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Abstract. Exposure fusion is an efficient method to obtain a well ex-
posed and detailed image from a scene with high dynamic range. How-
ever, this method fails when there is camera shake and/or object motions.
In this work, we tackle this issue by replacing the pixel-based fusion by
a fusion between pixels having similar neighborhood (patches) in images
with different exposure settings. In order to achieve this, we compare
patches in the luminance domain. We show through several experiments
that this procedure yield comparable or better results than the state of
the art, at a reasonable computing time.
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1 Introduction and Previous Works

Natural scenes often exhibit luminance ranges that are beyond the capacity of
most imaging sensors. In such cases, a single standard photograph cannot cap-
ture details in dark regions without producing saturated values in the brightest
regions. A classical way to create a high dynamic range (HDR) image faithfully
representing the luminance of a scene is to combine photographs acquired with
different exposure times [8]. Once the response function of the camera is known
(or when working with linear RAW images) and when the scene is static, this
combination task is essentially a statistical problem [4]. In order to visualize such
an image on a classical display, contrast is then compressed by using a so-called
tone mapping operator [11, 10]. An alternative to this two-step procedure (HDR
image creation followed by tone mapping) was proposed in [15] and is called ex-

posure fusion. The main idea is to bypass the HDR creation step and to directly
create a low dynamic range image (typically made of 8 bits per color channel)
by fusing the input images corresponding to different acquisition times. Specific
weights are used to ensure that the final result is contrasted enough, has vivid
colors and avoid over and under-exposure. Using classical ideas from computer
graphics [16], the images are fused in a multi-scale framework, enabling one to
blend images seamlessly.

This procedure is very efficient and has yielded numerous softwares and plug-
ins. It has also triggered an abundant research literature proposing variants on
the original method: involving image decomposition into several components at



the patch level [13], formulating the problem as a MAP estimation [21] or in-
volving the bilateral filter [20]. Nevertheless, such approaches have a common
drawback: they fail when there is either camera shake or moving objects in the
scene. Indeed, they all perform the fusion at pixel level and assume that images
are registered and that objects are still. Of course, this is a serious limitation in
practice, and several works have tackled this issue. Anti-ghosting algorithms [5,
17, 22] propose to perform image alignment and possibly to explicitly detect mov-
ing objects to prevent using them in the fusion. Recently, the methods from [12,
19] proposed to solve the problem by an iterative optimization procedure relying
on correspondences between patches. In particular, the authors of [12] propose
to create, from a reference image and a set of differently exposed images, a set of
images that are all aligned and radiometrically coherent with the reference, and
whose content is automatically modified (in the case of moving objects) to match
the reference. This is achieved thanks to contrast prescription and patch-based
content comparison between the images. As illustrated in [12], classical exposure
fusion can then be applied to the aligned set to yield a satisfactory final image,
even in the case of camera shake and object motion.

In this paper, we propose an exposure fusion method that also deals both with
camera shake and object motion. The basic idea is very simple and illustrated by
Figure 1: instead of fusing values taken by pixels at the same spatial position, we
fuse values of pixels having similar neighborhood (thereafter called a patch) in
the different images. The method is therefore in the spirit of non-local restoration
methods such as the non-local means [7], and also share similarities with the
non-local method introduced in [3] for the creation of HDR images. Such a
simple approach has the ability to deal with camera motion (although a previous
global image registration may be useful to accelerate the process or to enhance
the similarity between patches) and with moving objects. By construction, the
method also boils down to the original exposure fusion algorithm in the absence
of camera and object motions. The rest of the paper is organized as follows. In
Section 2, the original exposure fusion algorithm is first briefly recalled and a
detailed presentation of the proposed method is provided. In Section 3, we show
experimental results and comparisons with the recent state-of-the-art algorithm
from [12].

(a) (b)

Fig. 1. Instead of fusing values at the same position (a), we use a non-local fusion (b)
with values from different positions, to account for object motions and camera shake.



