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JORDAN-PRODUCT COMMUTING NONLINEAR MAPS WITH

λ-ALUTHGE TRANSFORM

F. CHABBABI AND M. MBEKHTA

Abstract. Let H and K be two complex Hilbert spaces and B(H) be the algebra of

bounded linear operators from H into itself.

The main purpose in this paper is to obtain a characterization of bijective maps

Φ : B(H)→ B(K) satisfying the following condition

∆λ(Φ(A) ◦ Φ(B)) = Φ(∆λ(A ◦ B)) for all A, B ∈ B(H),

where ∆λ(T ) stands the λ-Aluthge transform of the operator T ∈ B(H) and A ◦ B =
1
2
(AB+BA) is the Jordan product of A and B. We prove that a bijective mapΦ satisfies

the above condition, if and only if there exists an unitary operator U : H → K, such

that Φ has the form Φ(A) = UAU∗ for all A ∈ B(H).

1. Introduction

Let H and K be two complex Hilbert spaces and B(H,K) be the Banach space of

all bounded linear operators from H into K. In the case K = H, B(H,H) is simply

denoted by B(H) and is a Banach algebra.

For an arbitrary operator T ∈ B(H,K), we denote by R(T ), N(T ) and T ∗ the range,

the null subspace and the operator adjoint of T respectively. For T ∈ B(H), the spec-

trum of T is denoted by σ(T ).

An operator T ∈ B(H,K) is a partial isometry when T ∗T is an orthogonal projection

(or, equivalently TT ∗T = T ). In particular T is an isometry if T ∗T = IH, and unitary if

T is a surjective isometry.

As usually, for T ∈ B(H) we denote the module of T by |T | = (T ∗T )1/2 and we shall

always write, without further mention, T = V |T | to be the unique polar decomposi-

tion of T , where V is the appropriate partial isometry satisfying N(V) = N(T ). The

Aluthge transform was introduced in [1] as

∆(T ) = |T |
1
2 V |T |

1
2 , T ∈ B(H),

to extend some properties of hyponormal operators. Later, in [13], Okubo introduced a

more general notion called λ−Aluthge transform which has also been studied in detail.

For λ ∈ [0, 1], the λ−Aluthge transform is defined by,

∆λ(T ) = |T |λV |T |1−λ, T ∈ B(H).
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Notice that ∆0(T ) = V |T | = T , and ∆1(T ) = |T |V which is known as Duggal’s trans-

form. It has since been studied in many different contexts and considered by a number

of authors (see for instance, [1, 2, 3, 4, 11, 10, 9] and some of the references there).

One of the interests of the Aluthge transform lies in the fact that it respects many

properties of the original operator. For example,

(1.1) σ∗(∆λ(T )) = σ∗(T ), for every T ∈ B(H),

where σ∗ runs over a large family of spectra. See [9, Theorems 1.3, 1.5]. Another

important property is that Lat(T ), the lattice of T -invariant subspaces of H, is nontrivial

if and only if Lat(∆(T )) is nontrivial (see [9, Theorem 1.15]).

In [5], the authors described the linear bijective mappings on von Neumann algebras

which commute with the λ-Aluthge transform

∆λ(Φ(T )) = Φ(∆λ(T )) for every T ∈ B(H).

In [6] the first author gives a complete description of the bijective mapsΦ : B(H) →

B(K) which satisfies following condition,

(1.2) ∆λ(Φ(A)Φ(B)) = Φ(∆λ(AB)) for every A, B ∈ B(H),

for some λ ∈]0, 1[.

In this paper we will be concerned with the Jordan product commuting maps with

the λ-Aluthge transform in the following sense,

(1.3) ∆λ(Φ(A) ◦Φ(B)) = Φ(∆λ(A ◦ B)) for all A, B ∈ B(H),

where A ◦ B = 1
2
(AB + BA) is the Jordan product of A and B.

Our main result gives a complete description of the bijective maps Φ : B(H) →

B(K) which satisfies Condition (1.3), the precise theorem being as follows

Theorem 1.1. Let H and K be two complex Hilbert space, such that H is of dimension

greater than 2. Let Φ : B(H) → B(K) be a bijective map. Then Φ satisfies (1.3) for

some λ ∈]0, 1[ if and only if there exists a unitary operator U : H → K such that

Φ(A) = UAU∗ for every A ∈ B(H).

The paper is organized as follows. In the second section, we establish some use-

ful results on the Aluthge transform. These results are needed for proving our main

theorem in the section 3.

2. Some properties of the Aluthge transform

In this section we establish some results, properties of the Aluthge transform. These

results are necessary for the proof of the main theorem.

We first recall some basic notions that are used in the sequel. An operator T ∈ B(H)

is normal if T ∗T = TT ∗, and is quasi-normal, if it commutes with T ∗T ( i.e. TT ∗T =

T ∗T 2), or equivalently |T | and V commutes (T = V |T | a polar decomposition of T ). In

finite dimensional spaces every quasi-normal operator is normal. It is easy to see that
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if T is quasi-normal, then T 2 is also quasi-normal, but the converse is false as shown

by nonzero nilpotent operators .

Also, it is well known that the quasi-normal operators are exactly the fixed points of

∆λ (see [9, Proposition 1.10]). That is,

(2.1) T quasi-normal ⇐⇒ ∆λ(T ) = T.

For nonzero x, y ∈ H , we denote by x ⊗ y the rank one operator defined by

(x ⊗ y)u =< u, y > x for u ∈ H.

It is easy to show that every rank one operator has the previous form and that x ⊗ y is

an orthogonal projection, if and only if x = y and ‖x‖ = 1.

We start with the following proposition. It is found in [6]. To facilitate the reading

we include the proof.

Proposition 2.1. ([6]) Let x, y ∈ H be nonzero vectors. We have

∆λ(x ⊗ y) =
< x, y >

‖y‖2
(y ⊗ y) for every λ ∈]0, 1[.

Proof. Denote T = x ⊗ y, then

T ∗T = |T |2 = ‖x‖2(y ⊗ y) =
(‖x‖

‖y‖
(y ⊗ y)

)2
and |T | =

‖x‖

‖y‖
(y ⊗ y).

