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Abstract
We provide a numerical analysis of three-dimensional free convection of a liquid in a Rayleigh-Bénard configuration,  
subject to a steady and uniform magnetic field, using the finite volume code Jadim. The influence of the Hartmann and  
Rayleigh  numbers  are  studied.  We compare  our  results  to  several  experimental  works.  As  suggested  by  previous 
experiments, the magnetic field tends to lower the heat transfer at the walls. This is caused by a significant alteration of 
the flow structures, due to the Lorentz force. For slightly overcritical Rayleigh numbers, two-dimensional rolls appear 
but the flow structure rapidly becomes three-dimensional as we increase the Rayleigh number. The magnetic field tends  
to destroy those structures and the transition to a 3D flow is delayed to higher values of the Rayleigh number, when the  
Hartmann number is increased. We show that the averaged heat transfer at the walls decreases, although it remains of  
the same order of magnitude. However the local structure of heat transfer is altered.
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Introduction
The Vulcano experiments are carried out at CEA (Commissariat à l'Energie Atomique) in Cadarache, in order to model 
the corium-concrete interaction, using induction heating of an electrically conducting liquid. In such experiments, the  
volumetric source of nuclear reactions is simulated by Joule effect, due to induced eddy currents in the liquid. In that  
case, the alteration of turbulent convection can take two aspects: (i) heating by Joule effect causing local buoyancy  
forcing,  and  (ii)  momentum forcing due  to  the  Lorentz  forces.  In  this  paper,  we focus on  the  second aspect,  by  
considering the free convection of a conducting liquid, subjected to a steady and uniform magnetic field. Our setting 
consists in a Rayleigh-Bénard convection configuration, which has been widely studied. It consists in a cavity heated 
from below and cooled from above. Chandrasekhar [1] theorised the onset of convection in the presence of a magnetic  
field.  Considering  two  infinite  horizontal  plates,  he  demonstrated  the  stabilising  effect  of  a  magnetic  field  on 
convection. Those results were confirmed by several experiments [2]-[5]. Globe & Dropkin [6] found a correlation 
between the Nusselt number  Nu and the Rayleigh  Ra and Prandtl  Pr numbers. This work is in agreement 
with the works of Rossby [2], Aurnou & Olson [3], Burr & Müller [4], [5]. The results from [2]-[5] have shown a 
reduction of heat fluxes in magnetoconvection, in comparison with ordinary thermoconvection. The reorganisation of 
the patterns can display a wide range of motifs in classical thermoconvection, depending on geometric properties and 
experimental conditions [7]. The structure in rolls has been observed in magnetoconvection, and they are more stable  
than in thermoconvection [8]. We first recall the linear stability analysis from Chandrasekhar [1], in order to assess the  
damping  of  the  convection  by  a  magnetic  field.  In  the  second  part  of  this  paper,  we  use  direct  numerical 

Fig. 1: Stable and unstable cases of a fluid layer heated from below, with 
an impressed magnetic field.



simulations (DNS) at overcritical Rayleigh numbers to analyse the modification of convective patterns and heat transfer 
by a vertical magnetic field. 

Linear stability analysis
The pioneer work of Chandrasekhar [1] permitted to understand the stabilising effect of a magnetic field on thermal  
convection. He considered two infinite horizontal plates, maintained at a low temperature T c for the bottom plate and 
a high temperature T h for the upper plate, and separated from a distance e . In addition, a magnetic field B0 e z  is 
impressed,  e z  being the direction of the gravity, as described in Fig.  1a. If the temperature gradient is low enough, 
steady conduction will take place. As we increase the temperature gradient over a critical value, convection rolls (or  
more generally, patterns) will appear, as described in Fig. 1b. 
The base state is defined by the absence of motion, a constant temperature gradient and a steady, uniform magnetic  
field.  The linearisation around the base state of the momentum, heat  and induction equations,  gives the following 
equations [1]:
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In the previous equations, we use a viscous velocity scale u0=ν/e  as the reference velocity. In those equations, w , 
θ ,  b z  are  dimensionless  and represent  the  vertical  component  of  velocity,  the  temperature  perturbation and  the 

vertical component of the magnetic field perturbation. The first equation is the vertical component of the curl of the  
vorticity equation. The symbol Δ represents the Laplace operator. The dimensionless parameters that appear are the 
Rayleigh number  Ra , the Hartmann number  Ha and thermal and magnetic Prandtl numbers,  Pr  and  Pm . 
They are defined as follow:

Ra=
gβ(T h−T c )e

3

να , Ha=B0 e√ σ
ρν , Pr= ν

α , Pm=μ0 σν , (2)

with ν  and α  the fluid kinematic and thermal diffusivity, β  is the thermal expansion coefficient, ρ  its density, σ  
its electrical conductivity, and μ0  is the magnetic permeability of vacuum. We can notice that Pr and Pm only 
depend on physical properties. Assuming plane wave perturbations  χ=Χ(z)exp (i (k x x+k y y)+st)  ( χ  standing for 
w , θ or bz , and Χ(z)  its amplitude) and focusing on the marginal stability s=0  (i.e. the onset of convection), 

Chandrasekhar [1] shows that the number of cells (given to a multiplicative constant by the norm of the wavenumber 
k=√k x

2+k y
2 ) increases with the Hartmann number, as well as the critical value of Ra . The convective motion appears 

Fig. 2: Marginal stability curves for different Hartmann 
numbers. The minimum of each curve gives the critical 
values Ra crit  and k crit .

