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NEW FORMULAS FOR THE SPECTRAL RADIUS VIA ALUTHGE

TRANSFORM

FADIL CHABBABI AND MOSTAFA MBEKHTA

Abstract. In this paper we give several expressions of spectral radius of a bounded

operator on a Hilbert space, in terms of iterates of Aluthge transformation, numerical

radius and the asymptotic behavior of the powers of this operator.

Also we obtain several characterizations of normaloid operators.

1. Introduction

Let H be complex Hilbert spaces and B(H) be the Banach space of all bounded

linear operators from H into it self.

For T ∈ B(H), the spectrum of T is denoted by σ(T ) and r(T ) its spectral radius.

We denote also by W(T ) and w(T ) the numerical range and the numerical radius of T .

As usually, for T ∈ B(H) we denote the module of T by |T | = (T ∗T )1/2 and we shall

always write, without further mention, T = U |T | to be the unique polar decomposition

of T , where U is the appropriate partial isometry satisfying N(U) = N(T ). The

Aluthge transform introduced in [1] as

∆(T ) = |T |
1
2 U |T |

1
2 , T ∈ B(H),

to extend some properties of hyponormal operators. Later, in [8], Okubo introduced a

more general notion called λ−Aluthge transform which has also been studied in detail.

For λ ∈ [0, 1], the λ-Aluthge transform is defined by,

∆λ(T ) = |T |λU |T |1−λ, T ∈ B(H).

Notice that ∆0(T ) = U |T | = T , and ∆1(T ) = |T |U which is known as Duggal’s trans-

form. It has since been studied in many different contexts and considered by a number

of authors (see for instance, [1, 2, 3, 7, 6, 5] and some of the references there). The

interest of the Aluthge transform lies in the fact that it respects many properties of the

original operator. For example, (see [5, Theorems 1.3, 1.5])

(1.1) σ(∆λ(T )) = σ(T ), for every T ∈ B(H),

Another important property is that Lat(T ), the lattice of T -invariant subspaces of H,

is nontrivial if and only if Lat(∆(T )) is nontrivial (see [5, Theorem 1.15]).
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Moreover, Yamazaki ([12]) (see also, [11, 10]), established the following interesting

formula for the spectral radius

(1.2) lim
n→∞
‖∆n
λ(T )‖ = r(T )

where ∆n
λ

the n-th iterate of ∆λ, i.e ∆n+1
λ

(T ) = ∆λ(∆
n
λ
(T )), ∆0

λ
(T ) = T .

In this paper we give several expressions of the spectral radius of an operator. Firstly

in terms of the Aluthge transformation (section 2), and secondly, in section 3, we

give several expressions of spectral radius, based on numerical radius and Aluthge

transformation. Also, We infer several characterizations of normaloid operators (i.e.

r(T ) = ‖T‖).

2. formulas of spectral radius via Aluthge transform

In this section, we use the of Rota’s Theorem, order to obtain new formulas of

spectral radius via Aluthge transformation

Theorem 2.1. For every operator T ∈ B(H), we have

r(T ) = inf{‖∆λ(XT X−1)‖, X ∈ B(H) invertible }

= inf{‖∆λ(e
ATe−A)‖, A ∈ B(H) self adjoint }.

Proof. For every invertible operator X ∈ B(H), by (1.1), we have

σ(∆λ(XT X−1)) = σ(XT X−1) = σ(T ).

It follows that

r(T ) = r(∆λ(XT X−1)) ≤ ‖∆λ(XT X−1)‖ for every invertible operator X ∈ B(H).

Hence

r(T ) ≤ inf{‖∆λ(XT X−1)‖; X ∈ B(H) invertible }

≤ inf{‖∆λ(exp(A)T exp(−A))‖; A ∈ B(H) self adjoint },

In the other hand, for ε > 0, we have

r
( T

r(T ) + ε

)

=
r(T )

r(T ) + ε
< 1.

From Rota’s Theorem [9, Theorem 2],
T

r(T ) + ε
is similar to an contraction. Thus there

exists an invertible operator Xε ∈ B(H) such that

(2.1) ‖∆λ(XεT X−1
ε )‖ ≤ ‖XεT X−1

ε ‖ ≤ r(T ) + ε.

Now, let Xε = Uε|Xε| be the polar decomposition of Xε. Clearly Uε is a unitary oper-

ator, and |Xε| is invertible. Therefore there exist α > 0 such that σ(|Xε|) ⊆ [α,+∞[.

Consequently Aε = ln(|Xε|) exits and it is self adjoint, we also have

|Xε| = eAε and |Xε|
−1
= e−Aε.
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Thus

‖∆λ(XεT X−1
ε )‖ = ‖∆λ(UeAεTe−AεU∗)‖

= ‖U∆λ(e
AεTe−Aε)U∗‖

= ‖∆λ(e
AεTe−Aε)‖.