It follows that

|T |2 = ‖x‖ ‖y‖|T | and |T |γ = (‖x‖ ‖y‖)γ−1|T | for every γ > 0.

Now, let T = V |T | be the polar decomposition of T . We have

∆λ(x ⊗ y) = ∆λ(T ) = |T |λV |T |1−λ

= (‖x‖ ‖y‖)λ−1(‖x‖ ‖y‖)−λ|T |V |T |

=
1

‖x‖ ‖y‖
|T |T =

1

‖y‖2
(y ⊗ y) ◦ (x ⊗ y)

=
< x, y >

‖y‖2
(y ⊗ y).

Thus , ∆λ(x ⊗ y) =
< x, y >

‖y‖2
(y ⊗ y) as desired �

Proposition 2.2. Let A ∈ B(H) and P = x ⊗ x be a rank one projection on H. Then

∆λ(A ◦ P) = P if and only if PA = P.

Proof. The "if" part follows directly from the previous proposition. We show the "only

if" part. Suppose that ∆λ(A ◦ P) = P. First, it is easy to see the following

PA = P ⇐⇒ A∗x = x.

So, to complete the proof of the proposition, it suffices to show that A∗x = x.
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Put T = A ◦ P. Then T = 1
2
(Ax ⊗ x + x ⊗ A∗x), and thus

(2.2) T 2
=

1

4
(< Ax, x > Ax ⊗ x + Ax ⊗ A∗x+ < A2x, x > x ⊗ x+ < Ax, x > x ⊗ A∗x).

In the other hand, we have

σ(T ) = σ(∆λ(T )) = σ(P) = {0, 1} and thus σ(T 2) = {0, 1}.

Since the rank of T is at most 2, tr(T 2) = tr(T ) = 1. We also have tr(T ) =< Ax, x >

and tr(T 2) = 1
2
(< A2x, x > + < Ax, x >). Therefore

< Ax, x >=< A2x, x >= 1.

It follows that T x = 1
2
(Ax + x) and T ∗x = 1

2
(A∗x + x). Hence

< T x, x >= 1 and < T ∗x, x >= 1.

From (2.2) we get

(2.3) T 2
=

1

4
(Ax + x) ⊗ (A∗x + x) = T x ⊗ T ∗x.

Let T = U |T | be the polar decomposition of T . It holds

T 2
= U |T |U |T | = U |T |1−λ(|T |λU |T |1−λ)|T |λ

= U |T |1−λ∆λ(T )|T |λ = U |T |1−λ(x ⊗ x)|T |λ

= U |T |1−λx ⊗ |T |λx.

From (2.3) we get

(2.4) T x ⊗ T ∗x = U |T |1−λx ⊗ |T |λx.

Since < T ∗x, x >= 1, we get that

T x =< x, |T |λx > U |T |1−λx.

Thus

|T |λ|T |x = |T |λU∗T x =< x, |T |λx > U∗U |T |x =< x, |T |λx > |T |x.

By function calculus, we obtain

|T ||T |x = (< x, |T |λx >)1/λ|T |x.

It follows that

< |T |2x, x >= ‖|T |x‖2 = (< x, |T |λx >)1/λ < |T |x, x > .

Now, by Holder-Mc Carthy inequality (see [7] page 123), we deduce

∥

∥

∥|T |x
∥

∥

∥

2
= (< x, |T |λx >)1/λ < |T |x, x >≤ (< |T |x, x >)2 ≤

∥

∥

∥|T |x
∥

∥

∥

2
.

Hence
∥

∥

∥|T |x
∥

∥

∥ =< |T |x, x >. Therefore there exists α ∈ C such that |T |x = αx.

The last equality and Equation (2.4) imply

T x ⊗ T ∗x = αUx ⊗ x.
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Thus, T ∗x = βx for some β ∈ C. Since, < T ∗x, x >= 1, it holds β = 1. On the other

hand T ∗x = 1
2
(A∗x + x). Then 1

2
(A∗x + x) = x. Finally we conclude that A∗x = x and

hence PA = P. The proof is completed. �

The following lemma gives a property of rank one projections

Proposition 2.3. Let A ∈ B(H) and P = x ⊗ x be a rank one projection on H. Then

∆λ(A ◦ P) = A if and only if A = αP for some α ∈ C.

Proof. The "if" part is obvious. We show the "only if" part. Put T = A ◦ P. Then

T =
1

2
(Ax ⊗ x + x ⊗ A∗x) and T ∗ =

1

2
(x ⊗ Ax + A∗x ⊗ x).

By assumption, A = ∆λ(T ). Since R(∆λ(T )),R(∆λ(T )∗) ⊆ R(T ∗), we have

R(A),R(A∗) ⊆ R(T ∗) ⊆ H0 := span{x, A∗x}.

Note that H0 is an invariant subspace of A and A∗.

Claim: there exists δ ∈ C such that A∗x = δx. In this case, A and A∗ are rank one

operators. Moreover, their ranges R(A) and R(A∗) are generated by x. It is easy to

deduce from this, that A = δP.

We prove the claim by contradiction. Assume on contrary that A∗x and x are linearly

independent. Let {x, e} be an orthonormal basis of H0. We can choose e ∈ H0 such that

< e, Ax >≥ 0. In this basis A has the following form

(2.5) A = x ⊗ A∗x + e ⊗ A∗e.

Let us consider the following cases :

Case 1 : A∗e = 0. In this case, we show A∗x and x are linearly dependent, which is

a contradiction.

From (2.5), we have A = x ⊗ A∗x. Hence

T = P ◦ A = 1/2(x ⊗ A∗x+ < Ax, x > x ⊗ x) = 1/2x ⊗
(

A∗x+ < A∗x, x > x
)

.

Since R(A) ⊆ R(T ∗), then x and A∗x+ < A∗x, x > x are linearly dependent it follows

that x and A∗x are also linearly dependent, which is a contradiction.