2 Non-local Exposure Fusion

2.1 Classical Exposure Fusion

The method introduced in [15] proposes to fuse a series of images I1, . . . , IN
acquired with different exposure settings (the knowledge of these is not needed).
For each pixel x and index i a weight Wi(x) is defined by taking into account
the quality of contrast, color saturation and well-exposedness at this pixel. The
idea is then to fuse the values Ii(x) according to the weights. The most straight-
forward approach would be to define the resulting image R as

R(x) =

N
∑

i=1

Wi(x)Ii(x) , (1)

but this yields incoherences in flat regions and visible seams at slow transitions.
In order to achieve seamless fusion, the blending is performed in a multi-scale
framework. For each level l of a Laplacian pyramid [16], the Laplacian pyramid
of the resulting image R is computed as

Ll(R) =

N
∑

i=1

Gl(Wi)Ll(Ii) ,

where Ll(Ii) is the Laplacian pyramid at level l of image i and Gl(Wi) is the
Gaussian pyramid at level l of the weight map Wi. The final image R is then
reconstructed from its Laplacian pyramid. As explained in the introduction, this
(otherwise very efficient) method fails when there is camera shake or object
motions.

2.2 Non-local Fusion

In order to deal with dynamic scenes we propose, for each pixel x, to replace
the fusion of values at this pixel with the fusion of values at well chosen pixels
f1(x), . . . , fN (x) in the series of images. In the static case these pixels would
simply be all equal to x, and in the general case, they will be defined in order to
compensate motions, as we will now see. In a way similar to the HDR creation
method from [3], we define fi(x) to be the pixel having its neighborhood in Ii
the closest to the one of x in Iref (where ref ∈ (1, . . . , N)) a reference image to
be defined later. More precisely, we define Pi(x), a patch at pixel x, to be the
collection of values in Ii in a (2s + 1) × (2s + 1) square window centered at x.
We assume that we have a distance d between patches (to be defined in the next
section) and then define the pixel most similar to x in Ii to be

fi(x) = argminy∈x+N (d(Pref (x), Pi(y))) , (2)

where N is a search window (bigger than the patch). In the (unlikely) case where
the minimum is achieved for several values, one is chosen at random. If the
minimum is achieved for only one value, we have in particular that fref (x) = x.
Let us now assume for a moment that we perform the fusion at a single scale
(that is, as in Formula (1)). Then the resulting image could be defined as



R(x) =

N
∑

i=1

Wi(fi(x))Ii(fi(x)) ·

Of course, as in the classical exposure fusion, defining the resulting image R

this way would yield incoherences and seams. Therefore, the non-local fusion is
defined, for each level l of a multi-scale pyramid, as:

Ll(R) =

N
∑

i=1

Gl(W̃i)Ll(Ĩi) , (3)

where Ĩi is defined as Ĩi(x) = Ii(fi(x)). The weights W̃i are obtained by multi-
plying the original weights w1

i from [15] (accounting for well-exposedness, color
saturation and contrast) at position fi(x) by a weight asserting the similarity
between x and fi(x). Similarly to what is done in the NL-means algorithm [7]
we define this similarity weight to be

w2
i (x) = exp

(

−
d(Pref (x), Pi(fi(x)))

2

σ2

)

, (4)

where σ is a parameter. The resulting weights are W̃i(x) = w1
i (fi(x))× w2

i (x).
In short, for a given pixel, the fusion is performed by using the most similar

pixels in each image of the sequence and by modulating the original weights of
the fusion by a similarity score.

2.3 Computing Pixel Similarity

Here, we detail how to compute the distance between patches. For this, images
acquired with different exposure settings (e.g. different exposure times) should
be comparable. In this paper, we assume that we have access to the linear RAW
images of the captured scene. This is not a real limitation in the common case of
embedded processing. When these RAW images are not available, other scenarios
are possible (such as matching all image histograms to the one of the reference
image, in a way similar to [12]), but these will not be investigated in this paper.

In addition to the processed images I1, . . . , IN (typically JPEG images after
demosaicking, white balance and gamma transform), we consider the correspond-
ing RAW (linear) images R1, . . . , RN . We assume that these have been acquired
with exposure times t1, . . . , tN . The luminance images can then be computed
as Li = gt−1

i (Ri − O), where O is the offset of the camera and g the gain (see
e.g. [2]). Without loss of generality, we will assume that g = 1 and that the
offset is known. The comparison of pixels is then carried out in the luminance
domain, so that the distance d between two patches Pi(x) and Pj(y) is defined
as the Sum of Squared Differences (SSD) between the values of the patches in
the respective luminance images Li and Lj , that is,

d(Pi(x), Pj(y)) =

s
∑

k=−s

(Li(x+ k)− Lj(y + k))2 · (5)



(a) (b)

Fig. 2. Image fusion: (a) non-local exposure fusion (NLEF), (b) exposure fusion [15].

