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Dependable Multicore Architectures at Nanoscale: the view from Europe

INTRODUCTION

For almost a decade, the shift from increasing core clock frequencies to exploiting parallelism and multicore chip architectures has been the main design drive across all application domains in the electronics and computing industry. The introduction of multicore chips allowed the constant increase in delivered performance otherwise impossible to achieve. Multiple microprocessor cores from different instruction set architectures stay at the epicenter of such chips and are surrounded by memory cores of different technologies, sizes and functionalities, as well as by peripheral controllers, special function cores, analog and mixed-signal cores, reconfigurable cores, etc.

The functionality as well as the complexity of multicore chips is unprecedented. This is the aggregate result of several technologies that emerged and matured together the last few decades: (a) manufacturing process now approaching the 10nm regime and soon expected to go beyond, (b) sophisticated electronic design automation tools assisting and refining every step of the design process, (c) new processor architectures across the entire spectrum of performance and power consumption.

Electronics-based systems (either for computing or other purposes) deliver scalable performance under a domain's power constraints for many decades now. Unfortunately, performance scaling at a given power envelope faces today, more than ever before, several closely related challenges with respect to two major chip development aspects: manufacturability and dependability. From a temporal point of view manufacturability deals with the cost-effectiveness of chips during production (time < 0 before release to market) while dependability deals with the correctness of their operation in the field (time > 0 after release to market). Manufacturability and dependability share common challenges and threats, have common objectives and utilize common solutions regardless of the employment of chips in systems at the low end of performance and power (low-cost embedded systems or consumer electronics) or the high end of performance (data centers, cloud computing facilities, or extremely powerful supercomputers).

This survey article stems from the view of MEDIAN [START_REF] Ottavi | Introducing MEDIAN: A new COST Action on manufacturable and dependable multicore architectures at nanoscale[END_REF], a large network of researchers from academia and industry funded by the European Science Foundation that collaborate in the areas of manufacturability and dependability of multicore architectures and their deployment in different computing application domains. In particular the focus of this survey is dependability of multicore architectures. Given the short nature of this overview, it is worth to note that we discuss only a partial and limited subset of the works done in this field, focusing on the representative and seminal publications that are closer to the vision of the research network.

The article first describes the main challenges that threaten dependability, then presents and classifies the state-of-the-art in the solutions and methodologies space.

II. DEPENDABILITY THREATS

Dependable operation in the field is a function of the circuit's ability to overcome faults occurring during the circuit mission time. Dependability is a very generic term and refers to the confidence a user has on a system's ability to operate correctly. Dependability is quantified by reliability, availability, etc. which are measures of the ability of the system to operate under its specifications at a given point of time or during a period of operation and plays a key role in the international roadmaps of advanced computing systems segments [START_REF] Dehon | Final Report for CCC Cross-Layer Reliability Visioning Study[END_REF], [3] [4]. A detailed taxonomy of dependable systems can be found in [START_REF] Avizienis | Basic concepts and taxonomy of dependable and secure computing[END_REF].

A major threat of modern chips comes from intermittent faults induced by environmental conditions, in particular particle strikes on the circuit nodes, causing soft errors, [START_REF]ITRS[END_REF] Soft errors have traditionally been a major concern for storage elements (registers, memories) but they are already a serious problem for logic nodes as well. Intermittent faults are usually due to environment reasons but can be also the result of voltage and temperature variability when the circuit operates in more than one mode (e.g. when voltage or frequency scaling techniques are employed).

Unlike the past when manufacturing technologies were robust enough to guarantee correct operation virtually "forever", today's circuits suffer from degradation phenomena that significantly reduce their life time even when they operate in nominal conditions. Such mechanisms are typically referred to as aging or wear-out and get more frequent and more severe as manufacturing nodes get smaller, and circuit frequencies get higher. Aging effects combined to technology node scaling can cause both the occurrence of permanent faults but also the increase of the rate of elusive faults, which manifest themselves as intermittent faults in certain operating conditions such as effects of temperature variation or system load exceeding certain levels [START_REF] Avizienis | Basic concepts and taxonomy of dependable and secure computing[END_REF].