Case 2 : A∗e , 0. In this case, we show that A = 2T which is a contradiction with

the fact that ∆λ(T ) = ∆λ(A/2) = A, and

‖A‖ = ‖∆λ(A/2)‖ ≤
‖A‖

2
.

Thus A = 0, which is not possible.

Note that since A = ∆λ(T ) it holds

‖A‖ = ‖∆λ(T )‖ ≤ ‖T‖ = ‖
1

2
(Ax ⊗ x + x ⊗ A∗x)‖ ≤

1

2
(‖Ax‖ + ‖A∗x‖) ≤ ‖A‖.

Hence

(2.6) ‖A‖ = ‖Ax‖ = ‖A∗x‖.
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Now, by (2.5), we have

A = 2T ⇔ e ⊗ A∗e = Ax ⊗ x⇔

{

Ax = ae;

A∗e = āx,
for some a ∈ C.

So, we just need to prove the equivalence. First, we show that

A∗e = ‖A∗e‖x.

Indeed by assumption, we get

tr(A) = tr(∆λ(T )) = tr(T ) =< Ax, x > .

By (2.5), we get

tr(A) =< Ax, x > + < Ae, e > .

Thus < Ae, e >= 0. Since A∗e ∈ H0 and < e, Ax >≥ 0, it follows that

(2.7) A∗e =< A∗e, x > x = ‖A∗e‖x.

Second, we show

Ax = ‖A∗e‖e.

Indeed From (2.5), we get

AA∗ = x ⊗ AA∗x + e ⊗ AA∗e.

Thus

AA∗x = ‖A∗x‖2x+ < x, AA∗e > e,

moreover, by (2.6) it follows that

‖AA∗x‖2 = ‖A∗x‖4 + | < x, AA∗e > |2 ≤ ‖AA∗‖2 = ‖A‖4 = ‖A∗x‖4.

Therefore

< x, AA∗e >= 0.

This, together with the fact A∗e = ‖A∗e‖x, show that

AA∗x = ‖A‖2x and AA∗e = ‖A∗e‖2e = ‖A∗e‖Ax.

It follows that

(2.8) Ax = ‖A∗e‖e.

This completes the proof. �

Remark 2.1. If T = V |T | ∈ B(H) is the polar decomposition of T , then V is unitary if

and only if T and T ∗ are one-to-one.

Lemma 2.1. Let T ∈ B(H) and λ ∈]0, 1[. Suppose that T and T ∗ are one-to-one. Then,

∆λ(T
2) = T =⇒ T 2

= T ∗.
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Proof. Let us consider T 2
= U |T 2| the polar decomposition of T 2. Since T and T ∗ are

injective, then T 2 and (T 2)∗ are also injective. Thus U is unitary operator. We have

∆λ(T
2) = |T 2|λU |T 2|1−λ = T =⇒ |T 2|λU |T 2|1−λ|T 2|λ = T |T 2|λ

=⇒ |T 2|λU |T 2| = T |T 2|λ

=⇒ |T 2|λT 2
= T |T 2|λ.

On the other hand, T∆λ(T
2) = T 2, hence

T |T 2|λU |T 2|1−λ = T 2
= U |T 2| = U |T 2|λ|T 2|1−λ

Since T 2 is injective, we get

T |T 2|λU = U |T 2|λ.

Thus,

|T 2|λT 2U = U |T 2|λ and |T 2|λT 2
= U |T 2|λU∗ ≥ 0.

It follows that

|T 2|λT 2
= T ∗2|T 2|λ = |T 2|U∗|T 2|λ

= |T 2|λ|T 2|1−λU∗|T 2|λ

= |T 2|λ∆λ(T
2)∗

= |T 2|λT ∗.

Finally we obtain T 2
= T ∗, as claimed. �

Lemma 2.2. Let S ∈ B(H) and λ ∈]0, 1[. Suppose that S and S ∗ are one-to-one. Then,

∆λ(S ) = S ∗ =⇒ S = S ∗.

Proof. Let us consider S = U |S | the polar decomposition of S . Since S and S ∗ are

injective, U is unitary operator. We have,

∆λ(S )∆λ(S )∗ = S ∗S = |S |2 = |S |λ|S |1−λ|S |1−λ|S |λ.

By a simple calculation, we deduce

U |S |2(1−λ)
= |S |2(1−λ)U

By the continuous functional calculus, we obtain S quasi-normal.

Consequently, S = ∆λ(S ) = S ∗, as desired. �

Remark 2.2. It is well known that T is quasi-normal does not imply that his adjoint

T ∗ is always quasi-normal.

For example : take the right Shift operator S on a separable Hilbert space H, with

orthonormal bas is (en)n. We have

S ∗S = I and S S ∗ = I − P1

where P1 is the projection onto the span of the first vector e1. Hence

S ∗S S ∗ = S ∗ and S (S ∗)2
= S ∗ − P1S ∗ , S ∗.
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This shows that S ∗ is not quasi-normal.

Now, we replace the condition S and S ∗ are injective in preceding lemma by S is

quasi-normal. We have the following result

Lemma 2.3. Let S ∈ B(H) and λ ∈]0, 1[. Suppose that S is quasi-normal. Then

∆λ(S
∗) = S =⇒ S = S ∗.

Proof. Let us consider the polar decomposition of S and S ∗, S = U |S | and S ∗ = U∗|S ∗|

respectively. It is well known that |S ∗|p = U |S |pU∗ for all p > 0.

Now, since S is quasi-normal, U |S |p = |S |pU and U∗|S |p = |S |pU∗ for every p > 0.

Hence, we have the following equalities

S = ∆λ(S
∗) = |S ∗|λU∗|S ∗|1−λ

= U |S |λU∗U∗U |S |1−λU∗

= U(U∗)2|S |.

It follows that

(2.9) U(U∗)2|S | = U |S |.

After multiplying this equality by U∗, we get

(U∗)2|S | = |S |.

Hence

(U∗)2|S | = |S |U2
= U |S |U = |S |.

Thus

S = U |S | = |S |U = U∗U |S |U = U∗|S | = |S |U∗ = S ∗.

