
HAL Id: hal-01334099
https://hal.science/hal-01334099v1

Submitted on 20 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low Power HEVC Software Decoder for Mobile Devices
Erwan Raffin, Erwan Nogues, Wassim Hamidouche, Seppo Tomperi, Maxime

Pelcat, Daniel Menard

To cite this version:
Erwan Raffin, Erwan Nogues, Wassim Hamidouche, Seppo Tomperi, Maxime Pelcat, et al.. Low Power
HEVC Software Decoder for Mobile Devices. Journal of Real-Time Image Processing, 2016, 12 (2),
pp.495-507. �10.1007/s11554-015-0512-8�. �hal-01334099�

https://hal.science/hal-01334099v1
https://hal.archives-ouvertes.fr

Low Power HEVC Software Decoder for Mobile
Devices

Erwan Raffin, Erwan Nogues, Wassim Hamidouche,
Maxime Pelcat, Daniel Menard

INSA Rennes, IETR, UMR CNRS 6164, UEB
20 Av. Buttes de Coesmes, 35708 Rennes, France

firstname.lastname@insa-rennes.fr

Seppo Tomperi
VTT Technical Research Centre

of Finland, Oulu, Finland
seppo.tomperi@vtt.fi

1 Abstract—In the context of mobile handheld devices, energy
consumption is a primary concern and the process of video
decoding is often among the most resource-intensive applica-
tions. Recent embedded processors are equipped with advanced
features such as Dynamic Voltage Frequency Scaling (DVFS) in
order to reduce their power consumption. These features can be
used to perform low power video decoding when no hardware
decoding support is available for a given standard.
High Efficiency Video Coding (HEVC) is a recent video standard
offering state-of-the-art compression rates and advanced parallel
processing solutions. This paper presents strategies for the
power optimization of a real-time software HEVC decoder on
Neon architecture. These strategies include the exploitation of
data and task-level parallelism, as well as the use of a new
frequency control system to optimize the processor DVFS, based
on an estimation of the decoding complexity. Extensive power
measurement results, based on a multi-core ARM big.LITTLE
processor, are provided and compared to state-of-the-art. These
results show that the proposed open-source implementation can
reach an energy consumption below 21 nJ/px for HD decoding
at 2.2 Mbits/s.

I. INTRODUCTION

The first version of the HEVC standard [5, 21] was finalized
in January 2013 by ITU-T Video Coding Experts Group
(VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG) under a partnerships known as the joint collaborative
team on video coding (JCT-VC). The HEVC standard enables
a gain of up to 50% in terms of subjective video quality [20]
with respect to the H.264/AVC high profile [24]. Moreover,
the second version of the HEVC standard enables new coding
functionalities including an efficient coding of video at high
bitdepth (up to 14 bits) and with high color format fidelity:
4:2:2 and 4:4:4. The HEVC rate-distortion gain together with
these new functionalities enable the proliferation of new video
services such as video transmission at ultra high quality over
broadband and wireless networks for both fixed and mobile
devices. On the other hand, the HEVC standard was designed
with a particular attention to meet with complexity require-
ments. Therefore, early after the standardization of the first
HEVC version, a number of software implementations have
emerged to offer real time decoding solutions for HEVC coded

1This document is a preprint version. The final publication is
available at link.springer.com: http://link.springer.com/article/10.1007%
2Fs11554-015-0512-8

video contents [14, 7, 23, 8, 10, 2]. These software implemen-
tations offer flexibility, fast time-to-market and are well suited
for quick adaptation to standard evolution. Moreover, software
decoder can be easily implemented on embedded platforms
not dedicated to video processing. Authors in [7] studied the
complexity assessment of the HEVC decoder, which remains
quite similar to the complexity of the H.264/AVC decoder.
The proposed decoder has been optimized for both x86 and
ARM architectures and compared with the HEVC reference
software model (HM) decoder. In [8], authors investigate
HEVC decoder optimizations for real time decoding on an
Intel processor. The presented decoder is capable of processing
several pictures in parallel based on the frame-based paral-
lelism. Low level optimizations for x86 processors together
with frame-based parallelism enable the decoding of 4K ultra
high definition HEVC video on an Intel i7 processor running at
2.5 Ghz. The power consumption performance of this parallel
HEVC decoder have been assessed on different multi-core
Intel architectures in [10].
In this paper, we propose a low power HEVC software
decoder for mobile devices. Three strategies are investigated
for lowering the power consumption of this software HEVC
decoder:

• The first strategy consists in exploiting data-level paral-
lelism in order to reduce the decoding time for a fixed
power consumption and thus reduce energy consumption.
The strategy is generic for all processors supporting Sin-
gle Instruction Multiple Data (SIMD) and the presented
implementation is specific to ARM-based processors with
a NEON architecture extension.

• The second strategy, based on task-level parallelism, is
obtained by exploiting frame-based parallelism which
decodes a set of HEVC frames in parallel. This requires
a Symmetric Multi-Processor (SMP) operating system
managing pthreads such as Linux.

• The third strategy is based on a new technique to exploit
efficiently the processor Dynamic Voltage Frequency
Scaling (DVFS) capabilities in the context of video
decoding. For real-time decoding, processing must be
done at a given pace. The over-abundance of processing
capabilities makes room for reducing the power consump-

http://link.springer.com/article/10.1007%2Fs11554-015-0512-8
http://link.springer.com/article/10.1007%2Fs11554-015-0512-8

tion of the decoder by adapting dynamically its voltage
and frequency. Classical DVFS policies fail at adapting
efficiently the processor clock frequency due to the huge
variation of the decoding time from one frame to another.
We propose a new strategy that uses information from the
decoding application to enable better DVFS adaptations.

These three solutions have been considered since many
recent mobile handheld devices offer SIMD, SMP operating
system and DVFS. Moreover, the frame-based parallelism can
be used for all HEVC bitstream whatever the coding configura-
tion. The presented HEVC decoder is based on the open source
software project OpenHEVC [2]. The performance of the
proposed decoder in terms of energy consumption is assessed
after applying the three energy optimization strategies.
The rest of this paper is organized as follows. Section II
presents a short overview of the HEVC standard and the
existing real time HEVC decoder implementations. Section III
describes the proposed decoding system including the Open-
HEVC decoder, and the 3 energy optimization strategies. The
power consumption performance of the proposed decoder is
assessed on ARM platform in Section V. Finally, Section VI
concludes this paper.

