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Angles Between Euclidean Subspaces 

SHENG JIANG 
Department of Mathematics, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China. 

Abstract. The angle between two subspaces of dimensions p and q in a Euclidean space is considered 
by using exterior algebra. Some properties of angles are obtained. The relation between such a 
higher dimensional angle and the usual principal angles is also given. And finally, an application to 
Grassmann manifolds is briefly discussed. 

Mathematics Subject Classifications (1991): 51M05, 51Ml6, 51K05. 
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The trigonometry in a higher-dimensional Euclidean space has been studied by 
several authors. Doband [1] proved the generalized law of cosines, the Pythagore
an theorem and the Heron formula for n-simplices in a Euclidean space by means 
of determinants. Eriksson [2] generalized the law of sines. S.-Y. T. Lin and Y.-F. 
Lin [3] gave a new approach of the n-dimensional Pythagorean theorem. And, 
Miao and Ben-Israel [ 4] established some new properties for the principal angles 
between subspaces in a Euclidean n-space. These principal angles have an impor
tant application in statistics to the canonical correlation theory of Hotelling [ 5]. 

In this paper we will consider the angle between two subspaces in an n
dimensional Euclidean space En, derive some new properties, find the relation 
between the higher dimensional angle and the principal angles of two subspaces, 
and briefly discuss an example of application to the geometry of Grassmann man
ifolds. 

1. Preliminaries 

For convenience, we will use exterior algebra for computations, it makes the results 
clear and the proofs simpler. In this section we briefly state some basic facts about 
exterior or Grassmann algebra which are needed in our paper; for details see, for 
example, Bourbaki [6, ch. 3], or Flanders [7, ch. 2]. 

Let En be an n-dimensional real linear space endowed with a Euclidean inner 
product. For two vectors a and b, denote by a · b their inner product. 

The symbol l'l En denotes the linear space consisting of all linear combinations 
with real coefficients of wedges of p vectors in En, 1 :::; p :::; n. Elements of f\P En 
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are called p-vectors over En. A p-vector is said to be simple or decomposable, if it 
can be decomposed as a single wedge of p vectors in En. 

An induced product in f\P En can be naturally introduced as follows. 
For a pair of p-vectors 

define 

(a, (3) = det (ai · bj)· 

We can prove the following 

LEMMA 1. The linear space f\P En endowed with ( , ) is a Euclidean space. 
Proof Choosing in En an orthonormal basis { ej}, j = 1, 2, ... , n, we get in 

f\P En an induced orthonormal basis { E K}, J( = 1, 2, ... , (;), where the E K 's 
are the wedges of p different vectors ej (see Flanders [7, p. 14]). An arbitrary 
p-vector a can be decomposed as 

where the )..K's are real scalars. So 

Hence for any a E f\P En, (a, a) = 0 if and only if a = 0. Consequently (,) 
defines a Euclidean inner product. 0 

COROLLARY. For arbitrary a, (3 E N En, we have 

(a, a) ((3, (3) ~ (a, (3)2 , 

where equality holds if and only if a differs from (3 only in a scalar factor. 

Remark. The length of a p-vector a is defined by 

a = 0 if and only if Ia I = 0. 

2. Higher Dimensional Angle 

Let a = a 1 1\ a2 1\ · · ·I\ ap be a nonzero decomposable p-vector. Then a corresponds 
to a p-dimensional subspace AP of En spanned by a1, a2, ... , ap. Conversely, for 
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any basis of the vector subspace AP, the wedge of basis vectors equals ka, where 
k is a nonzero real number. 

Further, suppose that 1 ::; p ::; q < n, and 

(1) 

(2) 

If A and B are the subspaces corresponding to a and {3, respectively, and BJ.. is 
the orthogonal complement of B in En, then we have 

where 

af E B, aj E BJ.., j = 1,2, ... ,p. 

Put 

= a [I /\ a!f /\ · · · /\ aff, 

av v v v = a1 /\ a2 /\ · · · /\ aP , 

aM = a - aH - av. 

Then we have a decomposition 

a = aH + av +aM, (3) 

where aH, av and aM are called the horizontal, vertical and mixed parts, respec
tively, of a. By direct computation, we get the following lemmas. 