Thus S = S ∗ and the lemma is proved. �

Combining Lemmas 2.3 and 2.1, we obtain the following corollary which plays an

important role in the proof of Φ(I) = I.

Corollary 2.1. Let T ∈ B(H) and λ ∈]0, 1[. Suppose that T and T ∗ are one-to-one.

Then,

∆λ(T
2) = T if and only if T = I.

The next lemma, was established by S. Garcia in the case λ = 1
2
, see [8]. It identifies

the kernel of the λ-Aluthge transform as the set of all operators which are nilpotent of

order two. We need this lemma later.

Lemma 2.4. Let λ ∈]0, 1] and T ∈ B(H). Then

∆λ(T ) = 0 if and only if T 2
= 0.
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Proof. Let T = V |T | be the polar decomposition of T .

If ∆λ(T ) = 0, then we have

T 2
= V |T |V |T | = V |T |1−λ∆λ(T )|T |λ = 0, and thus T 2

= 0.

Conversely, suppose that T 2
= 0. Then V |T |V |T | = T 2

= 0. Hence V∗V |T |V |T | = 0,

which implies |T |V |T | = 0, since V∗V is the projection onto R(|T |). Whence |T |V

vanishes on R(|T |). Furthermore N(V) = N(|T |), from which one concludes |T |V

vanishes onN(|T |). Consequently, |T |V = 0. Thus ∆λ(T ) = |T |λV |T |1−λ = 0. �

3. Proof of the main theorem

An idempotent self adjoint operator P ∈ B(H) is said to be an orthogonal projection.

Clearly quasi-normal idempotents are orthogonal projections.

Two projections P,Q ∈ B(H) are said to be orthogonal if

PQ = QP = 0,

in this case, we denote P ⊥ Q. A partial ordering between orthogonal projections is

defined as follows,

Q ≤ P if PQ = QP = Q.

Remark 3.1. We have

P ⊥ Q ⇐⇒ P + Q orthogonal projection,

and

Q ≤ P ⇐⇒ PQ + QP = 2Q ⇐⇒ P ◦ Q = Q.

Proposition 3.1. Let Φ : B(H) → B(K) be a bijective map satisfying (1.3). Then

Φ(0) = 0 and Φ(I) = I.

Proof. Since Φ is onto, let A ∈ B(H) such that Φ(A) = 0. By (1.3) we have

Φ(0) = ∆λ(Φ(0) ◦ Φ(A)) = ∆λ(0) = 0.

This proves Φ(0) = 0.

New, we prove that Φ(I) = I. For the sake of simplicity, write T = Φ(I). First, we

show that T and T ∗ are injective. Indeed, let y ∈ K such that Ty = 0. Since Φ is onto,

there exists B ∈ B(H) such that Φ(B) = y ⊗ y. By (1.3) we get

∆λ((y ⊗ y) ◦ T ) = ∆λ(Φ(B) ◦ T ) = ∆λ(Φ(B) ◦ Φ(I)) = Φ(∆λ(B)).

This can be rewritten in the other therms,

1

2
∆λ(Ty ⊗ y + y ⊗ T ∗y) =

1

2
∆λ(y ⊗ T ∗y) = Φ(∆λ(B)).

In the other hand (y ⊗ T ∗y)2
=< Ty, y > y ⊗ T ∗y = 0, since Ty = 0. By Lemma 2.4,

∆λ(y ⊗ T ∗y) = 0 and thus Φ(∆λ(B)) = 0. Therefore ∆λ(B) = 0, because Φ is bijective

and Φ(0) = 0. Again, by Lemma 2.4, B2
= 0.



10 F. CHABBABI AND M. MBEKHTA

Now, using Condition (1.3), we get

‖y‖2y ⊗ y = Φ(B)2
= ∆λ(Φ(B) ◦ Φ(B)) = Φ(∆λ(B

2)) = 0,

which implies that y = 0 and whence T is injective. With a similar argument we prove

that T ∗ is injective.

Again from (1.3), we get

∆λ(T
2) = ∆λ(Φ(I) ◦ Φ(I)) = Φ(∆λ(I)) = Φ(I) = T.

From Corollary 2.1, we deduce that T = Φ(I) = I, and completes the proof. �

Theorem 3.1. Let Φ : B(H)→ B(K) be a bijective map satisfying (1.3). Then

(i) ∆λ(Φ(A)) = Φ(∆λ(A)), for all A ∈ B(H). In particular Φ preserves the set of

quasi-normal operators in both directions.

(ii) Φ(A2) = (Φ(A))2 for all A quasi-normal.

(iii) Φ preserves the set of orthogonal projections.

(iv) Φ preserves the orthogonality between the projections ;

P ⊥ Q⇔ Φ(P) ⊥ Φ(Q).

(v) Φ preserves the order relation on the set of orthogonal projections in both direc-

tions ;

Q ≤ P⇔ Φ(Q) ≤ Φ(P).

(vi) Φ(P + Q) = Φ(P) + Φ(Q) for all orthogonal projections P,Q such that P ⊥ Q.

(vii) Φ preserves the set of rank one orthogonal projections in both directions.

Proof. (i) Since, from Proposition 3.1,Φ(I) = I, for B = I in (1.3) we obtain∆λ(Φ(A)) =

Φ(∆λ(A)), for all A ∈ B(H). Now, by (2.1) we get that Φ preserves the set of quasi-

normal operators in both directions.

(ii) Let A ∈ B(H) be a quasi-normal operator. Since Φ preserves the set of quasi-

normal operators,Φ(A),Φ(A2), (Φ(A))2 are quasi-normal. By (1.3), we get ∆λ((Φ(A))2) =

Φ(∆λ(A
2)). Hence (Φ(A))2

= Φ(A2) follows from (2.1).

(iii) It is an immediate consequence of (i) and (ii).

In the rest of the proof P,Q are two orthogonal projections.

(iv) Assume that P,Q are orthogonal (P ⊥ Q). Since Φ preserves the set of orthog-

onal projections, Φ(P) ◦ Φ(Q) is self-adjoint operator. Hence by (1.3) and (2.1), we

get

Φ(P) ◦ Φ(Q) = ∆λ(Φ(P) ◦ Φ(Q)) = Φ(∆λ(P ◦ Q)) = 0.