II. RELATED WORK

A. HEVC standard

The HEVC standard can reach the same subjective video
quality than its predecessor H.264/AVC at about half bit-
rate [20]. This gain is obtained thanks to new tools adopted in
the HEVC standard, such as quadtree-based block partitioning,
large transform and prediction blocks, accurate intra/inter
predictions, the in-loop sample adaptive offset (SAO) filter and
highly adaptive entropy coder named Context Adaptive Binary
Arithmetic Coder (CABAC) [21]. The HEVC encoded frame
is partitioned into Coding Tree Units (CTUs), each containing
one luma Coding Tree Block (CTB) and two chroma CTBs.
Recursive subdivision of a CTU results in Coding Unit (CU)
leaves with the corresponding Coding Blocks (CBs). The CU
can be split into Prediction Units (PUs), a basic entity for
intra and inter predictions, and recursively split into Transform
Units (TUs), a basic entity for residual coding. The HEVC
standard was designed with a particular attention to complex-
ity, where several solutions were defined to leverage multi-
core architecture and enhance both encoding/decoding frame
rate and frame latency. These high level parallel processing
solutions, including wavefront, independent slices and tiles,
are described in the next section.

1) Parallelism in HEVC: Three high level parallel process-
ing solutions [11], including idependent slice, tile and wave-
front, are defined in the HEVC standard to simultaneously
process multiple regions of a single picture. The frame can
be partitioned into one or many independent slices, mainly to
increase the bitstream robustness. The tile concept splits the
picture into rectangular groups of CTUs, called tiles. Inde-
pendent slices and tiles reset the probabilities of the CABAC
and remove intra prediction dependencies and thus can be

used for parallel encoding and decoding. However, limiting
intra prediction and resetting CABAC probabilities decrease
the coding performance in terms of rate distortion, especially
for large numbers of tiles/slices per frame. Moreover, in-
loop filters cannot be performed in parallel at the tile/slice
edges without additional control mechanisms. The Wavefront
Parallel Processing (WPP) solution complements slices and
tiles by splitting the frame into CTU rows [12]. In WPP mode,
the CABAC context is initialized at the beginning of each
CTU row. The overhead caused by this initialization is limited
since the CABAC context at each CTU row is initialized by
the CABAC context state at the second CTU of the previous
CTU row. The decoding of each CTU row can be carried
out on a separate thread with a minimum delay of two CTUs
between adjacent CTU rows. These three high-level parallel
processing solutions depend on the bitstream, and can be used
only when these tools are enabled by the encoder. In this
paper we consider the frame-level parallelism that enables
to simultaneously process multiple frames regardless of the
encoding configuration [19].

B. Low power HEVC decoders

Hardware implementations of HEVC decoder have been
recently proposed. In [16], an HEVC decoder supporting 4K
resolution at 30 fps is proposed. Implementation results are
given for 40nm CMOS technology. The clock frequency is
set to 200 MHz. An energy consumption for the core around
0.3 nJ/px is reported. Performances are obtained thanks to
a efficient pipeline scheme, a specific cache for the motion
compensation filter and a unified prediction engine supporting
hierarchical coding structure and many prediction and trans-
form block sizes. In [18], an HEVC decoder supporting 4K
resolution at 60fps is proposed and results are given for a
28nm CMOS technology. The clock frequency is set to 350
MHz. An energy consumption for the core around 0.2 nJ/px is
reported. An adaptive coding unit balance architecture is used
to optimize the pipeline buffer. Wave-front parallel processing
is exploited by using a dual-core architecture. A weighted
memory management unit is used to optimize the access to
external DRAM. By specializing the circuit to application
requirements, hardware implementation enables obtaining high
performance with low power consumption. This specialization
is at the expense of low flexibility and long development times.
Recent multi-core and many-core architectures have become
an interesting solution to implement an HEVC decoder. Recent
works [10] have demonstrated the ability to obtain a real-time
software decoder on high resolutions such as 4K. This software
implementation targets a laptop Intel CPU with 4 cores, and
a TILE-Gx36 with 36 cores from Tilera. These targets have
moderate power consumptions and are dedicated to high-
performance computing. For these multi-core and many-core
processors, task level parallelism is used to exploit WPP cod-
ing. Moreover, performance has been significantly improved
compared to the reference HM code by integrating architecture
independent and architecture dependent optimizations. Results
are reported for Full HD and Ultra HD resolutions. For the

4-core Intel CPU, an energy consumption of 74 nJ/px and 86
nJ/px are obtained respectively for the Full HD and Ultra HD
resolutions. For the 36-core Tilera CPU, an energy consump-
tion of 161 nJ/px and 84 nJ/px are obtained respectively for
the Full HD and Ultra HD resolutions.

In this paper, we target mobile handheld devices based
on ARM processor. Data-level parallelism and task level
parallelism are exploited to reduce the decoding time. A DVFS
strategy adapted to video decoding has been used to improve
the energy efficiency compared to existing DVFS policies.

III. DECODING SYSTEM DESCRIPTION

The proposed energy efficient HEVC decoder is based on
the open source OpenHEVC project [2] ported on a low-power
embedded platform based on the heterogeneous computing
architecture ARM big.LITTLE.

A. Decoder architecture

The OpenHEVC decoder is developped in C programming
language on the top of the FFmpeg library [1]. The
OpenHEVC decoder implements a conforming HEVC
decoder and supports the three main profiles defined in the
HEVC standard, namely Main, Main 10 and Main Still
Picture profiles [21]. Figure 1 shows the block diagram of
the OpenHEVC decoder. All decoding steps are performed
at the level of a CTU. The decoder browses in raster scan
the CTUs within the slice and calls the recursive function
hls coding tree to decode each CTU. This function scans
the CUs within a CTU in z-scan and calls for each CU the
hls coding unit function. This calls specific functions to
perform inverse prediction and inverse transform operations.
Once all CUs within the CTU are decoded, the decoder
performs deblocking and SAO filters on the decoded CTU.
The OpenHEVC decoder also supports the high level parallel
processing solutions defined in the HEVC standard including
wavefront, slice and tile parallelism solutions. In addition, the
OpenHEVC decoder has been recently extended to support
the range extensions profiles including Monochrome, 4:2:2
and 4:4:4 enhanced chroma sampling structures as well as
bit depths in 10 and 12 bits. The decoder successfully passed
the decoding of all range extensions conformance bitstreams
of bitdepth lower than 14 bits.

B. Embedded Platform

The targeted embedded platform is an octa-core Exynos
5410 SoC based on the big.LITTLE configuration with two
clusters: one is composed of four ARM Cortex-A15 cores
and the other of four ARM Cortex-A7 cores, both supporting
DVFS per core. Only one cluster can be used at a time. This
SoC is widely used in recent smart phones and tablets [4] for
its low-power capabilities. Linux operating system is used on
this platform to provide pthread capabilities for the parallel
implementation of the decoder on a multi-core processor.

hls_coding_tree

hls_sao_filter_ctb

hls_deblocking_filter_ctb

hls_transform_tree

hls_prediction_unit

hls_transform_unit

hls_coding_unit

Yes

No

Is SAO filter

enabled ?

