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Abstract. The use of compactly supported wavelet functions has become increasingly popular in the 
development of numerical solutions for differential equations, especially for problems with local high 
gradient. Daubechies wavelets have been successfully used as base functions in several schemes like 
the Wavelet-Galerkin Method, due to their compact support, orthogonality, and multi-resolution 
properties. Another advantage of wavelet-based methods is the fact that the calculation of the inner 
products of wavelet basis functions and their derivatives can be made by solving a linear system of 
equations, thus avoiding the problem of approximating the integral by some numerical method. These 
inner products were defined as connection coefficients and they are employed in the calculation of 
stiffness, mass and geometry matrices. In this work, the Wavelet-Galerkin Method has been adapted 
for the direct solution of differential equations in a meshless formulation. This approach enables the 
use of a multiresolution analysis. Several examples based on differential equations for beams and 
plates were studied successfully. 
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1 INTRODUCTION 

The use of wavelet-based numerical schemes has become increasingly popular in the last 
two decades,. Wavelets have several properties that are especially useful for representing 
solutions of differential equations (DE’s), such as orthogonality, compact support and exact 
representation of polynomials of a certain degree. Their capability of representing data at 
different levels of resolution allow the efficient and stable calculation of functions with high 
gradients or singularities, which would require a dense mesh or higher order elements in a 
Finite Element analysis (Qian and Weiss, 1992).  

A complete basis of wavelets can be generated through dilation and translation of a mother 
scaling function. Although many applications use only the wavelet filter coefficients of the 
multiresolution analysis, there are some which explicitly require the values of the basis 
functions and their derivatives, such as the Wavelet Finite Element Method (WFEM) (Ma et 
al., 2003). 

Compactly supported wavelets have a finite number of derivatives which can be highly 
oscillatory. This makes the numerical evaluation of integrals of their inner products difficult 
and unstable. Those integrals are called connection coefficients and they appear naturally 
when applying a numerical method for the solution of a DE. Due to some properties of 
wavelet functions, these coefficients can be obtained by solving an eigenvalue problem using 
filter coefficients. 

The most commonly used wavelet family is the one developed by Ingrid Daubechies 
(1988). All the mathematical foundation for the wavelet theory was formulated for 
Daubechies wavelets and then extended to other families. 

Working with dyadically refined grids, Deslauriers and Dubuc (1989) obtained a new 
family of wavelets with interpolating properties, later called Interpolets. Unlike Daubechies 
wavelets, Interpolets are symmetric, which is especially interesting in numerical analysis. The 
use of Interpolets instead of Daubechies wavelets considerably improves the method’s 
accuracy (Burgos et al., 2008). 

The use of wavelets as interpolating functions in numerical schemes such as the Galerkin 
Method holds some promise due to their multiresolution properties. Accuracy can be 
improved by increasing either the level of resolution or the order of the wavelet used. For 
detection of singularities, the increase in the level of resolution seems to work better. 

Two examples were used for validating the proposed method in a one-dimensional scheme. 
First, a beam with a concentrated load was used to test the method’s ability to capture 
singularities. In a second example, the critical loads and buckling modes of a doubly clamped 
beam were calculated at different levels of resolution. In order to evaluate the method’s 
capability to solve two-dimensional problems, it was then applied for a thin plate with 
excellent results. 

2 WAVELET THEORY 

Multiresolution analysis using orthogonal, compactly supported wavelets has been 
successfully applied in numerical simulation. Wavelets are localized in space, which allows 
local variations of the problem to be analyzed at various levels of resolution. In the following 
expression, known as the two-scale relation, ak are the filter coefficients of the wavelet scale 
function ϕ and N is the wavelet order. 
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In general, there are no analytical expressions for wavelet functions, which can be obtained 
using iterative procedures like Eq. (1). In order to comply with the requirements of 
orthogonality and compact support, wavelets present, in general, an irregular fractal-like 
shape. Figure 1 shows Daubechies wavelets at four different orders. It’s evident that the 
higher the order of the wavelet, the greater its smoothness. 

