcopyCt(S) fails, then whenFail is
called. This method noti�es the manager of soft constraints that a constraint in
S will be violated if S is considered as a set of hard constraints. In this case,
some operations have to be done, because a failure is detected which is more
complex than the deletion of one value of a domain.

3.2 Catch of the failure and deletion

Our problem is to manage a possible failure of the hard representation of a
soft constraint, and to be able to continue the search as if these constraints
had never been added. Consider S a set of constraints and suppose that the
hardening operation has been applied on S. Then, the solver must be able to
perform two operations during the search for solutions:

� to catch the failure of any constraint of Hard(S) ∪DcopyCt(S). That is, a
failure of any constraint of Hard(S) ∪DcopyCt(S) must not be considered
as a global detection of an inconsistency.

� to delete the set of constraints Hard(S) ∪ DcopyCt(S) when one of them
fails.

These operations can be implemented in di�erent ways. This is the purpose of
section 5.

4 Instantiation of the S2H Schema

An instantiation of the S2H Schema is de�ned by the noti�cation methodswhen-
DomainReduction and whenFail and a speci�c instantiation of the manager
of soft constraints. In the object language terminology, this means that we are
provided with a class, for instance SoftManager, containing two virtual member
functions (the two noti�cation methods.) Then, an instantiation of S2H Schema
is de�ned by a subclass of this class that implements these virtual functions.

All the other parts of this schema are handled by the solver.

4.1 Partition based �ltering

The �ltering algorithm is based on Theorem 1. Thus, its implementation is based
on the computation of #inc counters and especially on the update of these
counters.

The S2H method is instantiated for each soft constraint (i.e. S = {C}) but all
these instantiations share the same manager of soft constraints. So, the manager
of soft constraints is unique. This object associates with each value a of each
variable x on which a soft constraint is de�ned, the list of constraints that are
violated by (x, a).

The noti�cation methods are then de�ned as follows:

� whenDomainReduction method:
whenwhenDomainReduction(SoftManager, x, a, C) is called, constraint
C is added to the list of constraints that are violated by (x, a). Then #inc
counter associated with (x, a) and x are accordingly modi�ed.

� whenFail method: when whenFail(SoftManager, {C}) is called, for each
value a of each variable x involved in C, C is added to the list of constraints
that are violated by (x, a)

Furthermore, the manager of soft constraints is also in charge of the #inc
counters in regards to the current var-Partition. This object will notify the Sat-
is�ability sum constraint of the modi�cation of #inc counters. That constraint
will then manage the possible domain reductions based on the application of
Theorem 1.

4.2 Con�ict Set based �ltering

The S2H Schema can help us to e�ciently implement the con�ict sets based
�ltering algorithm, notably, to maintain incrementally the number of disjoint
con�ict sets detected.

First, we recall some principles on the computation of disjoint con�ict sets,
then we present the instantiation of S2H-Schema to improve the current imple-
mentation.

Consider that Q = {CS1, .., CSk} is a set of disjoint con�ict sets of C. Our
goal is to �nd a set of disjoint con�ict sets of greatest size (cf property 3). It is
possible that, during the search for solutions, some new con�ict sets can be found
and thus the lower bound of the number of constraints that will be violated can
be increased.

There are several ways to try to improve the number of disjoints con�ict sets
detected:

1. by recomputing the con�ict sets from scratch,
2. by studying the set of constraints of C which do not belong to any set con-

tained in Q. This set of constraints can form some new con�ict sets,
3. by re�ning the detection of con�ict sets within the con�ict sets of Q.

The �rst possibility does not seem realistic. In fact, the computation of dis-
joint con�ict sets is costly. Determining if a set of constraints S satis�es the
condition of de�nition 5 is a NP-complete problem. Indeed, it consists of check-
ing the global consistency of the constraint network N [S] de�ned by S and by
the set of variables involved in the constraints of S. However, the identi�cation
of some con�ict sets is su�cient. Instead of performing global consistency, we
can easily identify a subset of constraints of a set S which forms a con�ict set.
The idea is to successively add the constraints of S into a solver until a failure
occurs. All the constraint that have been added until this failure form a con�ict

set. A set of disjoint con�ict sets is then obtained by repeating the previous
algorithm on the constraints that are not yet member of a computed con�ict set
(each computation starts from scratch). It is also possible to re�ne this detection
of con�ict as mentioned in [5].

The problem of the approach 1 is that the mechanism is not obviously incre-
mental. Nevertheless, we can use the previous computations to try to improve
point 2 and 3 mentioned before.

The set of constraints C can be split into di�erent parts: one for each con�ict
set of Q and one for the constraints of C which are not involved in any con�ict
set of Q. We will denote by NDCS (not detected con�ict set) this latter set of
constraint. More formally, C can be written: C = CS1 ∪ ... ∪ CSk ∪NDCS.