No

Yes

No

No

Is a CTU ?

is a TTU ?

Slice decoded

Decode a slice

Is the CTU

decoded ?
Yes

hls_decode_row

Yes

Yes

No

More CTU

in the row ?
Yes

Is deblocking

filter enabled ?

Fig. 1. Block diagram of the architecture of the OpenHEVC decoder (TTU:
Transform Tree Unit)

IV. ENERGY EFFICIENT HEVC DECODER

The global power consumption in current CMOS integrated
chips can be broken down into the sum of a dynamic power
and a static power. To reduce the influence of static power,
Dynamic Power Management (DPM) is used to turn a core
into a lower power state when this core is not used. A popular
execution strategy called race-to-idle was implemented to
execute a task as fast as possible, after which the processor
enters in a sleep state (if no other task is available). The
Linux implementation of this mechanism is called the
Performance governor. To reduce the influence of dynamic
power, DVFS is used to reduce both the clock frequency f
and the voltage V until the real-time constraint is fulfilled.
The ondemand frequency governor in Linux supports this
strategy by increasing the clock frequency of the CPU as
long as the workload exceeds an upthreshold limit. To
improve performance, various techniques have been studied
in the past at both application level [17] and architecture
level [15]. The main goal of these studies is to spread the
workload [22] in order to lower the clock frequency [15],
thus lowering the dynamic power dissipation while keeping
the required performance.
All strategies exploiting DVFS consist in executing as slow as
possible while not missing a deadline. It is particularly well
suited for online video decoding where a a steady playback is
required. Hence the decoder can adapt its decoding speed as
long as the deadline is met. Figure 2 illustrates an example
of two different execution strategies, one running at f1 and
another at f2 where f1 = 2.f2. Assuming that the deadline
matches the decoding of f2, any decoding using a higher
working frequency would finish before and would create

some slack time (i.e. time of inactivity). This slack time can
also be used to stretch the decoding process and meet closely
the deadline when the decoding is processed at f2.

In CMOS circuits, the dynamic power consumption is given
by the following equation:

Pdyn = Ceff .V
2.f (1)

where Ceff stands for the circuit effective capacitance and V
is the supply voltage associated to the working frequency f
[9].
In the example of Figure 2, the input data can be processed at

input

f1

Process
output

input

f2

Process
output

Power

Energy Ev2

deadline to display = 1/fps

2tt 4t3t

Energy Ev2

2tt

Power

Energy
Ev1

Energy
Ev1

4t3t

deadline to display = 1/fps

Energy
Ev1

slack time slack time

Fig. 2. Two execution strategies: race-to-idle (top) and as slow as possible
(bottom)

either f1 or f2 corresponding to supply voltage V1 = 1.36V
and V2 = 1.06V respectively 1. Assuming that the processing
time is doubled when the process runs at f2, then the energy
saving is computed as follows:

EV2

EV1

=
Ceff .V

2
2 .

f
2 .2.t

Ceff .V 2
1 .f.t

= (
V2

V1
)2 ∼ 78

100
(2)

In order to obtain a reliable system, the video decoding
performance is usually much higher than the one required
to keep the pace of the display rate. Hence, the system
can afford dynamic frequency downscaling while offering
the same quality of service. As a result, in the presented
example, DVFS makes the power consumption decrease to
PV2

= Ceff .(V2)
2 ∼ 39

100 .PV1
and results in an energy saving

of 22%.
To obtain an energy efficient decoder, optimizations can be

applied at different level as depicted in Figure 3. The main
challenge of these optimizations is to maximize the slack-time
in order to reduce the supply voltage.

Data

Task

Application DVFS for video decoding

Multi-core processor

SIMD operators - NEON Data level-parallelism

Task level parallelism

Abstraction level

Architecture support Techniques for energy reduction

Playing aware DVFS

Fig. 3. Different level of optimization for energy reduction

Data level parallelism is used to process several data in
parallel leading to a reduction of the execution time of these
processing.

Task level parallelism is used to process several task in
parallel on different cores. By dispatching the different tasks
on the available cores, the load of each core is reduced and
thus the clock frequency can be diminished.

In this paper, we introduce an application-aware DVFS strat-
egy that is used to exploit efficiently the slack-time despite its
variations over time. Modern video compression schemes use
variable bit-rate coding leading to highly variable processing
loads. Moreover, the decoding time of a frame depend of its
type (I, P, B) and its content. Thus, the decoding time can
vary on a large degree (more than ten-fold) from one frame
to another. Given that the decoding time varies and can not
be predicted easily from the decoding of the previous frame,
classical DVFS policies, like ondemand frequency governor
in Linux, tend to overestimate the clock frequency, and thus
waste energy. The rest of this section presents the three
developped strategies for lowering the energy of the HEVC
decoder.

A. Data level parallelism

In this section, parallelism is exploited at the low level of
the application. The source code of the OpenHEVC decoder is
heavily optimized with SIMD instructions to exploit data-level
parallelism available in different blocks of the application.
For ARM processor, NEON vector processing instruction set
is well suited for performance optimizations. The most time-
consuming blocks including motion compensation, inverse
transform, deblocking filter and Sample Adaptive Offset
(SAO) filter have been optimized with NEON instructions.
For concision reason, only the optimization of the SAO is
detailed in this paper. This block is not too complex to be
described and it perfectly illustrates the NEON optimization
capability for this type of processing largely used in video
processing.

SAO filter is used to reduce sample distortion by
classifying reconstructed sample into category, obtaining
offset for category, and then adding that offset to sample
value [13]. Each offset is calculated by encoder and explicitly
signaled in bitstream. SAO consists of two separate modes
selectable by encoder in Coding Tree Unit (CTU) basis: Band
Offset (BO) and Edge Offset (EO). For BO the classification
of samples is done based on the sample values. For EO
classification is done based on neighboring samples. Adding
the offset is similar in both modes.