Figure 1 reports a timeline showing the points of time during a chip's lifetime where each threat appears. Manufacturing defects (MD) occur during production (i.e. when t<0), transient errors due to radiation (SE) or to voltage and temperature variability (V) [START_REF] Alam | Reliability-and Process-variation aware design of integrated circuits-A broader perspective[END_REF] are expected during all the life cycle and aging phenomena (A) at the end of the chip's life.

Fig. 1 Occurrence of different kinds of faults during the life of a device

Dependable operation of a circuit throughout its lifetime can be only guaranteed when it employs hardware and software mechanisms to tolerate all possible threats. Since such fault tolerance mechanisms are planned during system design and realized during system implementation and manufacturing, they can improve both quality aspects of the system: costeffective production (through yield improvement) and highly reliable operation in the field (through mitigation of threats) [START_REF] Dehon | Final Report for CCC Cross-Layer Reliability Visioning Study[END_REF], [START_REF]ITRS[END_REF].

Conceptually, a chip at any stage may require to employ mechanisms (external or internal as well as hardware or software based) to detect and/or diagnose, recover, and even repair itself from permanent, intermittent, or transient faults.

The subsequent sections of the article concentrate on prevalent technological threats (i.e. soft errors and aging effects causing both permanent and intermittent faults) and discuss the main approaches used in practice to improve the in-field dependability of a chip as well as the classic techniques and measures that are employed to evaluate a system's dependability.

III. THE TECHNOLOGY VIEWPOINT ON CURRENT

CHALLENGES TO DIGITAL ARCHITECTURES

In this section, we elaborate on some of the issues outlined in the previous section from a technology point of view. In particular, we focus on soft error and aging susceptibility. The proposed analysis and mitigation models are applicable not only to multicore but to digital architectures in general.

A. Overview of Soft Errors effects

Soft errors are one of the most important challenges in nanoscale CMOS technologies impacting field-level product reliability. In an electronic component, the failure rate induced by soft errors can be relatively high compared to other reliability issues [START_REF] Heijmen | Soft Errors from Space to Ground Historical Overview[END_REF]. Whether or not soft errors impose a reliability risk for electronic systems strongly depends on the application. Soft-error rate is generally not an issue for consumer applications such as mobile phones, but can be a problem for applications that have very severe reliability and safety requirements: automotive, data centers, space industry, medical electronics, etc.

Soft errors are events usually provoked by radiations (i.e. neutrons from cosmic rays, alpha particles emitted by radioactive impurities present in manufacturing used materials, etc.). Aggressive technology scaling, higher clock frequencies and lower voltage operation strategies result in a reduction of capacitance per transistor, and as a consequence particles with lower energy, can generate sufficient charge to cause soft errors. Soft Error Rates (SER) relate to cases when data is corrupted, but the device itself is not permanently damaged. Recent experiments show that the SER of combinational logic in sub-50nm technologies is comparable with that of sequential elements (i.e. latches and flip-flops) and will be a dominant factor in the future technologies [START_REF] Gill | Comparison of alpha-particle and neutron-induced combinational and sequential logic error rates at the 32nm technology node[END_REF]. With technology scaling to nanoscale regimes, a single radiation strike can affect multiple cells through secondary particles (neutrons) and shared diffusion which result in multiple bit upsets (MBUs) [START_REF] Reed | Heavy ion and proton-induced single event multiple upset[END_REF].