LEMMA 2. The decomposition (3) is invariant under transformations of basis in 
subspace A. Precisely, if in the linear subspace A we choose another basis {an, 
we have the corresponding p-vector a' and projections a'rr, a~ and a~, and 

a'= ka, a'rr = kaH , a~= kav , a~= kaM 

for some nonzero scalar k. 

LEMMA 3. (a, aH) 2:0, where equality holds if and only ifaH = 0. 

3



Proof One easily verifies that 

(aH, av) = (aH, aM) = (av, O:'M) = 0. 0 

DEFINITION. The angle(} between subspaces AP and Bq,p ~ q, is defined by 

Ia HI 
(}=arccos~· (4) 

Remark 1. The concept of the p-dimensional angle defined above is a natural 
generalization of classical angles such as the angles between two lines, a line and 
a plane, and between two planes. By Lemma 4, it is clear that(} is real and satisfies 

0 ~ (} ~ 7r/2; 

further, (} = 1r /2 if and only if the subspace A is orthogonal to B. 

Remark 2. Whenp = q, formula (4) can be written as 

l(a,,B)I 
(} = arccos lal . 1!31' 

In this case, the p-dimensional angle(} between two decomposable p-vectors a and 
,8 over En is equal to the usual Euclidean angle between a and ,8 as two vectors in 
the induced Euclidean space f\P En. 

3. First Properties 

Using the projection O:'H, we can easily generalize some well-known properties of 
usual angles to the higher dimensional case as follows. 

THEOREM 1 (Reducibility). Let A and B be subspaces of En with dimensions p 
and q, respectively, where 1 < p ::::; q < n. Suppose that A n B f= {0}, and that 
the orthogonal complements of A n B in A and in B are A' and B', respectively. 
Then the angle between A and B is equal to the angle between A' and B'. 

THEOREM 2 (Three cosines). Suppose that 1 ~ p < q < n, AP and Bq are 
subspaces of En with dimensions p and q, respectively, and AP is not orthogonal to 
Bq. Suppose CP is the projection of AP in Bq, and DP is an arbitrary p-dimensional 
subspace of Bq. Denote by()',() and <P the angles between AP and DP, AP and Bq, 
and CP and DP, respectively. Then 

cos ()' = cos() cos ¢. 

Proof Let a and 8 be the p-vectors corresponding to AP and DP, respectively. 
Denote by O:'H, av and aM the horizontal, vertical and mixed parts, respectively, 
of a with respect to Bq. Then aH corresponds to CP, and we have 
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Hence 

cosO'= l(a,<5)1 _l(aH,<5)1 
lal · 1<51 lal · 1<51 
laHI l(aH,<5)1 

= ~ . laHI · 1<51 
= cos(} cos </J. 0 

COROLLARY (Minimum). Suppose AP and Bq are subs paces of En with dimen
sions p and q, respectively, 1 :::; p < q < n. Then the angle (} between AP and 
Bq equals the minimum of the angle between AP and an arbitrary p-dimensional 
subspace DP of Bq. 

4. Further Properties 

Now we consider some more interesting properties of higher dimensional angles. 

THEOREM 3 (Triangle inequality). Let A, B and C be three different p
dimensional subspaces of En, 1 < p < n. Denote by (} AB, (} AC and (} BC the 
angles between A and B, A and C, and B and C, respectively. Then 

(5) 

Equality in (5) holds if and only ifdim(AnBnC) = p-1 and the !-dimensional 
orthogonal complements A', B' and C' of An B n C in A, B and C, respectively, 
lie in one and the same plane and B' is placed in the smaller pair of vertical angles 
formed by A' and C'. 

Proof Denote N = dim f\P En. Let SN -l be the unit hypersphere in f\P En. 
Identifying opposite points of sN - 1, we obtain an elliptic space :EN - 1. Three 
different p-dimensional subspaces A, B and C of En correspond to three different 
points A*, B* and C* in :EN - 1 . Then (} AB, (} BC and (} AC equal the distances 
between the points A* and B*, B* and C*, and A* and C*, respectively. Since :EN - 1 

is a metric space (see, for example, Blumenthal [8]), inequality (5) is obtained. 
For equality to hold in (5), it is necessary and sufficient that the point B* lies 

on the metric segment A* C*. So there exist nonzero scalars h and k such that 

f3 = ha+ k1, 

where a, f3 and 1 are the decomposable p-vectors corresponding to the subspaces 
A, Band C, respectively. Since f3 is decomposable, we have 

/3 1\ y = 0, y E B, 

and hence 

ha/\y+k!/\y=O, yEB. (6) 
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Denoting 

r =dim( An B n C), 

from fJ = ha + k1 we get 

dim( An C) = r. 