For BO classification, the sample value range is divided into
32 bands. Offsets for four consecutive bands and starting band
position are delivered in bitstream to decoder. Classification of
sample is done using 5 most significant bits of reconstructed
sample value. For 8-bit values the classification is obtained by
right shifting each sample value by 3 bits. NEON instruction
Vector Shift Right (VSHR) can be used for vectorized shift.

a a a
a c b c c c

b b b

Fig. 4. EO classification modes: Horizontal (EO 0), Vertical (EO 1), 135◦
diagonal (EO 2) and 45◦ diagonal (EO 3)

Then offset values can be obtained by using NEON’s table
look-up instruction VTBL. It takes three parameters: destination
64-bit d-register, list of d-registers containing look-up table
and d-register with indices. Maximum size for NEON look-up
table using four 64-bit d-register is 32. This matches exactly
the required length for BO look-up table.

When offset is obtained, it then must be added to sample
value. For 8-bit samples the sample value is unsigned value
within range from 0 to 255. Offset value is signed and in
range from -7 to +7. Saturating addition must be performed
to keep the value into range from 0 to 255. Given that
ARM NEON instruction set does not have saturating addition
of mixed signed and unsigned values, a pre-processing is
required before using the saturating addition VQADD.

Category Condition
1 c < a ∧ c < b
2 (c < a ∧ c = b) ∨ (c = a ∧ c < b)
3 (c > a ∧ c = b) ∨ (c = a ∧ c > b)
4 c > a ∧ c > b
0 None of the above

TABLE I
SAMPLE CLASSIFICATION RULES FOR EDGE OFFSET

Edge Offset mode is more complex. Sample classification is
done based on comparison between current and neighboring
samples. There are four different EO categorization modes.
Encoder will select one mode for each Coding Tree Block
(CTB) that enables EO. EO modes are shown in Figure 4.
Current sample is marked with letter c. Neighboring samples
a and b are used for classification. For given mode, each
sample is classified into one of the five categories listed in
Table I. Category 0 means that offset is not applied. For
other categories the offset is explicitly signaled in bitstream
by encoder. Faster way to calculate edge classification is with
equation:

Category = TEIC [2 + sign3(c− a) + sign3(c− b)] (3)

where the table TEIC is made-up of the following element
{1, 2, 0, 3, 4} and the sign3 function is defined as follow

sign3(x) =

 1 if x > 0
0 if x = 0
−1 if x < 0

(4)

For NEON the simplest case is EO class 1. With 32 sample
wide CTB block it is possible to do whole processing in
registers. First a-row of 32 samples is loaded to two consec-
utive 128-bit NEON registers. Then similarly c-row and b-
row are loaded into registers. NEON Vector Compare Greater

Than (VCGT) instruction can be used to compare sample rows.
The behaviour of VCGT instruction is shown in Equation (6).
Equation (5) shows how this property can be used to calculate
sign3 with NEON using only three instructions, two VCGT and
one subtraction. Using VCGT is better way than calculating
sign3 with subtraction and clipping to {-1,1} range. This
would also require three instructions, but also needs two
additional NEON registers for limits -1 and 1.

sign3(c− a) = VCGT(a, c)− VCGT(c, a) (5)

with,

VCGT(x, y) =

{
−1 if x > y
0 otherwise

(6)

Results of some of these calculation can be reused. Instead
of calculating sign3(c− a) for each element in next iteration,
−sign3(c − b) from previous iteration can be used. With
NEON, full rows are processed at once in vector registers.
Whole b-row can be used as c-row in next iteration. For EO
0 calculated sign3(c−a) values may be reused by calculating
one extra sign3(c − a) value per row and then using VEXT

command to extract all first elements to new vector. The
content of the new vector is −sign3(c−b). Diagonal EO class
2 and 3 are more complex to optimize for NEON. Content
of c-row won’t be the same in next iteration as was content
of b-row. Instead, one additional sample is required to the
beginning (EO 2) or to end of the row (EO 3). This extra
sample must be loaded to additional vector register and taken
into use with Vector Extract command VEXT when required.
This, in addition to large CTB block sizes, may require more
NEON registers than are available at one time.

General NEON optimization methods have been used for
SAO optimization. Interleaving instructions VTBL with 32
sample look-up table requires 3 CPU cycles. Due to NEON
dual pipeline this leaves room for other instructions. VADD and
VQADD instructions can be interleaved with VTBL instructions
to fill these bubble cycles. Loaded data and calculated results
are reused when possible. For load and store operations, data
must be aligned for cache line size.

B. Task level parallelism

The frame-based parallelism allows to simultaneously pro-
cess multiples frames, regardless of the coding configuration,
under the restriction that the motion compensation depen-
dencies are satisfied [19]. Figure 5 illustrates the concept
of the frame-based parallelism in the HEVC standard where
all frames within a group of pictures (GOP) are decoded
in parallel. As shown in Figure 5, frame-based parallelism
requires communication between threads decoding different
frames in order to ensure that the prediction unit (PU) used
as reference for inter prediction is already available (decoded)
in the reference frame. Therefore, the encoding/decoding of
n frames can be carried out in parallel with a delay in the
Inter coding configuration. The performance of the frame-
based parallelism strongly depends on the coding structure
and the ranges of the motion vectors. Moreover, the frame-
based parallelism improves the decoding frame rate but not

I frame P frame

B frame

B frame B frame

Thread 0 Thread 3 Thread 2 Thread 1Thread 4

Inter prediction

Decoded CTBs
No decoded CTBs

CTB in decoding

Wait for the

 decodin of

the referenced PU

 Group Of Pictures (GOP)

Inter prediction

Fig. 5. Principle of the frame-based parallelism in HEVC

the decoding frame latency.
When the frame-based parallelism is enabled in OpenHEVC,
n instances of the decoder are created, with n the number of
decoding threads. Each decoder has its own local and global
structures, while some information in the global structure
are shared between the n decoders, such as the Decoded
Pictures Buffer (DPB) and the lists related to the video headers
(VPS, SPS and PPS lists). An inter thread control solution
is implemented to ensure that the PU required for motion
compensation is decoded at the reference frame. Otherwise,
the decoding thread waits until the PU is decoded in the
reference frame. Once the required PU is decoded, all waiting
threads are unblocked to pursue the decoding process.
The implementation of the frame-based parallelism in Open-

HEVC requires more memory allocation than the wavefront
and tile implementations. This is because n copies of both lo-
cal structure and global structure, except the shared structures
including the DPB, are allocated for the n parallel decoders.
Moreover, the memory size of the global structure without the
DPB represents 30% of the decoder memory including a DPB
with four pictures. However, this implementation manages
only one DPB, which represents 60% of the decoder memory
in single thread configuration. The speedup performance of
the frame-based parallelism in the OpenHEVC decoder on an
Intel 6 cores processor (1 thread per core) is shown in Figure
6 for four coding configurations: Main Intra, Main Low Delay
B, Main Low Delay P and Main Random Access. In the Intra
Main configuration, all frames are Intra coded without motion
compensation prediction and then can be decoded in parallel
without any delay. Thus, in such a configuration, the speedup
is near optimal (ie. close to the number of threads selected for
the decoding). However, for the Inter coding configurations,
the speedup is decreased by the delay required to complete
the decoding of the PUs in the reference frame. Inter-thread
communication may also affect the performance of the frame-
based solution in Inter coding configurations.