Thus

(3.1) Φ(P)Φ(Q) + Φ(Q)Φ(P) = 0

Multiplying (3.1) by Φ(P) on both sides, we get

(3.2) Φ(P)Φ(Q) + Φ(P)Φ(Q)Φ(P) = 0 and Φ(P)Φ(Q)Φ(P) + Φ(Q)Φ(P) = 0.

It follows that Φ(P)Φ(Q) = Φ(Q)Φ(P) = 0.

(v) Suppose that Q ≤ P. Using Remark 3.1 and (1.3), we get
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Φ(P) ◦ Φ(Q) = ∆λ(Φ(P) ◦ Φ(Q)) = Φ(∆λ(P ◦ Q)) = Φ(Q).

Hence,

Φ(Q) ≤ Φ(P).

(vi) Since P ⊥ Q, P + Q is an orthogonal projection and P,Q ≤ P + Q. By (v),

Φ(P),Φ(Q) ≤ Φ(P + Q). Thus Φ(P) +Φ(Q) ≤ Φ(P + Q). Since Φ−1 satisfies the same

assumptions as Φ, it follows that Φ(P) + Φ(Q) = Φ(P + Q).

(vii) Let P = x ⊗ x be a rank one projection. Then Φ(P) is a non zero projection.

Let y ∈ K be an unit vector such that y ⊗ y ≤ Φ(P). Thus Φ−1(y ⊗ y) ≤ P. Since P is a

minimal projection and Φ−1(y ⊗ y) is a non zero projection, Φ−1(y ⊗ y) = P. Therefore

Φ(P) = y ⊗ y is a rank one projection. �

In the following proposition we introduce a function h : C→ C, which will be used

later to prove the linearity of Φ.

Proposition 3.2. Let Φ : B(H) → B(K) be a bijective map satisfying (1.3). Then

there exists a bijective function h : C→ C such that

h(0) = 0 and h(1) = 1,

and it satisfies the following properties :

(i) Φ(αI) = h(α)I for all α ∈ C.

(ii) h(αβ) = h(α)h(β) for all α, β ∈ C.

(iii) h(−α) = −h(α) for all α ∈ C.

(iv) Φ(αA) = h(α)Φ(A) for all A quasi-normal and α ∈ C.

Proof. First, we show that there exists a function

h : C→ C such that Φ(αI) = h(α)I for all α ∈ C.

When α ∈ {0, 1} the function h is defined by h(α) = α since Φ(αI) = αI.

Now, we suppose that α , 0. Let y ∈ K an arbitrary unit vector. By Theorem 3.1

(iii), there exists P = x ⊗ x ∈ B(H) with ‖x‖ = 1, such that Φ(P) = y ⊗ y.

By (1.3) with A = P and B = αP we get

∆λ

(

Φ(αP) ◦Φ(P)
)

= Φ(∆λ(αP)) = Φ(αP).

From Proposition 2.3, there exists hP(α) ∈ C such that

Φ(αP) = hP(α)P.

Since Φ is bijective and α , 0, hP(α) , 0.

Again using (1.3) with A = αI and B = P, we get

∆λ

(

Φ(αI) ◦ Φ(P)
)

= Φ(αP) = hp(α)Φ(P).

From Proposition 2.2, we get that

Φ(P)Φ(αI) = hP(α)Φ(P) = y ⊗ Φ(αI)∗y = hP(α)y ⊗ y
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Then Φ(αI)∗y = hP(α)y for every y ∈ K. It follows that Φ(αI) = hP(α)I. Thus h := hP

does not depend on P.

On the other hand, since Φ is bijective and Φ−1 satisfies the same properties as Φ,

we conclude that the function h : C→ C is well defined, bijective and Φ(αI) = h(α)I.

(ii) Let α, β ∈ C, taking A = αI and B = βI in (1.3), we get

h(α)h(β)I = ∆λ(Φ(αI) ◦ Φ(βI)) = Φ(∆λ(αI ◦ βI) = h(αβ)I.

Therefore h satisfies the point (ii).

From (ii), we have (h(−1))2
= 1. Hence h(−1) = −1, since h(1) = 1 and h is

bijective. Hence

h(−α) = h(−1)h(α) = −h(α) for all α ∈ C.

Thus (iii) is satisfied.

To prove (iv), let us consider A quasi-normal and α ∈ C. By (1.3), we have

h(α)Φ(A) = ∆λ(h(α)Φ(A)) = ∆λ(Φ(A) ◦ Φ(αI)) = Φ(∆λ(αA)) = Φ(αA).

Thus (iv) holds. �

Lemma 3.1. Let P = x ⊗ x, P′ = x′ ⊗ x′ be two rank one orthogonal projections such

that P ⊥ P′ (that is < x, x′ >= 0). Then

Φ(αP + βP′) = h(α)Φ(P) + h(β)Φ(P′), for every α, β ∈ C

Proof. If α = 0 or β = 0 the result follows from preceding Proposition.

Suppose that α , 0 and β , 0. Note that (αP + βP′) ◦ (P + P′) = αP + βP′.

By (1.3), applied to B = αP + βP′ and A = P + P′, we obtain

Φ(αP + βP′) = Φ(∆λ(αP + βP′))

= Φ(∆λ((αP + βP′) ◦ (P + P′)))

= ∆λ(Φ(αP + βP′) ◦ Φ(P + P′))

= ∆λ(Φ(αP + βP′) ◦ (Φ(P) + Φ(P′))).

It follows that

(3.3) Φ(αP + βP′) = ∆λ
(

Φ(αP + βP′) ◦Φ(P) + Φ(αP + βP′) ◦ Φ(P′)
)

Again by (1.3) with B = αP + βP′ and A = P, we get that

∆λ

(

Φ(αP + βP′) ◦ Φ(P)
)

= ∆λ(Φ((αP + βP′) ◦ P)))

= Φ(∆λ(αP)) (since (αP + βP′) ◦ P = αP)

= Φ(αP) = h(α)Φ(P).