Let A', B' and C' be the orthogonal complements of An B n C in A, Band C, 
respectively. Then 

dimA' =dimE'= dimC' = p- r, 

A' n C' = A' n B' = B' n C' = { 0}. 

Denote by a', (3' and 1' the (p- r )-vectors corresponding to A', B' and C', respec
tively. From (6) it follows that 

ha' 1\ y' + k1' 1\ y' = 0, y' E B'. 

One can choose a basis in En (which is not orthogonal in general) such that 

a' = a e1 1\ · · · 1\ ep-n I 
/ = Cep-r+l 1\ · · · 1\ e2p-2r, 

where a and c are nonzero scalars. The vector y' can be decomposed as follows: 

p-r p-r n-2p+2r 

Y
1 = L Uiei + L Vjep-r+j + L Wte2p-2r+t· 

i==l j==l t=l 

So we obtain 

p~ ~r 

haL VjCI 1\ · · · 1\ ep-r 1\ ep-r+j + kc L Uiep-r+I 1\ · · · 1\ e2p-2r 1\ ei+ 
j=l i=l 

=0. 

n-2p+2r 

+ha L Wtel 1\ · · · 1\ ep-r 1\ e2p-2r+t+ 
t=l 

n-2p+2r 

+kc L Wtep-r+I 1\ · · · 1\ e2p-2r 1\ e2p-2r+t 
t==l 

Ifr < p- 1, thenp- r 2: 2, we will get 
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for all i,j and t. But y' 1= 0 and A' n B' = B' n G' = {0}, so we must have 
h = k = 0, which is impossible by assumption. Therefore we get 

dim( A n B n G) = p - 1. 

Consequently, by Theorem 1, (JAB, (J AC and (J BC are equal to the angles between 
A' and B', A' and G', and B' and G', where A', B' and G' are the !-dimensional 
orthogonal complements of An B n C in A, Band G, respectively. The rest of 
the proof is trivial. o 

THEOREM 4 (Complement). Suppose AP and Bq are subspaces of En with 
dimensions p and q, respectively, 1 :::; p < q < n, p :::; n - q, Bj_ the orthogonal 
complement of Bin En. Denote by (J and (Jj_ the angles between A and Band 
between A and Bj_, respectively. Then 

cos2 (J + cos2 (Jj_ < 1 - ' (7) 

where equality holds if and only if either p = 1 or (J(Jj_ = O(p > 1 ). 
Proof Inequality (7) follows from decomposition (3) and Lemma 4. Equality 

in (7) holds if and only if 

C'tM = 0. 

This occurs if and only if either p = 1, or p > 1 and a = a H or a = av. o 

Theorems 3 and 4 show some of the differences between the cases of higher and 
lower dimensions. 

5. Principal Angles 

Let AP and Bq be subspaces of En with dimensions p and q, respectively, 1 :::; p:::; 

q < n. The principal angles between AP and Bq, 0 :::; fh :::; 02 :::; · · · :::; (}P :::; 1r /2, 
are given by 

=max{ l:l·l:l :a ..L am,b ..L bm,m = 1,2, ... ,i -1}, 
where a E AP, bE Bq (see Miao and Ben-Israel [4, p. 81]). 

The following theorem gives a simple relation between the higher dimensional 
angle (J and the principal angles 01, 02, ... , Op. 

THEOREM 5. Suppose the angle between AP and Bq is 0, and the principal angles 
between them are 01, 02, ... , Op. Then 

cos(} = cos fh cos (}2 . .. cos ()p· 
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Proof By normalization, all these ai's and b/s can be assumed to be unit vectors. 
Put a= a1 1\ a2 1\ · · · I\ ap, then a is the p-vector corresponding to subspace AP, 
and (a, a) = 1. Noting that 

af = bi cos(}i, i = 1, 2, ... ,p, 

we get 

aH = cos Ot cos 02 · · ·cos Opbt I\ b2 I\ · · · I\ bp. 