C. Efficient DVFS for video decoding application

As explained in the previous section, data level parallelism
and task level parallelism reduce the decoding time. This
execution time reduction is translated into an energy con-
sumption decrease thanks to DVFS which adapts the clock

1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Number of threads

S
p

e
e

d
u

p

Main Intra

Main Low Delay B

Main Low Delay P

Main Randon Access

Fig. 6. Speedup performance of the frame-based parallelism implementation
in the OpenHEV C decoder run on a general purpose processor

frequency and the voltage supply to the processing load.
However, predicting the complexity of the forthcoming frame
to decode can be a real challenge. In Figure 7, the number of
cycles needed to decode a bitstream is plotted frame by frame.

0 125 250 625 500
0

0.5

1

1.5

2

2.5

3
x10

9

C
o
m
p
le
x
it
y
(c
y
cl
es
)

Frame index

Fig. 7. Decoding complexity for the 480p QP27 sequence called Basket-
ballDrill

Since the ondemand governor makes no assumption on the
application nature, it is proposed to utilize the video decoding
information to do an optimized DVFS video decoder. If the
CPU frequency is changed arbitrarily, the decoding of a
complex picture may not be completed within the display rate
constraint. Hence it is proposed to add modules to predict the
complexity of the on-going decoding sequence and handle
very high complex decoding with dedicated frame buffering.
This Playing Aware DFVS (PAD) is able to adapt to the
processing load variation.

Design an energy efficient video decoder is only possible if
actual coding procedures are taken into account. As per com-
plexity, video coding tools are sorted out into two categories:
reference frame coding and residual coding. Where reference
frame coding generates highly complex frame to decode, the
residual information can take much less operation. Figure 8
depicts the PAD decoder. Added to the HEVC decoder, new

FrequencyControl

HEVCDecoder
Display

manager Bitstream

(fref,V)

decoded
 frame

(01110..110)
Frame

Buffering

(fref, tdec)
N

Complexity
Estimator

Cdec

Fig. 8. HEVC decoder using our proposal - Playing aware decoder. New
blocks are in grey

blocks are in charge of adapting the video decoding to the
actual display rate.

• ComplexityEstimator block is in charge of estimating
the average complexity of the scene being decoded. It
can compute the complexity in cycles from the working
frequency of the CPU and the time needed to decode
the on-going sequence. Every decoded frame inputs a
low pass filter to remove the highly complex frame to
decode. As such, it tracks dynamically the residual coding
elements. The function is described in Algorithm 1.

Input: Current frequency fref ; Decoding time in
seconds Tdec

Param: Sliding window length L (in frames)
Output: Frame Complexity in cycles Cdec

1 for i← (L− 1) to L do
2 C(i)← C(i+ 1)
3 end
4 C(L)← fref .Tdec // Update the sliding window ;
5 Cdec ← (

∑L
i=1(C(i)))/L;

Algorithm 1: Estimation of a frame decoding complexity
based on the average decoding time

• FrequencyControl block adapts dynamically the work-
ing frequency to align with the decoding scene. As
input parameters, it can handle all the possible working
frequencies of the under-lying platform. The primary
purpose of this block is to minimize the slack time
between the decoding function and the display manager.
This block computes the adapted reference frequency
fref and associated voltage V . Algorithm 2 describes
this process.

• FrameBuffering block stores several frames to cope with
sudden complex frames to decode. Hence it ensures the
real time behavior of the system ensuring the steady
video play back. Evaluating the gauge of the playback
buffer, it can also send an information to the Frequen-
cyControl block when the level of available frames to
display becomes critically low. It asks for a change a
working frequency to speed up processing accordingly.
It happens especially when the Intra coded frames are
being decoded. As two Intra coded frames can barely
be consecutive, the real time can be guaranteed. This
processing is described in Algorithm 3.

Input: Remaining number of frames N ; Frame
Complexity in cycles Cdec;

Param: FDisp frame rate playing demand in fps;
Available frequencies in the SoC in Hz
[fmin, f1, ..., fmax]; Frame buffer high threshold
Th; Frame buffer low threshold Tl

Output: Frequency the next period fref
1 fopt ← C.FDisp // eq. (1);
2 fref ← min[fmin, f1, ..., fmax] s.t fref ≥ fopt // eq. (2);

3 if N > Th then
4 fref ← fref − 1 // the buffer is nearly full;
5 end
6 if N < Tl then
7 fref ← fref + 1 // the buffer is nearly empty;
8 end

Algorithm 2: Frequency control process

Input: Last decoded frame DecodedFrame;
Param: Size of the frame buffer BufferSize
Output: Pointer of the next frame to display DisplayP t;

Remaining number of frames in the buffer N ;
1 DecodedFramePt← StoreFrame(DecodedFrame) ;
2 DisplayP t← UpdateDisplayP t(DisplayP t) ;
3 N ← DecodedFramePt−DisplayP t ;
4 if N < 0 then
5 N ← 0 // the buffer is empty, a deadline is missed;
6 end

Algorithm 3: Output frame buffer management

V. RESULTS AND ANALYSIS

A. Experimental configuration

In our experiments, an octa-core Exynos 5410 SoC is
used. This SoC based on the big.LITTLE configuration with
four ARM Cortex-A15 cores and four ARM Cortex-A7 cores
providing a set of 17 DVFS configurations from 250 MHz to
1.6 GHz. Only four cores can run at a time. From 250 MHz
to 600 MHz, the SoC uses the Cortex-A7 cluster. From 800
MHz to 1.6 GHz, the Cortex-A15 cluster is used.

The main characteristics of the platform, in terms of hard-
ware and software, are given in Table II.

SoC
Samsung Exynos5 Octa 5410
ARM Cortex-A15 Quad 1.6 GHz max.
ARM Cortex-A7 Quad 1.2 GHz max.

Memory 2GB LPDDR3 @ 800MHz

OS Ubuntu 14.04
with GCC 4.8.2

HEVC decoder OpenHEVC
branch shm6.1, version fc26f36...