Figure 1: Daubechies Wavelets: (a) N = 4, (b) N = 6, (c) N = 8, (d) N = 10 

2.1 Wavelet properties 

The set of properties summarized in Eq. (2) is valid for Daubechies wavelets but can be 
adapted to other wavelet families, such as Delaurier-Dubuc Interpolets. Some of these 
properties, like compact support and unit integral, are required for the use of the wavelet 
family in numerical methods. Others, like orthogonality, are desirable but not extremely 
necessary. 
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The last expression in Eq. (2) derives from the vanishing moments property, which states 
that a set of shifted and scaled Daubechies wavelets of order N is capable of representing 
exactly an N/2 − 1 degree polynomial. 

2.2 Wavelet Derivatives 

In the process of solving a DE using numerical methods, derivatives of the basis functions 
tend to appear. As there is no analytical expression for wavelets, derivatives are obtained in 
dyadic grid points and the refinement of the solution depends on the level of resolution 
needed (Lin et. al, 2005). The scale relation can be differentiated d times, generating the 
following expression: 
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Applying Eq. (3) to integer points results in the following system of equations shown in 
matrix form. In Eq. (4), A represents the filter coefficients matrix, I is the identity matrix and 
Γ(d) is the vector containing derivative values at integer points of the grid. 
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Eq. (4) is an eigenvalue problem which, for unique solution, has to be normalized using the 
so-called moment equation, derived from the wavelet property of exact polynomial 
representation. This equation is given by Latto et al. (1992) and provides a relation between 
derivative values at integer points. 

1
( )

0

1 1

01
0 0 0

! ( ),

1 .
2 2

N
d d
i

i

j k N
j j k l k l

i ij
k l i

d M x i

j k
M i M a i

k l

ϕ
−

=

− −
− −

+
= = =

= −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑

∑ ∑ ∑
(5)

Once the derivative is obtained at integer values, the scale relation can be applied for any 
x = k/2j. 
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2.3 Connection Coefficients 

Assuming that a function f is approximated by a series of interpolating scale functions, the 
following may be written: 

( ) ( ).k k
k

f ξ α ϕ ξ=∑ (7)

The process of solving a differential equation by some numerical method requires the 
calculation of the inner products of the basis functions and their derivatives. These inner 
products are defined as connection coefficients (Γ): 
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The values for the limits of the integral in Eq. (8) depend on which method is used to 
impose boundary conditions. In this work, the limits are given by [0 2m], where m is the 
wavelet level of resolution. This method allows the use of Lagrange multipliers to deal with 
boundary conditions, similarly to what is usually done in a meshless scheme (Nguyen et al., 
2008). Connection coefficients at level m can be obtained through the calculation at level 0, 
thus avoiding its recalculation while increasing the level of resolution. Wavelet dilation and 
translation properties allow the calculation of connection coefficients within the interval [0 1] 
to be summarized by the solution of an eigenvalue problem based only on filter coefficients 
(Zhou & Zhang, 1998). 
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Since Eq. (9) leads to an infinite number of solutions, there is the need for a normalization 
rule that provides a unique eigenvector. This unique solution comes with the inclusion of an 
adapted version of the moment equation mentioned before (Latto et al., 1992). 
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2.4 Delauriers-Dubuc Interpolets 

The basic characteristics of interpolating wavelets require that the mother scaling function 
satisfies the following condition (Shi et al., 1999): 

0,

1, 0
( ) , .

0, 0k

k
k k

k
ϕ δ

=⎧
= = ∈⎨ ≠⎩

] (11)

The filter coefficients for Delauriers-Dubuc Interpolets can be obtained by an 
autocorrelation of the Daubechies filter coefficients. Interpolets satisfy the same requirements 
as other wavelets, specially the two-scale relation, which is fundamental for their use as 
interpolating functions in numerical methods. Figure 2 shows the Interpolet IN6 
(autocorrelation of DB6, Daubechies wavelet of order 6). Its symmetry and interpolating 
properties are evident. There is only one integer abscissa which evaluates to a non-zero value.  
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Figure 2: Interpolet IN6 scaling function with its full support 
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All expressions used for the calculation of derivatives, connection coefficients and 
moments of Daubechies wavelets can be applied to Interpolets. Of course, due to the 
correlation, the support [0 N−1] in the expressions for Daubechies becomes [1−N N−1] for 
Interpolets. 