By Proposition 2.2 and h(α) , 0, it follows that

(3.4) Φ(P)Φ(αP + βP′) = h(α)Φ(P).

In the same manner, we also have

(3.5) Φ(P′)Φ(αP + βP′) = h(β)Φ(P′).
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Now, we denote by T = Φ(αP + βP′), Φ(P) = y ⊗ y and Φ(P′) = y′ ⊗ y′.

Since P and P′ are orthogonal, then y and y′ are orthogonal too.

By (3.4) and (3.5), we get that

T ∗y = h(α)y and T ∗y′ = h(β)y′,

and also

(3.6) Φ(αP+ βP′) ◦Φ(P) =
1

2
(h(α)Φ(P)+Φ(αP+ βP′)Φ(P)) =

1

2

(

(h(α)y+Ty)⊗ y
)

,

and

(3.7) Φ(αP+βP′)◦Φ(P′) =
1

2
(h(β)Φ(P′)+Φ(αP+βP′)Φ(P′)) =

1

2

(

(h(α)y′+Ty′)⊗y′
)

.

By (3.7), it follows that

(3.8) T =
1

2
∆λ

(

(

h(α)y + Ty
)

⊗ y +
(

h(α)y′ + Ty′
)

⊗ y′
)

.

This implies that the rank of T and T ∗ are less than two. Moreover R(T ),R(T ∗) ⊆

span{y, y′}. Since T ∗y = h(α)y and T ∗y′ = h(β)y′, then T = h(α)y ⊗ y + h(β)y′ ⊗ y′.

Therefore

T = Φ(αP + βP′) = h(α)Φ(P) + h(β)Φ(P′),

which is the desired equality. �

If Φ satisfies (1.3), then Φ preserves the set of rank one projection and preserves

also the orthogonality between projections (see Theorem 3.1 (iii) and (iv)). Then for

two vectors x, x′ ∈ H such that ‖x‖ = ‖x′‖ = 1 and < x, x′ >= 0, there exist two vectors

y, y′ ∈ K such that

‖y‖ = ‖y′‖ = 1, < y, y′ >= 0, and Φ(x ⊗ x) = y ⊗ y, Φ(x′ ⊗ x′) = y′ ⊗ y′.

With the preceding notations, we have the following lemma

Lemma 3.2. Let Φ : B(H) → B(K) be a bijective map satisfying (1.3). Then there

exists µ ∈ C such that |µ| = 1 and

Φ(x ⊗ x′ + x′ ⊗ x) = µy ⊗ y′ + µ̄y′ ⊗ y).

In addition, we obtain

h(2) = 2 and h(
1

2
) =

1

2
.

Proof. Let us denote by A = x ⊗ x′ + x′ ⊗ x. First, note that A is self adjoint operator

of rank two, and we have

A2
= x ⊗ x + x′ ⊗ x′,

which is an non-trivial orthogonal projection. Therefore, the spectrum of A is σ(A) =

{−1, 0, 1}. Hence we can find f1, f2 two unit and orthogonal vectors from H (‖ f1‖ =

‖ f2‖ = 1 and < f1, f2 >= 0) such that

(3.9) A = f1 ⊗ f1 − f2 ⊗ f2.
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Let us denote T = Φ(A). By Lemma 3.1, we have

T = Φ( f1 ⊗ f1 − f2 ⊗ f2) = Φ( f1 ⊗ f1) + h(−1)Φ( f2 ⊗ f2) = Φ( f1 ⊗ f1) −Φ( f2 ⊗ f2),

Now, since Φ( f1 ⊗ f1) and Φ( f2 ⊗ f2) are two orthogonal projections, then we deduce

that T is a self adjoint operator of rank two, and

tr(T ) = tr(Φ( f1 ⊗ f1)) − tr(Φ( f2 ⊗ f2)) = 0.

In the other hand, since A is self adjoint, by Theorem 3.1 (ii) and (vi) , we get

T 2
= Φ(A)2

= Φ(A2) = Φ(x ⊗ x + x′ ⊗ x′) = y ⊗ y + y′ ⊗ y′.

Moreover,

(3.10) T 2
= y ⊗ y + y′ ⊗ y′.

It follows that y, y′ ∈ R(T ), and thus

R(T ) = span{y, y′}.

Clearly, A = 2A ◦ (x ⊗ x). By (1.3), we get

T = ∆λ(T ) = ∆λ(Φ(2A ◦ (x ⊗ x))

= h(2)Φ(∆λ(A ◦ (x ⊗ x)))

= h(2)∆λ(Φ(A) ◦Φ(x ⊗ x)))

= h(2)∆λ(T ◦ (y ⊗ y)).

Therefore

(3.11) T =
h(2)

2
∆λ(Ty ⊗ y + y ⊗ T ∗y) =

h(2)

2
(Ty ⊗ y + y ⊗ Ty).

If follows that

tr(T ) = h(2) < Ty, y >= 0.

Hence < Ty, y >= 0. Since {y, y′} is an orthonormal basis of R(T ) then there exists

µ ∈ C such that Ty = µy′. From (3.11) we get

(3.12) T =
h(2)

2
(µy′ ⊗ y + µ̄y ⊗ y′).

In particular, we also have Ty =
h(2)

2
µy′ = µy′, it follows that

h(2) = 2 and thus h(
1

2
) =

1

2
(since h multiplicative and h(1) = 1).

Hence

T = µy′ ⊗ y + µ̄y ⊗ y′,

and we have

T 2
= |µ|2(y ⊗ y + y′ ⊗ y′) = y ⊗ y + y′ ⊗ y′.

Hence |µ| = 1. This completes the proof. �

As a direct consequence from the preceding lemma, we have the following corollary.

Corollary 3.1. The function h : C→ C defined in Proposition 3.2 is additive.
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Proof. Let x, x′ ∈ H be two unit and orthogonal vectors for H and α, β ∈ C. Denote

P = x ⊗ x, P′ = x′ ⊗ x′, Q = Φ(P) = y ⊗ y, Q′ = Φ(P′) = y′ ⊗ y′.