Soft errors can have different effects on applications. They may result in data corruption at the system level, or provoke a timing delay or malfunctioning of a circuit or even a system crash. Understanding how a particle impact may lead to failures, has been made possible due to numerous software/hardware methodologies and tools for evaluating SER during the design phase. Such methodologies and tools aim to reduce the extra design and validation cycles during chip fabrication due to late modifications that could be necessary to reach the desired reliability level. Their success on doing that depends on their accuracy in SER evaluation. The full characterization framework includes Technology CAD models for the radioactive environment, their interaction with the integrated circuit technology as well as design topologies facilitating good estimation of Failures-In-Time (FIT) rates for memory cells and library elements. Moreover, cell level SPICE simulation frameworks and gate level statistical and probabilistic approaches push forward the FIT estimation at sequential cells [START_REF] Gill | Comparison of alpha-particle and neutron-induced combinational and sequential logic error rates at the 32nm technology node[END_REF], RTL level and IP blocks [START_REF] Evans | Hierarchical RTL_Based Combinatorial SER Estimation[END_REF]. They take into consideration electrical masking, logic masking and timing masking phenomena. Higher-level estimation done at the RTL and the full SOC level allows the integration of architectural vulnerability aspects. All the masking factors have been widely studied in recent years and very sophisticated models have been proposed [START_REF] Rao | Computing the soft error rate of a combinational logic circuit using parameterized descriptors[END_REF]. During the last years, the accuracy of sensitivity evaluation of soft error effects has been improved as well as the evaluation speed is increased by properly taking into account the full environment of the system, the operating modes, the systematic and random variations as well as the application.

Mitigation approaches for soft errors at the circuit level are aimed at avoiding that the effect of the injected charge could modify logic values and are generally known as hardening techniques. Hardening involves using redundant transistors, capacitors, or resistors to make sure that the effect of the upsets does not propagate. Some typical examples of hardening techniques for memory elements can be found in [START_REF] Zhang | Sequential element design with built-in soft error resilience[END_REF][14] [START_REF] Hazucha | Measurements and analysis of SER tolerant latch in a 90 nm dual-Vt CMOS process[END_REF].

B. Overview of Aging effects

Variation effects are among the main reliability issues [START_REF] Fang | Circuit reliability: from physics to architectures[END_REF] and can be categorized into two main categories. Process variation is the variation of transistor physical parameters due to uncertainties during fabrication process. This type of variation leads to significant performance variation at time t = 0. Aging (temporal variation), leads to variation in behavior of a circuit over its lifetime, t > 0. Bias Temperature Instability (BTI), Hot Carrier Injection (HCI) and Time-Dependent Dielectric Breakdown (TDDB) are three main degradation phenomena [START_REF] Fang | Circuit reliability: from physics to architectures[END_REF], [START_REF] Mesgarzadeh | Reliability challenges in avionics due to silicon aging[END_REF]. When the transistor is negatively (positively) biased, traps are generated at the silicon to dielectric interface and also inside the dielectric of PMOS (NMOS) transistors leading to an increase in the threshold voltage of transistor. This phenomenon is called Negative (Positive) BTI and leads to increase of the propagation delays in a circuit and eventually the circuit fails to meet its timing specifications. HCI is an irreversible aging effect, which is caused by the accelerated carriers (electron/holes) under lateral electric fields. HCI also manifests as an increase in the threshold voltage of mostly NMOS transistors. While BTI contains both stress and relaxation (recovery) phases, depending on the transistor gate-source bias, HCI has no recovery mechanism. The NBTI and HCI complex physical models are currently enriched with more contributions: the recoverable part of BTI, the HCI dependence on the workload and the bulk bias, the interaction between them.

TDDB degrades the gate oxide and leads to an increase in its conductance. As a result, the current through the gate insulator increases and eventually it can lead to an abrupt increase of gate leakage current causing a catastrophic failure for the device (hard breakdown) or timing degradation. TDDB becomes more severe as the gate oxide thickness becomes thinner due to technology scaling. TDDB is primarily a major issue for low-k device materials. However, after the introduction of high-k dielectrics in highly scaled logic devices, TDDB is an even more severe issue because of the breakdown of the interfacial layer as well as the high-k layer. Another aging issue which affects interconnect is electromigration [START_REF] Mesgarzadeh | Reliability challenges in avionics due to silicon aging[END_REF]. It is caused by physical migration of atoms in a metal wire, when the current flows through the wire for a long time. In order to mitigate the reliability threats, there are two main categories of techniques: 1) "model, predict, and margin", and 2) "sense and adapt". Both styles can be applied at different levels of abstraction.