3 WAVELET-GALERKIN METHOD 

The numerical solution of differential equations is one of the possible applications of the 
wavelet theory. The Wavelet-Galerkin Method (WGM) results from the use of wavelets as 
interpolating functions in a traditional Galerkin scheme. In the following sections, the WGM 
will be applied to solve typical DE’s for structures like beams and plates. 

3.1 Beam subjected to axial load 

The equation of a beam subjected to an axial load is given by: 
4 2
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Stiffness and geometry matrices can be obtained by substituting the displacement w by a 
series of interpolating functions. Adimensional coordinates ξ within the interval [0 1] are used 
in wavelet space, leading to the subsequent expressions: 
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As done in the Finite Elements Method (FEM), the critical loads and buckling modes can 
be obtained by solving an eigenvalue problem of the form:  
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where the matrix G is associated with boundary conditions and λ is a vector of Lagrange 
multipliers. The main difference in relation to the FEM is that the unknowns in vector α are 
the interpolating coefficients of the basis functions instead of nodal displacements. In fact, 
there is no need to establish nodal coordinates. 

3.2 Thin Plate 

The bending of a thin plate with thickness t is modeled by the following DE: 
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Displacement w(x,y) is modeled using bi-dimensional wavelets, which are products 
between one-dimensional wavelets: 
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As done in a tradicional Galerkin approach, Eq. (16) is substituted in the DE and 
integrated, leading to a system of equations which contains the wavelets’ connection 
coefficients (Chen et al., 2004). 
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The symbol ⊗  indicates Kronecker product. The system is solved using the stiffness 
matrix provided by Eq. (17) and imposing essential boundary conditions with Lagrange 
multipliers as done before for one-dimensional DE’s. 

4 EXAMPLES 

Figure 3 shows a simple example of a beam subjected to a concentrated load at its 
midpoint. This example was formulated in order to verify the ability of the wavelet method to 
deal with singularities, since the load generates a discontinuity in the shear force diagram. 

Figure 3: Beam with concentrated load 

This example is easily solved by dividing the beam in two elements and applying the load 
as a nodal force. In this work, since degrees of freedom don’t have a fixed position, the load is 
transformed into the wavelet space: 
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The example was solved using the IN8 Interpolet at different levels of resolution and the 
results for bending moment and shear force diagrams are shown in Figures 4 and 5. 

It is clear that higher levels of resolution are necessary in order to capture the singularity 
that occurs where the load is applied. Nevertheless, results are considerably good, since the 
solution is obtained in wavelet space and no discretization was performed. The discontinuity 
in the slope of the bending moment is captured even for a low level of resolution. 

In a second example, critical loads for a doubly clamped beam were obtained by solving an 
eigenvalue problem using stiffness and geometry matrices, as in Eq. (14). Results at different 
levels of resolution are shown in Table 1. All values are normalized by 2/EI L . Figure 6 
shows the shape of the first three buckling modes obtained for the mentioned example. 
Results were normalized. 
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Figure 4: Bending moment using IN8 
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Figure 5: Shear force using IN8 

MODE Nº. EXACT LEVEL 0 LEVEL 2 LEVEL 4 LEVEL 6 
1 39.4784 39.4788 39.4788 39.4784 39.4784 
2 80.7629 81.7817 80.7779 80.7629 80.7629 
3 157.9137 159.1386 158.6607 157.9145 157.9137 

Table 1. Critical loads obtained at different levels of resolution for a doubly clamped beam 

The same example was analyzed using the IN6 Interpolet in order to verify the sensitivity 
to wavelet order. Figure 7 shows the relative error obtained for the third critical load at 
different levels of resolution for each Interpolet. 
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Figure 6: Buckling modes for the doubly clamped beam 
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Figure 7: Relative error in third critical load at different levels of resolution 

Finally, to test the possibility of extending the method to two-dimensional problems, a thin 
plate was modeled using the equations developed in previous sections. Figure 8 shows a 
square plate with all edges clamped subjected to a concentrated load applied at its center.  

The plate was modeled using the IN6 Interpolet at level 3, leading to a total number of 289 
degrees of freedom. The result for the central displacement was w = −0.00557 PL2/D which 
represents an error of 0.5% when compared to the exact solution w = −0.00560 PL2/D. 
Results were extremely good, considering that a FE mesh using 32x32 plate elements with 12 
degrees of freedom each gives an error of 0.7% in the central displacement. 