Put A = x ⊗ x′ + x′ ⊗ x, and B = αP + βP′. Observe that

A ◦ P =
1

2
A and A ◦ P′ =

1

2
A,

thus

A ◦ B =
α + β

2
A.

By Lemma 3.2, there exists µ ∈ C such that |µ| = 1 and

Φ(A) = µy ⊗ y′ + µ̄y′ ⊗ y.

Then, by a simple calculation, we get

Φ(P) ◦Φ(A) = Q ◦ Φ(A) =
1

2
Φ(A).

Hence, using (1.3), we immediately obtain the following

h(
α + β

2
)Φ(A) = Φ(

α + β

2
A) = Φ(∆λ(

α + β

2
(A)))

= Φ(∆λ(B ◦ A)) = ∆λ(Φ(B) ◦Φ(A))

= ∆λ

(

Φ(αP + βP′) ◦Φ(A)
)

= ∆λ

(

Φ(αP) ◦Φ(A) + Φ(βP′) ◦ Φ(A)
)

= ∆λ

(

h(α)Φ(P) ◦ Φ(A) + h(β)Φ(P′) ◦ Φ(A)
)

=
1

2
(h(α) + h(β))Φ(A).

Since h(1/2) = 1/2, we have

1

2
h(α + β) = h(

α + β

2
) =

1

2
(h(α) + h(β)).

Thus h(α + β) = h(α) + h(β). It follows that h is additive. �

Now, we are in position to prove our main Theorem.

Proof of Theorem 1.1.

Proof. The "if" part is immediate.

We show the "only if" part. Assume that Φ : B(H) → B(K) is bijective and satisfies

(1.3). The proof of theorem is organized in several steps.
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Step. 1 For every A ∈ B(H), for all x, y such that ‖x‖ = ‖y‖ = 1 andΦ(x ⊗ x) = y ⊗ y,

we have

(3.13) < Φ(A)y, y >= h(< Ax, x >),

Put T = 2(A ◦ (x ⊗ x)) = Ax ⊗ x + x ⊗ A∗x. Let α1, α2 be the non zero

eigenvalues of T . By the Schur decomposition of T , there exist two unit and

orthogonal vectors e1, e2 such that

T = α1e1 ⊗ e1 + α2e2 ⊗ e2 + βe1 ⊗ e2.

First, we show that

(3.14) tr(∆λ(Φ(T ))) = 2h(< Ax, x >).

If α1 = α2 = 0, we have T = βe1 ⊗ e2, thus T 2
= 0 and ∆λ(T ) = 0, by

Lemma 2.4. Hence ∆λ(Φ(T )) = Φ(∆λ(T )) = 0, since Φ commutes with ∆λ.

Consequently,

tr(T ) = 2 < Ax, x >= 0 = tr(∆λ(Φ(T ))),

and, in this case, (3.14) is satisfied.

Now suppose that (α1, α2) , (0, 0).

First, note that

T ◦ (e1 ⊗ e1) =
1

2
(e1 ⊗ (β̄e2 + 2ᾱ1e1)) =

1

2
(e1 ⊗ v),

with v = β̄e2 + 2ᾱ1e1 and < e1, v >= 2α1. From Proposition 2.1, it

follows that

∆λ(T ◦ (e1 ⊗ e1)) =
1

2
∆λ((e1 ⊗ v) = α1

1

‖v‖2
(v ⊗ v).

By (1.3), we get

h(α1)Φ(
1

‖v‖2
(v ⊗ v)) = Φ(∆λ(T ◦ (e1 ⊗ e1)))

= ∆λ(Φ(T ) ◦ Φ(e1 ⊗ e1)).

We have also

T ◦ (e2 ⊗ e2) =
1

2
(βe1 + 2α2e2) ⊗ e2.

Hence

∆λ(T ◦ (e2 ⊗ e2)) = α2e2 ⊗ e2.

Again (1.3) implies that

h(α2)Φ(e2 ⊗ e2) = Φ(∆λ(T ◦ (e2 ⊗ e2)))

= ∆λ(Φ(T ) ◦ Φ(e2 ⊗ e2))
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Now, observe that T ◦ (e1 ⊗ e1 + e2 ⊗ e2) = T . We apply again (1.3), then

∆λ(Φ(T )) = Φ(∆λ(T ◦ (e1 ⊗ e1 + e2 ⊗ e2)))

= ∆λ(Φ(T ) ◦Φ(e1 ⊗ e1 + e2 ⊗ e2))

= ∆λ(Φ(T ) ◦Φ(e1 ⊗ e1) + Φ(T ) ◦ Φ(e2 ⊗ e2)).

Since Φ( 1
‖v‖2

(v ⊗ v)) and Φ(e2 ⊗ e2) are orthogonal projections, then

tr(∆λ(Φ(T ))) = tr(∆λ(Φ(T ) ◦Φ(e1 ⊗ e1) + Φ(T ) ◦ Φ(e2 ⊗ e2)))

= tr(Φ(T ) ◦ Φ(e1 ⊗ e1) + Φ(T ) ◦ Φ(e2 ⊗ e2))

= tr(Φ(T ) ◦ Φ(e1 ⊗ e1)) + tr(Φ(T ) ◦Φ(e2 ⊗ e2))

= tr(h(α1)Φ(
1

‖v‖2
(v ⊗ v)) + tr(h(α2)Φ(e2 ⊗ e2))

= h(α1) + h(α2)

= h(α1 + α2) = h(tr(T ))

= 2h(< Ax, x >).

Now, we show that

(3.15) tr(∆λ(Φ(T )) = 2 < Φ(A)y, y > .

By (1.3) and h(2) = 2, we get

∆λ(Φ(T )) = ∆λ(Φ(2A ◦ (x ⊗ x)) = ∆λ(h(2)Φ(A ◦ (x ⊗ x))

= h(2)Φ(∆λ(A ◦ (x ⊗ x)))

= 2∆λ(Φ(A) ◦Φ(x ⊗ x))

= 2∆λ(Φ(A) ◦ (y ⊗ y)).