For aging mitigation at circuit level, guard-banding, body biasing, and gate sizing are the most well-known methods [START_REF] Henkel | Reliable on-chip systems in the nano-era: lessons learnt and future trends[END_REF]. For effective guard-banding methods, the guard-band has to be accurately predicted. Therefore, it is crucial to effectively predict the circuit failure expectations due to aging; this approach has been extensively explored in the literature [START_REF] Mitra | Robust system design to overcome CMOS reliability challenges[END_REF]. Circuit failure prediction can be combined with optimized selftuning in order to improve the lifetime by minimizing circuit aging guard-bands [START_REF] Mitra | Robust system design to overcome CMOS reliability challenges[END_REF]. Dynamic voltage/frequency scaling is another approach that can be used at either coarse or fine granularity. There are also methods to mitigate BTI by rebalancing the signal probabilities applied to memory blocks, logic cores and the entire processor [START_REF] Huard | A Predictive bottom-up hierarchical approach to digital system reliability[END_REF]. Another approach is input vector control, which can be used at the circuit or the instruction level (using NOP instructions) [START_REF] Fang | Circuit reliability: from physics to architectures[END_REF].

In "sense and adapt" strategies against aging effects, the circuit behavior has to be constantly monitored at runtime. For this purpose, signatures can be collected during normal system operation by using special sensors such as the ones proposed in [START_REF] Cabe | Small Embeddable NBTI Sensors (SENS) for Tracking On-Chip Performance Decay[END_REF] or in [START_REF] Karl | Compact in situ sensors for monitoring negative-bias-temperature-instability effect and oxide degradation[END_REF] for monitoring NBTI and oxide degradation.

Another opportunity to obtain the signatures is by using periodic on-line self-test/diagnostics [START_REF] Mitra | Robust system design to overcome CMOS reliability challenges[END_REF]. Since aging effects are highly dependent of circuit temperature, voltage and power profiles, collecting such signatures are useful in order to predict the aging rates [START_REF] Mitra | Robust system design to overcome CMOS reliability challenges[END_REF]. Adaptive mechanisms can be utilized based on the feedback from performance metric sensors [START_REF] Henkel | Reliable on-chip systems in the nano-era: lessons learnt and future trends[END_REF]. Various monitoring schemes and canary circuitries such as replica monitors, in-situ monitors, online self-test and software-based inference have been proposed [START_REF] Henkel | Reliable on-chip systems in the nano-era: lessons learnt and future trends[END_REF].

IV. DEPENDABILITY TECHNIQUES FOR MULTICORE SYSTEMS

In this section we describe various dependability-enhancing techniques that can be applied to the different components of a multicore system. Table I summarizes the main classes of approaches and their main characteristics. For each technique it is reported: 1) its fault detection (FD) and/or fault tolerant (FT) capabilities with respect to the fault type, 2) the phase during which they are devised (design time vs. run time), and 3) the solution type (software, hardware or architectural).

A. Faults in processor cores

To cope with faults in the processors constituting the multicore system, various approaches have been adopted. Some of the approaches work at the i) architectural level, by enhancing the exploitation of existing cores and/or additional ones, ii) micro-architectural level by hardening the core structure, or at iii) application/software level, by working at the system and application software levels. Circuit-level techniques are usually not explicitly considered in this scenario since they provide viable solutions (e.g., for the design of a hardened memory element) independently of the circuit being designed and thus we will not include them here.

1) Architectural solutions

One of the most straightforward but costly techniques is based on the use of a second processing core, to monitor the execution of the applications and, if a deviation from the expected logical/timing behavior is detected, restart the core. This can be achieved by means of a dedicated core working in close synchronization with the master one (lock-step), or by means of a simplified hypervisor or watch-dog. The presence of several cores in multicore architectures enables for a direct implementation of this kind of solutions (e.g. [23][24]). A different way to exploit core redundancy is by means of active replication and primary backup. In the former case, the whole process is executed on another processing core in parallel and, in case of fault the result from a healthy replica is used. In the latter approach, only one replica is executed at a time and, when it is detected as corrupted, the "backup" or "shadow" replica is activated and executed. The main difference between the two approaches is that the active replication does not require timing penalty in case of error recovery but require higher redundancy with respect to the primary backup (e.g., [START_REF] Budhiraja | The primarybackup approach[END_REF]).