Figure 9 shows the results for the bending moments Mx, My and the twisting moment Mxy. 
Displacements and moments distribution were obtained using the wavelet’s second 
derivatives. The errors in the bending moments Mx and My at the center point were 4%. 
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Figure 8: Clamped plate subjected to a concentrated load at the center 

Figure 9: Results for moments Mx, My, Mxy and displacement w 

Different types of boundary conditions and loadings were tested for a square plate and the 
values obtained for central displacement are summarized in Table 2. Results were compared 
with exact solutions given by Timoshenko and Woinowsky-Krieger (1959). 
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Boundary Conditions  
and Loading Type Exact WGM Error

Clamped / Uniform 40.00126 qL D  40.00126 qL D  0.4 % 

Clamped / Concentrated 20.00560 PL D 20.00557 PL D  0.5 % 

Simply Supported / Uniform 40.00406 qL D  40.00406 qL D  0.1 % 

Simply Supported / Concentrated 20.01160 PL D 20.01156 PL D 0.3 % 

Table 2: Results for different types of boundary conditions and loadings 

5 CONCLUSIONS 

This work presented the formulation and validation of the Wavelet-Galerkin Method using 
Deslauriers-Dubuc Interpolets. It was also shown that wavelets have the ability of capturing 
discontinuities without the need to place nodes where they occur.  

As in the traditional FEM and other numerical methods, the accuracy of the solution can be 
improved either by increasing the level of resolution or the wavelet order. Sometimes, lower 
order wavelets at higher resolution can give better results than higher order wavelets at lower 
resolutions. 

For two-dimensional problems, results for displacements and bending moments were 
extremely good, although only regular geometry problems were studied. The extension of the 
method to irregular geometries is still a challenge.  

Since the unknowns of the method are interpolation coefficients instead of nodal 
displacements, it is possible to obtain a smooth representation of bending moments even with 
a reduced number of degrees of freedom.  

All matrices involved can be stored and operated in a sparse form, since most of their 
components are null, thus saving computer resources. Due to the compact support of 
wavelets, the sparseness of matrices increases along with the level of resolution. 

REFERENCES 

Burgos, R. B., Cetale Santos, M. A. and Silva, R. R., The use of wavelets and interpolets as 
interpolating functions in a Finite Element analysis, Proceedings of the 29th CILAMCE - 
Iberian Latin American Congress on Computational Methods in Engineering, 2008. 

Chen, X., Yang, S., Ma, J. and He, Z., The construction of wavelet finite element and its 
application, Finite Elements in Analysis and Design, 40: 541–554, 2004. 

Daubechies, I., Orthonormal bases of compactly supported wavelets, Communications in Pure 
and Applied Mathematics, 41: 909-996, 1988. 

Deslauriers, G. and Dubuc, S., Symmetric iterative interpolation processes, Constructive 
Approximation, 5: 49-68, 1989. 

Latto, A., Resnikoff, L. and Tenenbaum, E., The evaluation of connection coefficients of 
compactly supported wavelets, Proceedings of the French-USA Workshop on Wavelets and 
Turbulence, 76-89, 1992. 

Lin, W., Kovvali, N. and Carin, L., Direct algorithm for computation of derivatives of the 
Daubechies basis functions, Applied Mathematics and Computation, 170: 1006-1013, 2005. 

Ma, J., Xue, J., Yang, S. and He, Z., A study of the construction and application of a 
Daubechies wavelet-based beam element, Finite Elements in Analysis and Design, 39: 965–
975, 2003. 

11



Nguyen, V. P., Rabczuk, T., Bordas, S. and Duflot, M., Meshless methods: a review and 
computer implementation aspects, Mathematics and Computers in Simulation, 79: 763-813, 
2008. 

Qian, S and Weiss, J., Wavelets and the numerical solution of partial differential equations, 
Journal of Computational Physics, 106: 155-175, 1992. 

Shi, Z., Kouri, D. J., Wei, G. W. and Hoffman, D. K., Generalized symmetric interpolating 
wavelets, Computer Physics Communications, 119: 194-218, 1999. 

Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells, McGraw-Hill, 
1959. 

Zhou, X. and Zhang, W., The evaluation of connection coefficients on an interval, 
Communications in Nonlinear Science & Numerical Simulation, 3: 252-255, 1998. 

12




