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We consider a magnetohydrodynamic flow in a cylindrical vessel caused by frequency-modulated magnetic field traveling along vertical axis in order to estimate the field impact on the flow parameters. To increase the impact efficiency and intensify transfer processes, we propose to generate non-stationary structures of auto-oscillatory type in the melt against the background of a convective flow, whose parameters are connected with the parameters of the modulated electromagnetic field. The forced convective flow generated in liquid metal contributes to its homogenization and can improve the structure obtained at the melt crystallization.

Introduction

Magnetohydrodynamic (MHD) impact on liquid metals and alloys is well known and widely used both in laboratory and in various technological processes. At the same time, the need to enhance the efficiency of such an impact remains important and requires some modifications and the development of new approaches. One of such approaches is the use of modulated rotating or traveling magnetic fields, where modulation parameters play the role of additional degrees of freedom in the generation of MHD flows. In particular, review [1] describes some MHD methods of exciting oscillations of various frequencies in molten metals with the transfer of forced vibrations into the solidifying melt, which contributes to the improvement of their structure. It is obvious that such vibrations introduced into the melt promote a decrease of the boundary layer thickness near the liquid-solid interface. It follows that it is possible to affect the boundary layer thickness, which, in turn, can serve as an effective tool for affecting the parameters of the melting process. Some aspects of such impact have been studied previously in [2], [3] where the oscillations in the melt were excited by modulated electromagnetic forces. The most important part of the research in the described area is setting a connection between the parameters of the modulated field and the generated MHD flow. In perspective, this will allow generating hydrodynamic structures required for solving technological problems, such as the intensification of melt stirring and its homogenization.

In the present study we examine the impact of frequency-modulated traveling magnetic field (TMF) along the vertical axis of a cylindrical vessel on the liquid metal contained therein. The possibility of MHD flow realization with time-dependent hydrodynamic structures of auto-oscillatory type arising in the melt against the background of a convective flow is analyzed.

Problem statement

We study a turbulent flow arising under the action of frequency-modulated TMF activated by an ideal inductor in a cylindrical vessel of a limited height. The electromagnetic part of the problem is described by dimensionless equations [3]:
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  is a height-radius of the cylinder aspect ratio; , , ff   are the carrier frequency, modulation frequency and frequency deviation,  is a pole pitch of the TMF inductor,
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Using the semi-empirical "external" friction model, we can describe the hydrodynamic flow by the following dimensionless equations [3], [4]:
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In the induction-free approximation ( 1   ) we can rewrite Eq. ( 1) as: 0 a   ,

and seek the solution to Eq. ( 3) in the form:
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Substituting ( 4) into (3), we obtain: Hence, the components of the magnetic induction are:
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and the electric current density:
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Consequently, the components of electromagnetic body force (EMBF):
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where the stationary part of this component is:
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We represent the stream function   as a sum of stationary   and time-dependent  components.

Substituting (10) into (2), we obtain two equations for determining   and  :
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with the boundary conditions:
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The term 2     in the equation (11) represents the contribution of molecular viscosity to the flow profile formation near the vessel sidewall. In the flow core, it is small in comparison with the terms describing turbulent and MHD effects and can be omitted. Then we get in the flow core:
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Stationary problem solution

We seek the solution of ( 14), ( 16) using Galerkin's method as:
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Substituting ( 17) into ( 14) and accomplishing the procedure of Galerkin's method, we obtain:
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Transient problem solution Now we examine transient processes arising in the melt under the action of frequency-modulated TMF.

The expression of the transient component ()
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The equation for a transient component of the stream function has the form:

2 Re 2 Ha rot t f              ( 20 
)
with the boundary conditions (16).

Rewriting the parameter  as 12 () t     , we obtain from Eq. (20): The experiments planned for the next stage of the research will clarify the optimal parameters of the described MHD impact.
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  where a  is the  -component of the vector potential a of the magnetic induction ( b rot a ),   is the  - component of the hydrodynamic stream function  ( ), u rot b and u are the vectors of magnetic induction and flow velocity, respectively,
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 11 Figure1gives examples of the flow streamlines in the stationary (a) and transient (b and c) cases. It is noteworthy that such temporal evolution of the streamlines is characterized by a change in their direction, i.e., due to frequency modulations of the TMF, hydrodynamic structures of auto-oscillatory type arise in the melt against the background of a convective flow. These oscillations can intensify mass and heat transfer processes in liquid metal, contribute to its homogenization and improve the structure obtained at the melt crystallization.
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