Thus

tr(∆λ(Φ(T )) = 2tr(∆λ(Φ(A) ◦ (y ⊗ y))) = 2tr(Φ(A) ◦ (y ⊗ y))

= 2 < Φ(A)y, y > .

From (3.14) and (3.15), it follows that

< Φ(A)y, y >= h(< Ax, x >),

for all A ∈ B(H) and for all x ∈ H and y ∈ H such Φ(x ⊗ x) = y ⊗ y, which

completes the proof of (3.13).

Step. 2 The function h is continuous.

Let E be a bounded subset in C and A ∈ B(H) such that E ⊂ W(A), where

W(A) is the numerical range of A. By (3.13),

h(E) ⊂ h(W(A)) = W(Φ(A))

Since W(Φ(A)) is bounded, h is bounded on the bounded subset, which im-

plies that h is continuous, since it is additive (see Corollary 3.1). We then

have, using Proposition 3.2 (ii) and Corollary 3.1, that h is an automorphism
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continuous over the complex field C. It follows that h is the identity or the

complex conjugation map (see, for example, [12]).

Step. 3 Φ is linear or anti-linear.

Let y ∈ K and x ∈ H be unital vectors such that y⊗ y = Φ(x⊗ x). Let α ∈ C

and A, B ∈ B(H) be arbitrary. Using (3.13), we get

< Φ(A + B)y, y > = h(< (A + B)x, x >)

= h(< Ax, x > + < Bx, x >)

= h(< Ax, x >) + h(< Bx, x >)

= < Φ(A)y, y > + < Φ(B)y, y >

= < (Φ(A) + Φ(B))y, y >,

and

< Φ(αA)y, y > = h(< αAx, x >)

= h(α)h(< Ax, x >)

= h(α) < Φ(A)y, y > .

Hence, we immediately obtain the following

∀A, B ∈ B(H),∀α ∈ C, Φ(A + B) = Φ(A) + Φ(B) and Φ(αA) = h(α)Φ(A).

Therefore Φ is linear or anti-linear, since h is the identity or the complex

conjugation.

Step. 4 Φ(A) = UAU∗ every A ∈ B(H), for some unitary operator U ∈ B(H,K). By

Step.3, we have Φ or Φ∗ is linear, where Φ∗ is defined by Φ∗(A) = (Φ(A))∗.

From Theorem 3.1 (i), Φ commute with ∆λ. Now, by [5, Theorem 1], there

exists a unitary operator V : H → K, such that Φ take one of the following

forms

(3.16) Φ(A) = VAV∗ for all A ∈ B(H),

either

(3.17) Φ(A) = VA∗V∗ for all A ∈ B(H).

In order to complete the proof we have to showΦ can not take the form (3.17).

Seeking a contradiction, suppose that (3.17) holds. Then for every A ∈

B(H),

∆λ(A
∗) = ∆λ(V

∗
Φ(A)V)

= V∗∆λ(Φ(A))V

= V∗Φ(∆λ(A))V

= (∆λ(A))∗.
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Therefore

(3.18) ∆λ(A
∗) = (∆λ(A))∗, for every A ∈ B(H).

Now, let us consider A = x ⊗ x′ with x, x′ are unit, independent and non-

orthogonal vectors in H. Then A∗ = x′ ⊗ x and by Proposition 2.1, we have

(∆λ(A))∗ =< x′, x > (x′ ⊗ x′) and ∆λ(A
∗) =< x′, x > (x ⊗ x),

which contradicts (3.18). So if we take U = V , Φ gets the form

Φ(A) = UAU∗, for all A ∈ B(H).

This completes the proof of our main theorem. �

4. Star Jordan Product CommutingMaps

We end this paper by characterizing the bijective maps Φ : B(H) → B(K), which

verify

(4.1) ∆λ(Φ(A) ◦ (Φ(B))∗) = Φ(∆λ(A ◦ B∗)) for all A, B ∈ B(H).

Theorem 4.1. Let H and K two complex Hilbert space, such that H is of dimension

greater than 2. Let Φ : B(H)→ B(K) be a bijective map. Then Φ satisfies (4.1), if and

only if, there exists an unitary operator U : H → K such that

Φ(A) = UAU∗ for all A ∈ B(H).

ï¿1
2

Remark 4.1. Based on the arguments and the methods developed in the proof of The-

orem 1.1, it is not difficult to proof Theorem 4.1. For example, If Φ : B(H) → B(K) is

a bijective map, satisfying (4.1), then

(i) Φ(0) = 0.,

(ii) Φ(I) = I.,

(iii) ∆λ(Φ(A)) = Φ(∆λ(A)) and ∆λ((Φ(A))∗) = Φ(∆λ(A
∗)) for all A ∈ B(H),

(iv) Φ preserve the set of quasi-normal operator in both directions,

(v) Φ preserves the set of self adjoint operators in both directions.

Proof. (i) Since Φ is onto, then there exists B ∈ B(H) such that Φ(B) = 0. Hence, by

(4.1) Φ(0) = ∆λ(Φ(0) ◦ Φ(B)∗) = 0.

(ii) Let us denote T := Φ(I). First we show that T is one-to-one. Let y ∈ K such that

Ty = 0. Now since Φ is onto, there exists B ∈ B(H) such that Φ(B) = y ⊗ y. By (4.1),

we have ∆λ(T ◦ y ⊗ y) = y ⊗ y. Thus y ⊗ y = 0 and it follows that y = 0.

Again from (4.1) it follows that T ◦ T ∗ = T . Hence T is self adjoint and T 2
=

T ◦ T ∗ = T . Thus T = I since T is one-to-one.

(iii) is immediate, and (iv) is deduced directly from (iii).

(v) Let B be a self adjoint operator, and S := Φ(B). By (iii) S is quasi-normal

operator, and by (4.1) with A = I we get, that ∆(S ∗) = S . By Lemma 2.3, S = S ∗ and

thus Φ preserves the self adjoint operators. �
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The rest of the proof of Theorem 4.1 is similar to that of Theorem 1.1. We do not

give details of those arguments.
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