TABLE II
EXPERIMENTAL CONFIGURATION

1) Power measurement: Power measurement have been
performed on the platform using external power sensors. There

are four individual sensors measuring the power consumption
of the Cortex-A15, the Cortex-A7, the GPU, and the memory
(on-package DRAM). GPU power consumption has not been
taken into account as it is not used at all, thus the presented
power figures correspond to the sum of the three others
sensors. Power measurements are sampled with a period of
100 ms. Two different techniques have been implemented,
one based on a shell script, the other based on a dedicated
thread integrated in a wrapper around the decoder. The latter
technique has been used for the power measurement presented
in Section V-D to reduce impact on system performance.

2) HEVC bitstreams: In order to conduct our experiments
in a well-defined environment, the bitstreams from the com-
mon test conditions defined in [6] are used. These bitstreams
are available on the BBC website [3]. Experiments are con-
ducted on 8 bit (low complexity) and random access bitstreams
where I and B frame types are present, i.e. both intra and inter
prediction have been used for the encoding. In Table III, the
selected bitstreams used for the experiments are detailed, All
of these bitstreams are 10 seconds long, and when not specified
have a QP of 27.

Class Sequences Resolution Frame
rate (Hz)

B Kimono (K) 1920x1080 24
Cactus (C) 50

C

BasketballDrill (BD)

832x480

50
PartyScene (PS) 50
BQMall (BQM) 60
RaceHorses (RH) 30

E KristenAndSara (KAS) 1280x720 60
TABLE III

VIDEO SEQUENCES CONSIDERED IN THE EXPERIMENTS.

B. Energy reduction with data level parallelism

In this part, the energy consumption saving and performance
obtained by data level parallelization is analyzed. In order
to measure it, experiments have been conducted using one
of the four cores of the big.LITTLE processor at maximum
frequency (i.e. using the ARM Cortex-A15 core running
at 1.6 GHz) on Class C bitstreams. This choice has been
done because this configuration illustrates the need of data
level optimizations to reach real-time video decoding on a
mono-core architecture. It can be noticed here that process
binding to one core has been done explicitly to ensure
stable results. Indeed, unstability can be typically caused by
the operating system which can move some threads during
execution.

Results for all data-level optimizations are presented in
Table IV. These figures represent the energy consumption and
time saving (i.e. speedup) in percentage relatively to non-
optimized version. Table V details the same figures per func-
tional block where SAO stands for Sample Adaptive Offset
filter, DF for Deblocking Filter, IDCT for Inverse Discrete

Cosine Transform, MC cpel and lpel for Motion Compensation
on chroma and luma, respectively.

Bitstream Energy Saving Speed Up

BasketballDrill 40.40% 36.79%
PartyScene 43.66% 39.96%
BQMall 45.96% 41.87%
RaceHorses 45.17% 41.16%

TABLE IV
TOTAL ENERGY SAVING AND SPEED UP OVER NON-OPTIMIZED DECODER

THANKS TO DATA-LEVEL PARALLELISATION

.

As depicted in Table IV the total energy consumption
saving obtained is between 40.4% and 46%. Table V pinpoints
that the most energy saving is obtained thanks to motion
compensation optimization on luma with up to 33.49%. As
mentioned in [7], this functional block is known to be one of
the most time consuming function block. This function block
corresponds to a 8-tap motion compensation filter function.

The same tendency as for the energy saving is obtained
for the associated speedup. When all the optimizations are
used, the energy saving is greater than time saving. This is
due to the contribution of motion compensation optimization
which results in a greater energy saving than time saving in
opposition to all others functional blocks.

C. Energy reduction with task level parallelism

In this part, task level parallelism effect on performance
and energy consumption is analyzed. Task level parallelism
is used in addition of data level parallelism. At task level,
the frame-based parallelism allows to simultaneously process
multiple frames in parallel which allows to take advantage of
the multi-core architecture of recent processors. In OpenHEVC
decoder, this feature has been implemented by reusing FFmpeg
runtime which offers a generic way to support frame-based
multi-thread execution. As in previous experiments, an explicit
process binding on processor cores has been done to ensure
more deterministic behavior. For multi-thread execution, the
following binding rules have been defined. If the number of
threads is less or equal than the number of cores then the
application is bound on the number of threads (starting from
0). As an example, an execution using two threads will be
bound on cores ID 0 to 1. If the number of threads is greater
than the number of cores then all cores are used.

The speedup according to the number of threads using the
performance Linux governor with no frame rate constraint (i.e.
real time decoding scenario) is presented on Figure 9. These
results show two interesting points. First, it shows that the
OpenHEVC decoder is able to take advantage of up to 64
threads which is more than the 4 available cores (using more
threads cause memory overflow). This is achieved thanks to
the high level of parallelism offered by the HEVC frame-
based parallelism combined with its implementation through
the FFmpeg runtime. Second, as the speedup grows up to 64
threads, the slack-time for a whole sequence is also increased,

Bitstream
Optimized Functional Block

SAO DF IDCT MC cpel MC lpel
ES SU ES SU ES SU ES SU ES SU

BasketballDrill 7.37 7.50 4.27 4.26 4.05 4.52 2.85 3.72 23.89 22.06
PartyScene 3.30 4.09 2.01 2.19 2.78 3.26 3.66 4.50 31.88 29.53
BQMall 4.73 5.22 2.58 3.02 2.30 2.80 3.76 4.62 33.49 30.46
RaceHorses 7.87 9.19 3.52 3.82 3.54 3.97 1.90 3.43 27.74 25.26

TABLE V
ENERGY CONSUMPTION SAVING (ES) AND SPEED UP (SU) IN % OVER NON-OPTIMIZED VERSION THANKS TO DATA-LEVEL OPTIMIZATION PER

FUNCTIONAL BLOCK

.

so this could be an interesting way to save energy in a real
time decoding scenario.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 8 16 32 64

BasketballDrill

PartyScene

BQMall

RaceHorses

Number of threads

S
p

e
e
d

u
p

Fig. 9. SpeedUp over sequential execution according to the number of
threads using performance Linux governor with no frame rate constraint. The
decoding architecture is an ARM big.LITTLE embedded processor

The energy consumption obtained according to the number
of threads using ondemand Linux governor under the source
frame rate constraint is presented in Figures 10. When using
1 thread (i.e. one core), no DVFS can be used as the highest
frequency is needed to be able to perform real time decoding
but, DPM is applied as the 3 other cores are unused. When
using from 2 to 3 threads the system makes use of both DVFS
and DPM, 34 % of energy consumption saving is obtained with
2 threads on PartyScene. With 4 and more threads a saving of
up to 46 % is obtained on the same sequence. In these case all
cores operate, thus only DVFS can be used. But, in practice,
in these last cases, the frequency stay most of the time at the
highest frequency. This behavior can be explained by thread
management which costs in terms of computation and context
switching leading to a higher CPU load. So, unlike the fact
that more slack time is available with more than 4 threads,
it clearly appears that using more than 4 threads does not
save energy with the ondemand governor. The next section
presents an alternative technique based on application aware
DVFS mechanism.

