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Abstract 

We consider a magnetohydrodynamic flow in a cylindrical vessel caused by frequency-modulated magnetic field 

traveling along vertical axis in order to estimate the field impact on the flow parameters. To increase the impact 

efficiency and intensify transfer processes, we propose to generate non-stationary structures of auto-oscillatory 

type in the melt against the background of a convective flow, whose parameters are connected with the parameters 

of the modulated electromagnetic field. The forced convective flow generated in liquid metal contributes to its 

homogenization and can improve the structure obtained at the melt crystallization.  

Key words: Traveling magnetic field, liquid metal flow, cylindrical vessel, "external" friction model, frequency 

modulations, auto oscillations, transfer processes intensification.  

Introduction 

Magnetohydrodynamic (MHD) impact on liquid metals and alloys is well known and widely used both in 

laboratory and in various technological processes. At the same time, the need to enhance the efficiency of such an 

impact remains important and requires some modifications and the development of new approaches. One of such 

approaches is the use of modulated rotating or traveling magnetic fields, where modulation parameters play the 

role of additional degrees of freedom in the generation of MHD flows. 

In particular, review [1] describes some MHD methods of exciting oscillations of various frequencies in molten 

metals with the transfer of forced vibrations into the solidifying melt, which contributes to the improvement of 

their structure. It is obvious that such vibrations introduced into the melt promote a decrease of the boundary layer 

thickness near the liquid-solid interface. It follows that it is possible to affect the boundary layer thickness, which, 

in turn, can serve as an effective tool for affecting the parameters of the melting process. Some aspects of such 

impact have been studied previously in [2], [3] where the oscillations in the melt were excited by modulated 

electromagnetic forces. 

The most important part of the research in the described area is setting a connection between the parameters of the 

modulated field and the generated MHD flow. In perspective, this will allow generating hydrodynamic structures 

required for solving technological problems, such as the intensification of melt stirring and its homogenization.  

In the present study we examine the impact of frequency-modulated traveling magnetic field (TMF) along the 

vertical axis of a cylindrical vessel on the liquid metal contained therein. The possibility of MHD flow realization 

with time-dependent hydrodynamic structures of auto-oscillatory type arising in the melt against the background 

of a convective flow is analyzed. 

Problem statement  

We study a turbulent flow arising under the action of frequency-modulated TMF activated by an ideal inductor in 

a cylindrical vessel of a limited height. The electromagnetic part of the problem is described by dimensionless 

equations [3]: 
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where a  is the  - component of the vector potential a of the magnetic induction ( b rot a ),  is the  -

component of the hydrodynamic stream function  ( ),u rot b and u  are the vectors of magnetic induction 

and flow velocity, respectively,  / 2 sin2 / 2f f ft z t          , tA is a dimensionless linear current load, 
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are the carrier frequency, modulation frequency and frequency deviation,   is a pole pitch of the TMF inductor, 
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Using the semi-empirical "external" friction model, we can describe the hydrodynamic flow by the following 

dimensionless equations [3], [4]:  
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constants;  index "0" refers to characteristic values.       

In the induction-free approximation ( 1  ) we can rewrite Eq. (1) as: 

           0a  ,      (3) 

and seek the solution to Eq. (3) in the form:             
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Substituting (4) into (3), we obtain:     
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The solution to the problem (5) has the form:   1 0( ) ( ) / ( ),tr A I gr gI g     where 1/ 2 zg   ,  

whence it follows that:     
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Hence, the components of the magnetic induction are:  
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and the electric current density:  
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Consequently, the components of electromagnetic body force (EMBF): 
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Azimuthal component of rot f :     
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where the stationary part of this component is:  
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We represent the stream function   as a sum of stationary   and time-dependent  components. 

Substituting (10) into (2), we obtain two equations for determining    and  : 
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with the boundary conditions:  
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The term 2     in the equation (11) represents the contribution of molecular viscosity to the flow profile 

formation near the vessel sidewall. In the flow core, it is small in comparison with the terms describing turbulent 

and MHD effects and can be omitted. Then we get in the flow core: 
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Stationary problem solution 

We seek the solution of (14), (16) using Galerkin’s method as: 
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Substituting (17) into (14) and accomplishing the procedure of Galerkin's method, we obtain: 
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Transient problem solution 

Now we examine transient processes arising in the melt under the action of frequency-modulated TMF.  

The expression of the transient component ( )rot f t  is: 
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The equation for a transient component of the stream function has the form: 
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with the boundary conditions (16). 

 

Rewriting the parameter   as 1 2( )t    , we obtain from Eq. (20): 
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We seek the solution to the problem (21), (16) by Galerkin’s method in the form: 
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At the first step, it is assumed that      , and then the change as a function of time is considered.  

The solution of the problem is: 
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Figure 1 gives examples of the flow streamlines in the stationary (a) and transient (b and c) cases. It is noteworthy 

that such temporal evolution of the streamlines is characterized by a change in their direction, i.e., due to frequency 

modulations of the TMF, hydrodynamic structures of auto-oscillatory type arise in the melt against the background 

of a convective flow. These forced oscillations can intensify mass and heat transfer processes in liquid metal, 

contribute to its homogenization and improve the structure obtained at the melt crystallization. 

 
a)                                                         b)                                                          c) 

Fig. 1: Streamlines of stationary flow a) and transient flow b), c) in vertical cross-section of the cylindrical vessel 

at  80Ha   and modulation index / 2f f   . 

Conclusions 

Along with known advantages of MHD methods of impact on the molten metal in various technological processes, 

the results obtained in the work open new perspectives in the control of melt flow parameters. Changing the index 

of modulation frequency leads to energy redistribution in the spectrum of electromagnetic forces and to a 

transformation of the generated hydrodynamic structures. At the same time, there appears an opportunity, for 

example, to intensify the forced convection, accelerate the melting process and improve the melt homogenization, 

to suppress the dendrites growth during solidification and refine the final product quality. 

The experiments planned for the next stage of the research will clarify the optimal parameters of the described 

MHD impact. 
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