2) Micro-Architectural solutions: Processor hardening

Several solutions have been envisioned to harden the processor architecture itself, so that any fault is dealt with inside the processor offering a transparent fault tolerant execution of the applications. Addressing of faults at the hardware level leads to increased silicon area, increased critical part of a chip and increased development cost and power consumption (e.g., [START_REF] Pan | Improving yield and reliability of chip multiprocessors[END_REF]). A well-known example of this approach is the SPARC-based LEON processor used by the European Space Agency [START_REF] Gaisler | A portable and fault-tolerant microprocessor based on the SPARC v8 architecture[END_REF].

3) Software techniques

This class of approaches includes solutions that replicate the tasks or threads of the application a number of times (two for detection, three for tolerance), executing on different processing cores and compares the produced outputs. Among the various solutions proposed in literature, the one presented in [START_REF] Smolens | Reunion: Complexity-effective multicore redundancy[END_REF] proposes an execution model based on chip-level redundant threading to deal with soft-errors in processors, achieving fault detection properties without incurring in high overheads and without a significant impact on the architecture. Following the same strategy redundant execution of the tasks or threads, re-execution consists of re-running the portion of the application that has been corrupted, upon detection (e.g., [START_REF] Kandasamy | Transparent Recovery from Intermittent Faults in Time-Triggered Distributed Systems[END_REF]). Overheads are related to maintaining the necessary information to perform a delayed execution of the portion of the application. However, this approach also requires nontrivial effort and may incur high overheads.

B. Faults in memory

In multicore architectures, the amount of silicon area occupied by memories is continuously increasing and also its functionalities (e.g. memory coherence) and architectures become more and more complex. As a consequence yield and reliability enhancement of cache memories is becoming more and more important. This is accentuated by the shift from SRAM-based caches to novel memories based on resistive devices that show promising results with respect to the current available charge based memories but present several reliability issues (see [START_REF] Pirovano | Reliability study of phase-change nonvolatile memories[END_REF] for Phase Change Memories and [START_REF] Waser | Nanoionics-based resistive switching memories[END_REF] for nanoionics based memories). Here we shortly describe some of the solutions to memory related faults that show how novel dependability techniques can be designed to exploit the specific characteristics of multicore architectures or how already widely used techniques require a deep rethinking to be applied in this new scenario.

1) Cache-coherence solutions

Specific methods related to the multicore paradigm exploit the cache coherence protocols also to add error detection and correction features to the system. The simplest method consists in detecting errors by means of parity bits, correcting the error using a copy of the data stored in another cache. As an example, coherence protocol aimed at dealing with transient failures that affect the interconnection network of a multicore architecture is presented in [START_REF] Fernández-Pascual | A low overhead fault tolerant coherence protocol for CMP architectures[END_REF].

2) Transactional-memory approach

Another family of techniques related to the multicore paradigm exploits the transactional memory approach.

Transactional memory operations attempt to simplify concurrent programming, by allowing a group of load and store instructions to execute in an atomic way. It can be used to add fault tolerant capacities to the multicore memories. As one of the various examples, [START_REF] Yalcin | FaulTM-multi: Fault Tolerance for Multithreaded Applications Running on Transactional Memory Hardware[END_REF] uses a hardware transactional memory to detect transient and permanent faults.

3) Information redundancy

Well-known techniques based on redundant row/columns and/or on the use of error correction codes, received renewed attention, since the different requirements in terms of power consumption and speed, and the different type and likelihood of errors in memories, require different types of solutions (e.g., [START_REF] Su | An integrated ECC and redundancy repair scheme for memory reliability enhancement[END_REF]).