First, consider the NDCS set. The S2H-Schema can be used to e�ciently
detect during the search for solutions if this set contains a con�ict set. The S2H
method is instantiated as follows:
• S = NDCS
• whenDomainReduction method is not used
• whenFail method: when whenFail(SoftManager,S) is called, the manager
of soft constraints noti�es the Satis�ability sum constraint that a new con�ict
set has been detected. Then, we search whether the set of constraints S contains
some disjoint con�ict sets by using the algorithm presented before, and the set
of disjoint con�ict sets is accordingly updated.

The constraints which do not belong to a con�ict set form the new NDCS
set. The S2H-Schema is then applied to this new set.

The Satis�ability sum constraint will then manage the possible domain re-
ductions based on the application of property 3 or the �ltering algorithm given
in [5].

Now, consider a con�ict set CS = {C1, ..., Ck}. If this con�ict set has been
computed by using the algorithm we mentioned before, then we know that the
set of constraints {C1, ..., Ck−1} is not detected as a con�ict set by the solver.
This means that this set is an NDCS and we can apply the previous method
on it. Therefore, for each con�ict set an instantiation of S2H-Schema will be
used in order to detect some subsets of con�ict sets that also form a con�ict set.
Moreover, if a failure is detected in a set {C1, ..., Ck−1}, then the constraint Ck

is released. That is, Ck is no longer a member of a con�ict set, and Ck is added
to the NDCS set of C. Then, this addition may lead to a failure of the NDCS
set. In this case, the previous algorithm is applied. The current instantiation of
the S2H-Schema for NDCS is accordingly modi�ed in order to take into account
Ck

3. Furthermore, the S2H-Schema is used to maintain the detection of subset
of the con�ict sets that have been newly detected.

3 Either the current instantiation of the S2H-Schema for NDCS is modi�ed, or it is
deleted and a new one is created.

5 Implementation of the S2H Schema

Noti�cation methods are usually easy to implement. In fact, most of the solvers
provide the user with methods that are called when certain events on the do-
main of a variable occur. For instance, in ILOG Solver, IlcDemon instances are
especially well suited to be used for this purpose. In this case, we just have to
de�ne one IlcDemon per variable, and to link this demon to each modi�cation of
the directed copy of the variable (IlcWhenDomain event in ILOG Solver.) Then,
each IlcDemon will be triggered when the domain of the corresponding variable
will be modi�ed.

The hardening of soft constraints, the catch of the failure and the deletion of
some hard constraints is often a di�cult task. We propose to give some details
on the implementation problems and to give some possible general solutions that
concern most of the solvers.

Generally, a solver works as follows. At the top level, the constraints are
added, and the �ltering algorithms associated with them are called. If a �ltering
removes some values of some variables, then a propagation is triggered, that
is the �ltering algorithms associated with the constraints involving a modi�ed
variables are called again and so on. Then, the search for a solution starts. This
search creates choice points (i.e. nodes of a tree search). In other words, a deci-
sion is made and the corresponding constraint, which is usually an assignment
constraint, is added to the solver. The propagation mechanism is then triggered.
When there is nothing to propagate (the current choice point is a success), a new
choice point is made. On the other hand, if a failure occurs the current choice is
abandoned. The consequences are:

� Everything that has been allocated since the choice point is destroyed.
� All �ltering algorithms must be immediately stopped.
� All the propagation queues are emptied.
� A backtrack/undo is done.

Thus, every solver is able to perform these kinds of operations.
In order to manage the operations required by any instantiation of S2H-

Schema: catch of the failure, deletion of constraints; we propose to study three
kinds of possibilities:

1. Creation of a new choice point
2. Use of an independent solver in parallel.
3. Internal addition and catch of the failure

In next paragraphs we discuss these solutions, through the example of a set
of constraint S containing the constraint C: x < y, on which the hardening of
soft constraint operation is applied.

5.1 Creation of a new choice point

The directed copy of variables and the constraint hard(S) ∪ DcopyCt(S) are
de�ned within the very same solver but they are encapsulated inside a new

choice point. For instance, this operation can be easily done in ILOG Solver by
using function IloSolver::solve.

The catch of a failure and the deletion of constraints are easily managed
because when a failure occurs the solver has just to abandon the choice point.
The main drawback of this method is that the constraints added inside the new
choice point are added from scratch. Therefore, no incremental mechanism can
be used. Moreover, it is necessary to create a choice point for each instantiation
of S2H-Schema. This fact can be prohibitive to implement the partition based
�ltering algorithm. This is not the kind of result we aim to obtain.

5.2 Use of an Independent Solver in Parallel

The principle is to de�ne the directed copy of variables and hard(S) into another
solver. The constraints between a variable and its directed copy are de�ned in
the initial solver.