Hence

‖∆λ(e
AεTe−Aε)‖ ≤ ‖XεT X−1

ε ‖ ≤ r(T ) + ε.

It follows that for all ε > 0,

r(T ) ≤ inf{‖∆λ(XT X−1)‖, X ∈ B(H) invertible }

≤ inf{‖∆λ(e
ATe−A)‖, A ∈ B(H) self adjoint }

≤ ‖∆λ(e
AεTe−Aε)‖ ≤ ‖XεT X−1

ε ‖

≤ r(T ) + ε.

Finally, since ε > 0 is arbitrary, we obtain

r(T ) = inf{‖∆λ(XT X−1)‖, X ∈ B(H) invertible }

= inf{‖∆λ(e
ATe−A)‖, A ∈ B(H) self adjoint }.

Theroforte the proof of Theorem is complete. �

As immediate consequence of the Theorem 2.1, we obtain the following corollary

which gives a formula of the spectral radius based on n-th iterate of ∆λ.

Corollary 2.1. If T ∈ B(H), then for every n ≥ 0,

r(T ) = inf{‖∆n
λ(XT X−1)‖, X ∈ B(H) invertible }

= inf{‖∆n
λ(e

ATe−A)‖, A ∈ B(H) self adjoint }.

Proof. First, note that ‖∆λ(T )‖ ≤ ‖T‖, consequently we have

(2.2) ‖∆n
λ(T )‖ ≤ ‖∆n−1

λ (T )‖ ≤ ... ≤ ‖∆λ(T )‖ ≤ ‖T‖, ∀n ∈ N∗.

Now, clearly σ(∆n
λ
(T )) = σ(T ), for all n ∈ N. It follows that, for every invertible

operator X ∈ B(H) we have

r(T ) = r(∆n
λ(XT X−1))

≤ ‖∆n
λ(XT X−1)‖

≤ ‖∆λ(XT X−1)‖.

Therefore

r(T ) ≤ inf{‖∆n
λ(XT X−1)‖, X ∈ B(H) invertible }

≤ inf{‖∆n
λ(e

ATe−A)‖, A ∈ B(H) self adjoint }

≤ inf{‖∆λ(e
ATe−A)‖, A ∈ B(H) self adjoint }

= r(T ).

�
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An operator T is said to be normaloid if r(T ) = ‖T‖.

As immediate consequence of the Corollary 2.1, we obtain the following corollary

which is a characterization of normaloid operators via λ-Aluthge transformation :

Corollary 2.2. If T ∈ B(H), then the following assertions are equivalent

(i) T is normaloid;

(ii) ‖T‖ ≤ ‖∆λ(XT X−1)‖, for all invertible X ∈ B(H);

(iii) ‖T‖ ≤ ‖∆n
λ
(XT X−1)‖, for all invertible X ∈ B(H) and for all natural number n.

As immediate consequence of the Corollary 2.2, we obtain a new characterization

of normaloid operators

Corollary 2.3. If T ∈ B(H), then the following assertions are equivalent

(i) T is normaloid;

(ii) ‖T‖ ≤ ‖XT X−1‖, for all invertible X ∈ B(H);

Theorem 2.2. Let T ∈ B(H). Then for each natural number n, we have

r(T ) = lim
k
‖∆n
λ(T

k)‖1/k

= lim
k
‖∆λ(T

k)‖1/k.

Proof. Note that,

(2.3) r(T ) = r(∆n
λ(T )) ≤ ‖∆n

λ(T )‖ ≤ ‖∆λ(T )‖ ≤ ‖T‖ ∀n ∈ N∗.

Let k ∈ N be arbitrary, we have

r(T )k
= r(T k) = r(∆n

λ(T
k)) ≤ ‖∆n

λ(T
k)‖ ≤ ‖∆λ(T

k)‖ ≤ ‖T k‖ ∀n ∈ N.

Hence

r(T ) ≤ ‖∆n
λ(T

k)‖1/k ≤ ‖∆λ(T
k)‖1/k ≤ ‖T k‖1/k.

Therefore

r(T ) ≤ lim
k
‖∆n
λ(T

k)‖1/k ≤ lim
k
‖∆λ(T

k)‖1/k ≤ lim
k
‖T k‖1/k = r(T ).

Which completes the proof. �

As immediate consequence of Theorem 2.2, we obtain the following corollary which

is a new characterization of normaloid operators

Corollary 2.4. If T ∈ B(H), then the following assertions are equivalent

(i) T is normaloid;

(ii) ‖T‖k = ‖∆λ(T
k)‖, for all natural number k;

(iii) ‖T‖k = ‖∆n
λ
(T k)‖, for every natural number k, n
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3. Spectral radius via numerical radius and Aluthge transform

For T ∈ B(T ), we denote the numerical range and numerical radius of T by W(T )

and w(T ), respectively.

W(T ) = {< T x, x >; ‖x‖ = 1} and w(T ) = sup{|λ|; λ ∈ W(T )}.