C. Communication

Also here we selected only a small subset of possible solutions, focusing on those that exemplify the relationship between the specific solution and the multicore architecture. Different topologies have been proposed to connect together multicore architectures [START_REF] Bertozzi | Error control schemes for on-chip communication links: the energy-reliability tradeoff[END_REF]. Some of these topologies are based on shared bus communication infrastructures, often connecting together private memories (e.g. L1 private caches are connected to a shared L2 cache). When bus based topologies are used, error codes are the most viable solution.

In particular, it is straightforward to use the same ECC used in memory, also for data movement. When complex interconnection structures like Networks-on-Chip (NoC) are employed [START_REF] Murali | Analysis of error recovery schemes for networks on chips[END_REF] 

V. DEPENDABILITY METRICS AND EVALUATION

The design of dependable multicore systems cannot be done without having defined clear dependability metrics and the way to measure them. This section discusses metrics used for evaluating the dependability of multicore systems and their evaluation methodologies.

A. Metrics

A system's dependability can be quantified by various metrics and techniques, typically at different abstraction levels of the system. Such metrics include Failures-in-Time (FIT) rate 1 , Mean Time To Failure (MTTF) 2 , Mean Time Between Failures (MTBF) 3 , bit failure Probability (P fail ) 4 , Architectural and Program Vulnerability Factors (AVF 5 , PVF 6 ), Silent Data Corruptions (SDC) 7 , Detectable Unrecoverable Errors (DUE) 8 , Soft Error Rate (SER) 9 , etc. ( [50][51]) . Estimation techniques can be performed either pre-silicon, comprised of statistical fault injection in simulators or model-based 1 FIT rate is the number of failures per 10 9 hours of operation.

2 MTTF is the average elapsed time to system failure (gives expected lifetime of single point of failure systems).

3 MTBF is the average elapsed time between failures of a system. 4 Pfail is the raw technology failure probability of a cell or gate. 5 AVF is the probability that a fault in a hardware component will lead to an architecturally visible error. 6 PVF calculates the percentage of architectural-level masking in a program. 7 SDC is the number or rate of faults in a hardware component that lead to output errors and are not detected by any mechanism. 8 DUE is the number of rate of faults in a hardware component that are detected by a detection mechanism or lead to an exception but can't be corrected. 9 SER is the rate at which a device encounters or is predicted to encounter soft errors.

analysis, or post-silicon on the actual hardware prototypes, which can be more accurate but come relatively late in the design flow. Most reliability estimation techniques consider the circuit-and gate-level. At the circuit-level, reliability device simulators estimate the probability of a given failure mode at the output of a logic gate hit by a particle or affected by other types of stresses [START_REF] Papasso | A model for transient fault propagation in combinatorial logic[END_REF], [START_REF] Maheshwari | Techniques for transient fault sensitivity analysis and reduction in VLSI circuits[END_REF]. These simulators have become an integral part of the design process, modeling the variety of physical failure mechanisms (TDDB, BTI, EM, HCI) discussed in Section III. Recently it has become apparent that the impact of process variations must be integrated in the circuit simulation process, along with the physical failure mechanisms [START_REF] Blaauw | Statistical timing analysis for intra-die process variations with spatial correlations[END_REF]. At the gate-level, the entire netlist is considered to estimate the error susceptibility of a node. This requires computing the probability of sensitizing the node with an input vector able to propagate the erroneous value to the circuit's outputs [START_REF] Touba | Partial error masking to reduce soft error failure rate in logic circuits[END_REF], a task that requires the simulation of several random vectors whose number significantly increases with the size of the circuit. To tackle this complexity, chip level reliability prediction methods are mostly statistical following sampling approaches as the one described in [START_REF] Leveugle | Statistical Fault Injection: Quantified Error and Confidence[END_REF].