D. Energy reduction with efficient DVFS

To exploit efficiently the slack-time provided by data-level
and task-level parallelism, a Playing Aware DVFS (PAD) is

0

5

10

15

20

25

30

1 2 3 4 8 16 32 64

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o
n

 (
J)

Number of threads

BasketballDrill
PartyScene
BQMall
RaceHorses

-46%
4 cores

3
 c

o
re

s

2
 c

o
re

s

1
 c

o
re

-34%

Fig. 10. Energy Consumption (in J) according to the number of threads using
ondemand Linux governor in real time decoding scenario

used. By taking into account the application itself further
energy reduction can be obtained.

In this section, the performance of the PAD decoder is
analyzed and compare to the legacy ondemand governor. For
the different class C bitstreams, the energy consumption is
reported in Joules in Table VI for the legacy ondemand (OD)
governor and for the PAD technique using the best multi-
thread configuration for the latter. The energy saving using
the PAD is reported relatively to the ondemand governor.

Table VI shows that the ondemand governor optimize
the clock frequency and the supply voltage for the targeted
platform. Several parameters improve the efficiency of the
system. At first, changing the QP to a less complex video
offers energy reduction with significant gain. For example,
when the PartyScene sequence is decoded from QP22 to
QP37, the energy drops from 23.2 J to 8.6 J with ondemand
governor. In a similar manner, the proposed PAD decoder
offer similar gains with a energy consumption from 17.7 J to
4.1 J. Secondly, reducing the display rate is also beneficial to
reduce the energy consumption. For example, the RaceHorses
bitstream is sampled at 30 fps where the BQMall is sampled
at 60 fps. Hence the RaceHorses bitstream uses 4.9 J at QP37
where the BQMall uses 9.4 J for the same QP.

Furthermore, the PAD decoder outperforms the ondemand
decoder as per energy efficiency. The energy savings can reach

Bitstream QP OD (J) PAD (J) Energy
Saving (%)

BasketballDrill

37 8.5 4 52.94
32 9.7 4.4 54.64
27 11.5 5.2 54.78
22 15 8.9 40.67

PartyScene

37 8.6 4.1 52.33
32 11.2 4.8 57.14
27 14.7 8.8 40.14
22 23.2 17.7 23.71

BQMall

37 9.4 4.5 52.13
32 10.1 5 50.50
27 12 6.9 42.50
22 15.4 12.7 17.53

RaceHorses

37 4.9 3.2 34.69
32 5.7 3.9 31.58
27 9.8 4.2 57.14
22 13.4 5.3 60.45

TABLE VI
ENERGY CONSUMPTION (IN J) WITH ONDEMAND (OD) GOVERNOR AND

PAD MECHANISM

up to 60% in the reported test cases. The PAD decoder makes
the most of the a-priori knowledge of the playing requirements
of the sequence. As such, the working frequency is close
to the most appropriate frequency to decode the sequence
acknowledging the display rate. The results in Table VI show
the savings are of the same order whatever the content is or
whatever the system characteristics (display rate).

E. Results Summary

The gain of the first two optimizations, i.e. at data-level
and task-level, can be considered in two ways. Firstly, it
saves energy by reducing the decoding time when decoding
as fast as possible by making good use of the platform SIMD
and SMP features. Secondly, it offers slack-time in real-time
scenario that is used by efficient DVFS, i.e. the PAD, by taking
advantage of the DVFS and the big.LITTLE architecture of the
platform.

It results, for data-level parallelism optimization, a total
energy consumption saving (offline decoding) on one core
compared to non-optimized code between 40% and 46%. Task-
level parallelism gives, compared to a mono-core execution
(real-time decoding), from 34% to 46% of energy saving when
using native DVFS technique. The proposed enhanced DVFS
allows up to 60% of energy saving compared to native one.
By integrating all the optimizations, energy consumption is
divided by a factor of between 4.3 and 5.9.

F. Comparison with state of the art decoders

OpenHEVC is able, on our platform, to decode a 1080p
HEVC bitstream at 50 fps with a QP equal to 27 (Cactus bit-
stream) in real time which represents the highest performance
that can be reached at the time of writing. In this case, the
4 Cortex-A15 are working at full speed, the measured energy

consumption is closed to 70 nJ/px. When using the 4 Cortex-
A7 at full speed, a 1080p sequence at 24 fps with a QP equal
to 37 (Kimono bitstream) can be decoded in real-time with
a consumption of 17 nJ/px. It should be noted that there is
no energy saving opportunity as all cores are working and no
slack-time is available, thus DVFS and DPM techniques are
useless.

The energy efficiency of the proposed HEVC decoder
associated with PAD is compared to state of the art decoders,
hardware and software, in Figure 11. It is obvious that ASIC
decoders surpasses all software ones. On the software side, it
shows that our decoder has a better energy efficiency compared
to other software implementation [10] at 1080p even though no
PAD can be used. For lower resolution the energy consumption
is under 40 nJ/px except for RaceHorses which is known to
be a complex bitstream to decode as it requires higher bitrate
than others at same resolution.

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4

E
n
e
rg

y
 (

n
J/
p
x
)

Resolution

480p 720p 1080p 4k

Our work

[18] - ASIC

[16] - ASIC

[10] - Intel

[10] - Tilera

K

PS

BD
KAS

C

BQM
RH

Fig. 11. Energy efficiency (in nJ/px) of the proposed solution compared to
state of the art decoders

VI. CONCLUSION

In this paper, three optimization strategies are presented to
reduce the energy consumption of a software HEVC decoder.
These strategies, respectively based on data parallelism, task
parallelism and DVFS, are applied to the open source Open-
HEVC decoder and lead to an energy consumption below 21
nJ/px for HD decoding at 2.2 Mbits/s on a multi-core ARM
big.LITTLE processor.

Future work include testing the optimized decoder over dif-
ferent hardware architectures and investigating other parallel
processing solutions from the HEVC standard to study their
impact on energy consumption.

ACKNOWLEDGMENT

This work is partially supported by BPI France, Region
Ile-de-France, Region Bretagne and Rennes Metropole
through the GreenVideo Project and by European Celtic-Plus
through the H2B2VS Project.

The authors would like to thank all the contributors of the
OpenHEVC open source project leaded by Mickaël Raulet.

REFERENCES

[1] FFmpeg: Open source and cross-platform multimedia
library. In http://www.ffmpeg.org.