The advantage is that there is no problem due to failure of dcopy(x,S) <
dcopy(y,S) because this constraint is de�ned in a speci�c solver. There is also
no problem of continuation of the main solver. The deletion hard(S) is simply
done by stopping to call the other solver.

However, a main di�culty is the necessity to ensure a simultaneous back-
tracking of the two solvers and also to implement the noti�cation methods that
are de�ned on variables of di�erent solvers. For instance, assume that initial
domains are D(x) = [0, 10], D(dcopy(x,S) = [0, 10]. Assume that domains are
reduced as follows: D(x) = [3, 7] and D(dcopy(x,S)) = [3, 7]. If a backtrack
occurs, then we will have D(x) = [0, 10]. The problem is then to backtrack also
the second solver, that is, to update D(dcopy(x,S)) = [0, 10].

Moreover, this solution requires having one solver for each instantiation of
S2H-Schema.

5.3 Internal Addition and Catch of Failure

The addition of constraints performed by the hardening of soft constraints is
made in the same solver. If (dcopy(x,S) < dcopy(y,S)) or a constraint of
DcopyCt({C}) fails , then this failure has to be caught, and all the constraints
added by the hardening of soft constraints operation must be removed. This
means that:

� The current code in which the failure occurs has to be abandoned.
� The parent constraint of the failing constraint and all the descendant con-
straints of the parent constraint has to be abandoned.

� A global failure must not be triggered.
� Some hard constraints have to be removed.

The last point is fundamental. The implementation of this solution depends
on the management of the failure by the solver and on the management of the
addition/removal of constraints.

This solution can be particularly di�cult to implement in a constraint solver,
but it is clearly the most promising with respect to e�ciency and memory con-
sumption. It also bene�ts from all the advantages of a solver.

5.4 Summary

The following table recapitulates the advantages and the drawbacks of each
method.

Method Advantages Drawbacks
Independent No problem of failure Requires simultaneous
Solver backtracks and synchronization

Hard to implement
No incrementality
Requires One Solver
per instantiation

Creation of a No problem of failure Hard Constraint
New Choice Point always added from scratch

No incrementality
Requires One Choice Point
per instantiation

Internal Addition Incremental. Simple. Requires to change classical
And Catch of Failure Easy to use behavior of a solver

We implemented the S2H method in ILOG Solver. This was available as a
beta functionality.

We tried to implement the use of independent solvers, but we encounter
problems with the memory management and the fact that ILOG Solver was not
designed for having several solvers at the same time. However, with some other
solvers this method could be certainly e�cient and competitive with teh catch
of the failure.

We also considered the encapsulation into choice point. First, it is really slow
in regards to the other approaches (10 times slower in general). In fact, the
creation of a choice point is not a simple task in ILOG Solver. However, the
main issue is the lost of the incrementality. After each instantiation the same
constraints are posted and reposted... In addition we encounter some problems
because ILOG Solver is not reentrant. In conclusion, we think that this method
is not really good.

At last, we modi�ed the internal code of ILOG Solver in order to be able to
catch the failures. This method performs well.

6 Conclusion

In this paper, we have proposed a general schema, called S2H (Soft to Hard),
which is able to exploit the �ltering algorithm associated with a constraint even
if this constraint is soft. The advantage of this approach is double: �rst it can
be easily used by any constraint programming solver system provided that the
failure can be caught, second we immediately and automatically bene�t from the
pruning performance of the �ltering algorithm associated with the soft constraint
because this is managed by the solver.

Furthermore, two instantiations of this schema have been presented, corre-
sponding to the two di�erent �ltering algorithms that have been proposed to
improve the resolution of over-constrained problems: the partition based �lter-
ing and the con�ict sets based �ltering. And, e�cient implementation of these
algorithms is now available.

The implementation of the S2H-Schema in a solver is also discussed.

7 Acknowledgements

We would like to thank T. Petit and J-F. Puget for their useful comments.

References

1. S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier.
Semiring-based csps and valued csps: Frameworks, properties, and comparison. Con-
straints, 4:199�240, 1999.

2. J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible DAC for Max-CSP.
Arti�cial Intelligence, 107:149�163, 1999.

3. T. Petit, J-C. Régin, and C. Bessière. Speci�c �ltering algorithms for over-
constrained problems. In Proceedings CP'01, pages 451�465, Pathos, Cyprus, 2001.

4. Thierry Petit, J-C. Régin, and Christian Bessière. Meta constraints on violations
for over-constrained problems. In Proceedings ICTAI-2000, pages 358�365, 2000.

5. J-C. Régin, T. Petit, C. Bessière, and J-F. Puget. New lower bounds of constraint
violations for over-constrained problems. In Proceedings CP'01, pages 332�345,
Pathos, Cyprus, 2001.

6. P. van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation, and evalu-
ation of the constraint language cc(fd). Journal of Logic Programming, 37(1�3):139�
164, 1998.