B. Evaluation

Traditionally, dependability metrics have been evaluated analytically using technology and empirically derived foundry and in-field data. For example, the FIT rate of a system is additive on the constituent FIT rate of its components; MTTF can be calculated either from individual component MTTFs or, in a less cumbersome manner, using the inverse of the system FIT rate; MTBF is the addition of MTTF and MTTR (Mean Time to Repair), etc [START_REF] Mukherjee | Architecture Desing for Soft Errors[END_REF] [START_REF] Pradhan | Fault-Tolerant Computer System Design[END_REF]. SDC and DUE rates are important metrics used to categorize and quantify the impact of faults in a system and the effectiveness of its underlying detection/correction mechanism(s). Both rates can be applied separately to each of the various dependability metrics. For the case of soft-errors, it is typical to express the SER as the summation of SDC FIT and DUE FIT [START_REF] Mukherjee | Architecture Desing for Soft Errors[END_REF]. A significant body of recent work at different levels in the area of resiliency involves the study of the impact and susceptibility of transient (soft) errors through fault injections [START_REF] Clark | Fault injection: a method for validating computer-system dependability[END_REF]. Transient faults can be injected into a microprocessor in various ways leading to different control capabilities over the time and location of the fault injection, the level of perturbation to the processor, and the simulation time and cost requirements. Commonly used hardware methods are processor pin-level injection, heavy-ion radiation, power or electromagnetic disturbances and non-destructive laser fault injection. All these methods closely imitate real fault situations, but are usually expensive and applicable only after the physical chip is available. Software fault injection is a low-cost alternative that can be applied to designs, programs and O/S and allows observing the final impact on the system. Software methods can be classified into two classes: (i) software-implemented methods, where the processor state or programs are modified during compile-or run-time and the injection takes place on real hardware and (ii) simulationbased method, where the processor, workload, and fault injections are all modeled in a software simulator of the architecture. In general, the latter is more flexible as it provides better controllability of fault injection and observability of the system behavior. However, it requires a very accurate processor microarchitecture and system model developed in software and it runs several orders of magnitude slower than hardware or software-implemented methods. In the recent years, there has been a considerable effort in estimating the vulnerability of microprocessors considering correlation models or even reliability estimation models that work concurrently at different abstraction levels where the micro-architecture is changed. The most popular measure is the AVF, which is the probability of a bit-flip in a microprocessor structure leading to a user visible system error [START_REF] Mukherjee | A Systematic Methodology to Compute the Architectural Vulnerability Factors for a High-Performance Microprocessor[END_REF]. AVF gives more realistic SER estimates than circuit-and device-level SERs (for SDCs and DUEs) as it tracks observable errors. As a result, circuit-and device-level SER can be considerably derated. Accurate estimation of AVF is a complex process involving a large number of fault injections and simulations requiring many resources to track values and instructions as they travel through a processor [START_REF] Wang | Examining ACE Analysis Reliability Estimates Using Fault-Injection[END_REF]. The process becomes even more demanding when multiple bit-flips, which are expected in future technologies, must be considered. When analyzing the lifetime reliability of processor-based systems, it is essential to investigate the impact at system level. Srinivasan et al. [START_REF] Srinivasan | The Case for Lifetime Reliability-Aware Microprocessors[END_REF] described a model for lifetime analysis for microprocessors and conducted dynamic reconfigurations based on the model. Other works predict lifetime reliability based on simulations but, as with [START_REF] Srinivasan | The Case for Lifetime Reliability-Aware Microprocessors[END_REF], the failure mechanisms do not consider aging effects leading to inaccuracies in the simulation results. In [START_REF] Huang | Characterizing the Lifetime Reliability of Manycore Processors with Core-Level Redundancy[END_REF], one of the few works on system-level lifetime reliability analysis for manycore processors, the impact of workloads and associated temperature variations are considered. Recently, researchers have begun to explore the system-level impact of variations on power, performance, and reliability by developing models of process variation. Scarce work has focused on systematically including the software into the reliability evaluation process. Some work analyzes various compiler optimization effects on the AVF of embedded processors. However, the experiments lack new guidelines regarding software reliability improvement at compiler level. In [START_REF] Di Carlo | Static analysis of SEU effects on software applications[END_REF] the authors proposed a first attempt of performing static analysis of a computer system including its software. While representing a new idea to include the software in the error susceptibility estimation, the approach is limited to errors in the instruction op-codes of the program prior to their execution and does not consider the data and control part of the microprocessor. Recent interesting solutions include the software layer by computing the PVF [START_REF] Sridharan | Eliminating microarchitectural dependency from architectural vulnerability[END_REF] for a set of applications exploited to improve AVF computation for several microprocessors. However, neither the final software workload, nor the full stack is explicitly considered. Existing solutions against these challenges were also discussed, describing their scope of application, from technology level methodologies, to design approaches to the metrics required to evaluate the overall dependability of a system.