[2] Open source HEVC decoder (OpenHEVC). In
https:://github.com/OpenHEVC.

[3] BBC HEVC bistreams: . In
ftp://ftp.kw.bbc.co.uk/hevc/hm-15.0-anchors/.

[4] GALAXY S4 Teardown: . In
http://www.techinsights.com/inside-samsung-galaxy-
s4/, 2013.

[5] High Efficiency Video Coding. In Rec. ITU-T H.265 and
ISO/IEC 23008-2. Sapporo, JP, January 2013.

[6] F. Bossen. Common Conditions and Software Reference
Configurations. Document JCTVC-H1100, Joint Collab-
orative Team on Video Coding (JCT-VC) of ITU-T SG
16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, San Jose,
CA, Feb. 2012.

[7] J. F. Bossen, B. Bross, K. Suhring, and D. Flynn. HEVC
complexity and implementation analysis. IEEE Transac-
tions on Circuits and Systems for Video Technology, 22:
1685–1696, December 2012.

[8] B. Bross, M. Alvarez-Mesa, V. George, C.Chi-Ching,
T. Mayer, B. Juurlink, and T. Schierl. HEVC real-time
decoding. In SPIE Conference on Applications of Digital
Image Processing. San Diego, California, August 2012.

[9] T. D. Burd and R. W. Brodersen. Energy efficient
cmos microprocessor design. In System Sciences, 1995.
Proceedings of the Twenty-Eighth Hawaii International
Conference on, volume 1, pages 288–297. IEEE, 1995.

[10] C. Chi, M. Alvarez-Mesa, J. Lucas, B. Juurlink, and
T. Schierl. Parallel hevc decoding on multi- and many-
core architectures. Journal of Signal Processing Sys-
tems, 71(3):247–260, 2013. ISSN 1939-8018. doi:
10.1007/s11265-012-0714-2. URL http://dx.doi.org/10.
1007/s11265-012-0714-2.

[11] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare,
F. Henry, S. Pateux, and T. Schier. Parallel Scalability
and Efficiency of HEVC Parallelization Approaches.
IEEE Transactions on Circuits and Systems for Video
Technology, 22:1827–1838, December 2012.

[12] G. Clare, F. Henry, and S. Pateux. Wavefront Parellel
Processing for HEVC Encoding and Decoding. In
document JCTVC-F274. Torino, Italy, Jully 2011.

[13] C.-M. Fu, E. Alshina, A. Alshin, Y.-W. Huang, C.-Y.
Chen, C.-Y. Tsai, C.-W. Hsu, S.-M. Lei, J.-H. Park,
and W.-J. Han. Sample adaptive offset in the hevc
standard. Circuits and Systems for Video Technology,
IEEE Transactions on, 22(12):1755–1764, Dec 2012.
ISSN 1051-8215.

[14] W. Hamidouche, M. Raulet, and O. Deforges. Par-
allel shvc decoder: Implementation and analysis. In
Multimedia and Expo (ICME), 2014 IEEE International
Conference on, pages 1–6, July 2014. doi: 10.1109/
ICME.2014.6890300.

[15] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Sri-

vastava. Power optimization of variable voltage core-
based systems. In Design Automation Conference, 1998.
Proceedings, pages 176–181, 1998.

[16] C.-T. Huang, M. Tikekar, C. Juvekar, V. Sze, and
A. Chandrakasan. A 249mpixel/s hevc video-decoder
chip for quad full hd applications. In Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2013
IEEE International, pages 162–163, Feb 2013. doi:
10.1109/ISSCC.2013.6487682.

[17] S. Jafri, M. Tajammul, A. Hemani, K. Paul, J. Plosila, and
H. Tenhunen. Energy-aware-task-parallelism for efficient
dynamic voltage, and frequency scaling, in cgras. In
SAMOS XIII, pages 104–112, 2013.

[18] C.-C. Ju, T.-M. Liu, Y.-C. Chang, C.-M. Wang, H.-M.
Lin, C.-Y. Cheng, C.-C. Chen, M.-H. Chiu, S.-J. Wang,
P. Chao, M.-J. Hu, F.-C. Yeh, S.-H. Chuang, H.-Y. Lin,
M.-L. Wu, C.-H. Chen, and C.-H. Tsai. A 0.2nj/pixel
4k 60fps main-10 hevc decoder with multi-format capa-
bilities for uhd-tv applications. In European Solid State
Circuits Conference (ESSCIRC)- 40th, pages 195–198,
Sept 2014. doi: 10.1109/ESSCIRC.2014.6942055.

[19] C. Meenderinck, A. Azevedo, M. Alvarez, B. Juurlink,
and A. Ramirez. Parallel scalability of video de-
coders. Journal of Signal Processing Systems, 57:173–
194, November 2009.

[20] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and
T. Wiegand. Comparaison of the Coding Efficiency of
Video Coding standards including High Efficiency Video
coding (HEVC). IEEE Transactions on Circuits and
Systems for Video Technology, 22:1858–1870, December
2012.

[21] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand.
Overview of the high efficiency video coding standard.
IEEE Transactions on Circuits and Systems for Video
Technology, 22:1648–1667, December 2012.

[22] I. Takouna, W. Dawoud, and C. Meinel. Accurate mut-
licore processor power models for power-aware resource
management. In Dependable, Autonomic and Secure
Computing (DASC), 2011 IEEE Ninth International Con-
ference on, pages 419–426, 2011. doi: 10.1109/DASC.
2011.85.

[23] M. Tikekar, C. T. Huang, C. Juvekar, V. Sze, and A. P.
Chandrakasan. HEVC complexity and implementation
analysis. IEEE Journal of Solid-State Circuits, 49:1685–
1696, Junuary 2014.

[24] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and
A. Luthra. Overview of the H.264/AVC Video Coding
Standard. IEEE Transactions on Circuit and Systems for
Video Technology, 13(7):560–576, July 2003.

http://dx.doi.org/10.1007/s11265-012-0714-2
http://dx.doi.org/10.1007/s11265-012-0714-2

	Introduction
	Related work
	HEVC standard
	Parallelism in HEVC

	Low power HEVC decoders

	Decoding system description
	Decoder architecture
	Embedded Platform

	Energy efficient HEVC decoder
	Data level parallelism
	Task level parallelism
	Efficient DVFS for video decoding application

	Results and analysis
	Experimental configuration
	Power measurement
	HEVC bitstreams

	Energy reduction with data level parallelism
	Energy reduction with task level parallelism
	Energy reduction with efficient DVFS
	Results Summary
	Comparison with state of the art decoders

	Conclusion