If the camera offset is unknown, or in order to achieve results that are more
robust to spatial variability of the gain (photo response non-uniformity, PRNU)
or imprecision in the exposure time, the L2 distance can be replaced by a simi-
larity measure that is invariant to affine transforms of the luminance. Although
this aspect will not be developed here, we have observed that the affine invariant
distance proposed in [9] is very robust to errors in the luminance conversion.

2.4 Algorithm Details

First, the images are aligned through a global SIFT-based homography esti-
mation and bicubic interpolation. Although not necessary, we observed that this
step yields more reliable patch comparisons. A reference image is picked as in [12]
by choosing the image having the least number of saturated pixels. Then, sat-
urated regions in the reference are removed (see below). Second, and for each
pixel in the reference, its best match in image i is chosen using Formula (2)
and the similarity measure defined by (5). In order to accelerate the algorithm,
the best match is found using the PatchMatch algorithm [6], yielding, for each
patch of the reference image, an approximate nearest neighbor (ANN) in each
image Li. The PatchMatch algorithm is run with its default parameters, which
in particular implies that the search window N is the entire image.

The corresponding value of the final image is obtained by fusing the values of
the best matches using Formula (3). In this formula, the weights W̃i are obtained
by multiplying the original weight of [15] by the similarity weight defined by
Formula (4). The original weights from [15] depend on three exponents that we
all choose to be equal to 1. The parameter σ of the similarity measure (4) is
chosen as the quantile of level 5% of the distribution of the distances between
patches (separately for each couple Lref , Li). We empirically found this choice
to provide a reasonable compromise in order to simultaneously obtain a result
similar to the original algorithm from [15] and efficiently discard moving objects.

A last point that we did not explain is what to do with saturated pixels. We
could have chosen a strategy similar to the one of [12]: use only the non-saturated
pixels when comparing patches. However, this fails as soon as the saturated
region is wider than the patch, which is very common in practice. In order to
get more robust results, we use the same strategy as in [3]. For each connected



(a) Our Method - NLEF, (69
sec).

(b) Fusion with [12], (143 sec).

(c) Our Method - NLEF, (84 sec). (d) Fusion with [12], (116 sec).

(e) Our Method - NLEF, (184 sec). (f) Fusion with [12], (394 sec).

Fig. 3. Sets of bracketed exposure images and their fusion. (Third image set is courtesy
of EMPA Media Technology.)



region Ω of saturated pixels, we detect the region from the other images that is
the most similar to Ω on its immediate neighborhood (a ring outside Ω). This
region is then blended into the reference using Poisson editing [18].

3 Experiments

In all experiments (see Figure 3), we use a search window equal to the full image.
The patch size is set to s = 1 (that is 3× 3 patches).

First, as a sanity check, we compare the result of our method, NLEF (non-
local exposure fusion), with that of the original exposure fusion [15] on a static
scene with a moving object, from the database [1]. As we can see in Figure 2,
the results are very similar on static parts (everything except one object on the
table), but no ghost is produced with our method for the moving object.

Then, we provide three comparisons between our method and the recent
method from [12], using the code kindly provided by the authors. Since exposure
fusion does not aim at producing a real HDR image (a faithful representation
of the luminance values), we only provide visual comparisons. A full user study
would be the best way to evaluate the quality of the results [14] but is beyond the
scope of this paper. Both methods rely on PatchMatch to get patch correspon-
dences, and we use the same parameters for this algorithm in all experiments
and for the two approaches (full search over the complete image and patch size
of s = 1). The examples corresponding to Figures 3(a) and 3(c), are acquired
with a Canon 400D and Canon 7D camera, respectively, for which the offsets
are 256 and 2046. Images of these experiments, as well as other comparisons, are
included on the supplementary material.

In Figures 3(a) and 3(e), one can see that our method produces more accurate
colors. However, the color errors from [12] could probably be solved by taking into
account the luminance computed from linear images. Second, one observes that
both methods produce accurate details and no ghosts, with occasional artifacts
at different positions. However, our approach is both faster and much simpler,
and in particular involves no complex optimization procedure.

4 Conclusions

In this work, we have introduced a non-local exposure fusion yielding good re-
sults in the presence of camera shake and objects’ motions. There are several
ways this work could be continued. First, the saturated parts are handled us-
ing a Poisson editing procedure, but this step could probably be integrated in
the PatchMatch algorithm, at the propagation step. Second, the method may
produce noisy results, in particular when the reference image is noisy. We plan
to tackle this issue by using more patches for the fusion, in a way similar to
the NL-means algorithm. Last, similar non-local approaches could be studied in
different fusion schemes, for instance to perform focus stacking.
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