In the future, the constant reduction of the feature size of the devices will exacerbate the issues related to aging and soft errors. This will create further challenges and at design level, an integrated design approach that will cope with the occurrence of faults at any time of their occurrence i.e. at manufacturing (thus increasing yield) and in the field (thus increasing reliability) will become more and more important to obtain economically viable and dependable systems. Dependability assessment will also need an integrated approach for cross-layer, pre-and post-silicon techniques for "just right" dependability assessment in order to avoid "overdesign" for dependability using classic guard-banding methodologies.

  [START_REF] Ejlali | Joint consideration of fault-tolerance, energyefficiency and performance in on-chip networks[END_REF], more error tolerant techniques can be used, since error can be handled at link level or at network level. Automatic Repeat Request (ARQ) uses error detection codes to detect errors, retrying the failed transmission, while Forward Error Control (FEC) is based on ECC codes. Hybrid ARQ/FEC (HARQ) schemes combine both techniques to obtain a better reliability/performance trade-off.

TABLE I .

 I DEPENDABILITY TECHNIQUES FOR MULTI-CORE ARCHITECTURES

	Technique name	Technique family	Target		Fault Type		Phase	Solution Type
				Transient Permanent	Intermitt ent	Design -time	Run-time	SW	HW	Architectural
	Dual Lock-Step [24]			FT	FD	FT		X	X
	Hypervisor [23]	Architectural		FT	FD	FT		X	X
	Watchdog [24]	solutions		FT	FD	FD		X	X
	Active replication & backup [25]		Processor	FT	FD	FD	X		X
	Processor hardening [26][27]	Micro-solutions Architectural		FT	FD/FT	FD/FT	X		X
	Redundant execution [28]	Software		FD/FT	FD/FT	FD/FT	X	X	X
	RE-execution and recovery [29]	techniques		FD/FT	FD/FT	FD/FT	X	X	X
	Cache-coherent solutions [32]		FD/FT	FD/FT	FD/FT		X	X
	Transactional memory approaches [33]	Memory	FD/FT	FD/FT	FD/FT		X	X
	Information redundancy [34]		FD/FT	FD/FT	FD/FT	X		X	X
	ARQ [35][36]		FD	FD	FD	X		X
	FEC [35][36]	Communications	FT	FT	FT	X		X
	HARQ [35][36]		FD/FT	FD/FT	FD/FT	X		X	X

TABLE II .

 II This article presented a survey of dependability issues faced by multi-core architectures at nanoscale technology nodes.

		POPULAR DEPENDABILITY METRICS	
	Metric	Level	Phase	Calculation Method
	Failures-in-Time (FIT)	circuit/component/microarchitecture	Post-Silicon/Design	Experiment/Simulation
	Mean Time To Failure (MTTF)	circuit/component/microarchitecture	Post-Silicon/Design	Experiment/Simulation
	Mean Time Between Failures (MTBF)	circuit/component/microarchitecture	Post-Silicon/Design	Experiment/Simulation
	Bit failure probability (Pfail)	circuit/component	Post-Silicon	Experiment
	Silent Data Corruptions (SDC)	microarchitecture/architecture	Design	Simulation
	Detectable Unrecoverable Errors (DUE)	microarchitecture/architecture	Design	Simulation
	Soft Error Rate (SER)	circuit/component/microarchitecture/ar chitecture	Post-Silicon/Design	Experiment/Simulation
	Architectural Vulnerability Factor (AVF)	microarchitecture/architecture	Design	Simulation/Analytical
	Program Vulnerability Factors (PVF)	architecture	Application (S/W)	Simulation
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