Fig. 3: Critical values of the Rayleigh number Racrit  as 
a function of the Hartmann number.



for Ra>Ra crit , and k crit  is the wavelength of the unstable mode. Figure 2 shows that both Ra crit  and k crit  increase 
with Ha . For Rayleigh numbers below its critical value, the heat transfer will only be conductive, as shown in Fig. 3. 
But even at overcritical  Ra ,  convection and heat transfer is altered when  Ha  is high enough. For  Ha≫1 , the 
critical Rayleigh scales as Racrit∼π

2 Ha2 . Therefore our numerical simulations focus on overcritical Rayleigh numbers.

Description of the numerical problem
The Jadim code [9] solves the Navier-Stokes equations, the heat transport equation and the continuity equation, using a 
Runge-Kutta scheme for temporal integration and a semi-implicit Crank-Nicolson scheme is used for the viscous terms.  
The pressure is solved using a projection method. For our study, we added the Lorentz force, assuming a steady and  
uniform magnetic field B=B0e z , parallel to the gravity. The Lorentz force yields:

F L= j×B0=σ(u×B0)×B0 . (3)

In the results presented below, the effect of the Joule dissipation is not taken into account. Simulations with the Joule 
dissipation have shown no significant effect of Joule heating in this situation.
We consider a rectangular cavity, filled with Gallium, whose dimensions are  L×l×e=0.20 m×0.10 m×0.02 m . The 
computational grid is composed of Nx× Ny × Nz=256 ×128 ×64  regularly spaced points. The temperature is imposed 
on the lower and upper walls, with a temperature T c on the upper wall and a temperature T h on the lower wall, so that 
T h−T c>0 . We consider all vertical walls to be insulated. The initial conditions are a uniform temperature, set as T c . 

At t=0 , we impose the temperature T h  on the lower plate.

Flow structures
At the onset of the instability both with Ha=18  and with Ha=0 , and for the same Ra , convection sets in in the 
form of cells. In a magnetic field, they later reorganise to form unsteady convection rolls. On the other hand without 
magnetic field, three-dimensional patterns are still observed. If we continue to increase Ra , even with Ha=18 , 3D 
patterns will appear. Figure 4 shows the different patterns that were obtained through simulations.

Without  or  with  a  purely  vertical  magnetic  field,  the  onset  of  convection  is  in  the  form  of  cells,  as  stated  by  
Chandrasekhar [1]. For Rayleigh numbers near the critical  value  Ra c ,  the cells wills merge into convection rolls. 
However, for high enough overcritical Ra , the patterns remain three-dimensional. Those results are in agreement with 
Chandrasekhar's theory and recent experimental [8] and numerical [7] works.

Heat transfer
The heat transfer is of primary importance in our study, since the heat transfer coefficient  is proportional to the ablation 
rate of the concrete in the Vulcano experiments. The local and averaged heat transfer coefficients h  and h̄ are defined 
as:
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We define as well the non-dimensional heat transfer coefficient, called the Nusselt number, as:
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The simulations show that the repartition of the Nusselt number at walls follows the same repartition as the convective  
patterns, as shown in Fig. 5. On the other hand, the averaged Nusselt number on the walls remains of the same order of 
magnitude, whether there is a magnetic field or not. This result is of importance for the comprehension of the Vulcano  
tests.  We summed up our results in Fig.  6, that also displays the experimental correlations of Rossby [2], Aurnou & 

Fig. 4: Instantaneous snapshots of vertical velocity in the mid-plane z=e /2 , normalised by its maximal value (white is 
positive and black is negative). The values of  Ra  and Ha  were (from left to right): (i)  Ra=5⋅104 ,  Ha=0 , (ii) 
Ra=5⋅104 , Ha=18  (iii) Ra=1.5⋅105 , Ha=18 .



Olson [3], Globe & Dropkin [6]. The next step of this work is the design of an experimental test-rig. 

Conclusion and perspectives
Those results confirm the tendency of a steady magnetic field to stabilise a thermoconvective flow. It significantly  
modifies  the  flow  structures  and  reorganise  it  in  rolls.  On  the  other  hand,  the  averaged  heat  transfer  is  slightly  
decreased. In the Vulcano experiments, another interesting question is what happens in an AC magnetic field. Indeed, 
the Joule dissipation generates local source terms, which is susceptible to modify the onset of convection on one hand, 
and the flow dynamics and heat transfer on the other hand.
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Fig. 6: Nusselt number as a function of the Rayleigh number for Ha=0 and Ha=18 .

Fig.  5: Instantaneous local Nusselt number at the top walls for (from left to right):  Ra  and  Ha  were (from left to 
right): (i) Ra=5⋅104 ,  Ha=0 , (ii) Ra=5⋅104 , Ha=18  (iii) Ra=1.5⋅105 , Ha=18 .