Therefore 

cosO = iaHi 
= cos Ot cos 02 · · ·cos Op. 0 

Remark. The product of cosines of principal angles between subspaces L and 
M was denoted by cos{L,M} only as a symbol in [4]. Now, Theorem 5 shows 
that this symbol cos{ L, M} is really the cosine of an angle. 

6. Grassmann Manifolds 

The set of all p-dimensional subspaces of En with suitable topology forms a 
Grassmann manifold G(p, n- p). The theory of angles between subspaces of 
En is closely connected with the geometry of Grassmann manifolds. In this way, 
several theorems of distance geometry can be used to obtain the corresponding 
results of differential geometry. 

For example, by normalization, we can restrict p-vectors to have unit lengths. All 
these unit p-vectors form a hypersphere sN -I of 1\P En' where N = dim 1\P En = 
(;). Denote by G the submanifold of sN -I consisting of points corresponding to 
decomposable unit p-vectors. Then G is the isometrically immersed image of the 
Grassmann manifold G (p, n - p) into SN -t. Research on geometric properties of 
G is an interesting topic in differential geometry (see, for example, W. H. Chen 
[9], who pointed out that G is an algebraic submanifold). In order to obtain the 
immersed equations for G into sN -I' we choose an orthonormal basis { ej} in En' 
and then get an induced orthonormal basis { EK} in 1\P En, where 

Therefore a unit p-vector a can be represented as 

where 
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The quantities )..K are the usual Cartesian coordinates in the induced Euclidean 
space EN or 1'-.P En, and the ui,iz .. ·ip 's are called Grassmann coordinates of o:; they 
will change sign if any two subscripts are interchanged. Our immersed equations 
are just the conditions for a p-vector to be simple, which are known as Plucker 
equations and can be written out explicitly as follows: 

p 

2::) -1 )j+luajbz···bp Ub1a1···ar··ap = Ua1a2···ap Ub 1bz···bp, 
j=l 

where subscripts { a1, a2, ... , ap} and {b1, b2, ... , bp} are two arbitrary arrange
ments of {1, 2, ... ,p}, and aj means that aj is omitted. (See Jiang [10, p. 84]; for 
some particular cases also see Cartan [11, pp. 18-20]). 

On the other hand, according to Menger, a subset of a metric space is called 
(metrically) convex provided it contains for each two of its points at least one 
between-point (see Blumenthal [8, p. 41]). Now from Theorem 3 and its proof we 
infer the following result. 

THEOREM 6. The Grassmann manifold G (p, n- p) as a submanifold of a sphere 
is a metric space. When n > 3 and p > 1, it is not metrically convex. 

Theorem 6 shows another difference between higher and lower dimensions. 

Acknowledgement 

The author would like to thank the referee for many valuable suggestions and 
helpful criticisms. 

References 

1. Di:irband, W.: Determinantensatze und Simplexeigenschaften, Math. Nachr. 44 (1970), 295-304. 
2. Eriksson, F.: The law of sines for tetrahedra and n-simplices, Geom. Dedicata 7 (1978), 71-80. 
3. Lin, S.-Y. T. and Lin, Y.-F.: Then-dimensional Pythagorean theorem, Linear Multilinear Algebra 

26 (1990), 9-13. 
4. Miao, J. and Ben-Israel, A.: On principal angles between subs paces in Rn, Linear Algebra Appl. 

171 (1992), 81-98. 
5. Hotelling, H.: Relations between two sets of variates, Biometrica 28 (1936), 321-377. 
6. Bourbaki, N.: Algebre, Hermann, Paris, 1948. 
7. Flanders, H.: Differential Forms, Academic Press, New York, London, 1963. 
8. Blumenthal, L. M.: Theory and Applications of Distance Geometry, Chelsea Pub. Co., New York, 

1970. 
9. Chen, W. H.: The differential geometry of Grassmann manifolds as submanifolds (in Chinese), 

Acta Math. Sinica 31 (1988), 46-53. (MR 89h: 53116.) 
10. Jiang, S.: Identities of Laplace type and decomposable m-vectors, Math. Practice Theory (in 

Chinese), 1 (1993), 82-85. (MR 94d: 53026.) 
11. Cartan, E.: Les systemes dif.ferentiels exterieurs et leurs applications geometriques, Paris, 1945. 

9