In the following theorem, we obtain a new expression of the spectral radius by means

of the numerical radius and Aluthge transform.

Theorem 3.1. For every operator T ∈ B(H) and for each natural number n, we have

r(T ) = inf{w(∆n
λ(XT X−1)), X ∈ B(H) invertible }

= inf{w(∆n
λ(e

ATe−A)), A ∈ B(H) self adjoint }.

Proof. It is well known that r(T ) ≤ w(T ) ≤ ‖T‖. Thus, for all X ∈ B(H), invertible

and for each natural number n, we have

r(T ) = r(∆n
λ(XT X−1)) ≤ w(∆n

λ(XT X−1)) ≤ ‖∆n
λ(XT X−1)‖

It follows that

r(T ) ≤ inf{w(∆n
λ(XT X−1)); X ∈ B(H) invertible }

≤ inf{w(∆n
λ(exp(A)T exp(−A))); A ∈ B(H) self adjoint },

≤ inf{‖∆n
λ(exp(A)T exp(−A))‖; A ∈ B(H) self adjoint }

= r(T ) ( by Corollary 2.1).

Hence we obtain the desired equalities. �

For a bounded linear operator S , we will write Re(S ) = 1
2
(S + S ∗), the real part of

S . And we denote by W(S ) the closure of the numerical range of S . Then we have de

following result

Theorem 3.2. For every operator T ∈ B(H), there exists θ ∈ R such that for all natural

number n,

r(T ) = inf{w(Re(∆n
λ(exp(iθ)XT X−1))), X ∈ B(H) invertible }

= inf{‖Re(∆n
λ(exp(iθ)XT X−1))‖, X ∈ B(H) invertible }.

Proof. First assume that r(T ) ∈ σ(T ). Then for all invertible X ∈ B(H), we have

r(T ) ∈ Re(σ(T )) = Re(σ(∆n
λ(XT X−1))).

Thus

r(T ) ∈ Re(σ(∆n
λ(XT X−1))) ⊆ Re(W(∆n

λ(XT X−1))) = W(Re(∆n
λ(XT X−1)))

which implies

r(T ) ≤ w(Re(∆n
λ(XT X−1)))

≤ ‖Re(∆n
λ(XT X−1))‖

≤ ‖∆n
λ(XT X−1)‖.
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Since the last inequalities are satisfied for all X ∈ B(H) invertible, we obtain

r(T ) ≤ inf{w(Re(∆n
λ(XT X−1))) X ∈ B(H) invertible }

≤ inf{‖Re(∆n
λ(XT X−1))‖ X ∈ B(H) invertible }

≤ inf{‖∆n
λ(XT X−1)‖ X ∈ B(H) invertible }

= r(T ) (by Corollary 2.1).

We have shown that if r(T ) ∈ σ(T ) then

r(T ) = inf{w(Re(∆n
λ(XT X−1))) X ∈ B(H) invertible }

= inf{‖Re(∆n
λ(XT X−1))‖ X ∈ B(H) invertible }

Now, if T is an arbitrary operator, then there exists z ∈ σ(T ) such that, |z| = r(T ). Put

θ = − arg(z). Then r(T ) = z exp(iθ) ∈ σ(exp(iθ)T ). Hence by the first part of de proof,

we conclude that

r(T ) = r(exp(iθ)T ) = inf{w(Re(∆n
λ(exp(iθ)XT X−1))), X ∈ B(H) invertible }

= inf{‖Re(∆n
λ(exp(iθ)XT X−1))‖, X ∈ B(H) invertible }.

This completes the proof of the theorem. �

As immediate consequence of Theorem 3.2, we obtain the following corollary which

is a characterization of normaloid operators

Corollary 3.1. If T ∈ B(H), and a natural number n, then the following assertions are

equivalent

(i) T is normaloid;

(ii) there exists θ ∈ R such that, for all X ∈ B(H) invertible

‖T‖ ≤ w(Re(∆n
λ(exp(iθ)XT X−1)));

(iii) there exists θ ∈ R such that, for all X ∈ B(H) invertible

‖T‖ ≤ ‖Re(∆n
λ(exp(iθ)XT X−1))‖.

We end this paper by the following theorem which gives a new formula of the spec-

tral radius of T , in terms of the asymptotic behavior of powers and the numerical radius

of T

Theorem 3.3. For every operator T ∈ B(H) and for each natural number n, we have

r(T ) = lim
k

w(∆n
λ(T

k))1/k.

Proof. For each natural number n and k, we have

r(T )k
= r(T k) = r(∆n

λ(T
k)) ≤ w(∆n

λ(T
k)) ≤ ‖∆n

λ(T
k)‖

Hence

r(T ) ≤ w(∆n
λ(T

k))1/k ≤ ‖∆n
λ(T

k)‖1/k.
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By Theorem 2.2, we deduce that

r(T ) = lim
k

w(∆n
λ(T

k))1/k
.

Which completes the proof. �
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