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The angle between two subspaces of dimensions p and q in a Euclidean space is considered by using exterior algebra. Some properties of angles are obtained. The relation between such a higher dimensional angle and the usual principal angles is also given. And finally, an application to Grassmann manifolds is briefly discussed.

Preliminaries

For convenience, we will use exterior algebra for computations, it makes the results clear and the proofs simpler. In this section we briefly state some basic facts about exterior or Grassmann algebra which are needed in our paper; for details see, for example, Bourbaki [6, ch. 3], or Flanders [7, ch. 2].

Let En be an n-dimensional real linear space endowed with a Euclidean inner product. For two vectors a and b, denote by a • b their inner product.

The symbol l'l En denotes the linear space consisting of all linear combinations with real coefficients of wedges of p vectors in En, 1 :::; p :::; n. Elements of f\P En are called p-vectors over En. A p-vector is said to be simple or decomposable, if it can be decomposed as a single wedge of p vectors in En.

An induced product in f\P En can be naturally introduced as follows.

For a pair of p-vectors define (a, (3) = det (ai

• bj)•
We can prove the following LEMMA 1. The linear space f\P En endowed with ( , ) is a Euclidean space. Proof Choosing in En an orthonormal basis { ej}, j = 1, 2, ... , n, we get in f\P En an induced orthonormal basis { E K}, J( = 1, 2, ... , (;), where the E K 's are the wedges of p different vectors ej (see Flanders [7, p. 14]). An arbitrary p-vector a can be decomposed as where the )..K's are real scalars. So Hence for any a E f\P En, (a, a) = 0 if and only if a = 0. Consequently (,) defines a Euclidean inner product. where equality holds if and only if a differs from (3 only in a scalar factor.

Remark. The length of a p-vector a is defined by a = 0 if and only if Ia I = 0.

Higher Dimensional Angle

Let a = a 1 1\ a 2 1\ • • •I\ ap be a nonzero decomposable p-vector. Then a corresponds to a p-dimensional subspace AP of En spanned by a1, a2, ... , ap. Conversely, for any basis of the vector subspace AP, the wedge of basis vectors equals ka, where k is a nonzero real number.

Further, suppose that 1 ::; p ::; q < n, and

(1)

(2)
If A and B are the subspaces corresponding to a and {3, respectively, and BJ.. is the orthogonal complement of B in En, then we have where af E B, aj E BJ.., j = 1,2, ... ,p.

Put

= a [I /\ a!f /\ • • • /\ aff, av v v v = a 1 /\ a 2 /\ • • • /\ aP , aM = a -aH -av.
Then we have a decomposition

a = aH + av +aM, (3) 
where aH, av and aM are called the horizontal, vertical and mixed parts, respectively, of a. 

Remark 1. The concept of the p-dimensional angle defined above is a natural generalization of classical angles such as the angles between two lines, a line and a plane, and between two planes. By Lemma 4, it is clear that(} is real and satisfies 0 ~ (} ~ 7r/2; further, (} = 1r /2 if and only if the subspace A is orthogonal to B. Remark 2. Whenp = q, formula (4) can be written as l(a,,B)I (} = arccos lal . 1!31' In this case, the p-dimensional angle(} between two decomposable p-vectors a and ,8 over En is equal to the usual Euclidean angle between a and ,8 as two vectors in the induced Euclidean space f\P En.

First Properties

Using the projection O:'H, we can easily generalize some well-known properties of usual angles to the higher dimensional case as follows.

THEOREM 1 (Reducibility). Let A and B be subspaces of En with dimensions p and q, respectively, where 1 < p ::::; q < n. Suppose that A n B f= {0}, and that the orthogonal complements of A n B in A and in B are A' and B', respectively.

Then the angle between A and B is equal to the angle between A' and B'.

THEOREM 2 (Three cosines). Suppose that 1 ~ p < q < n, AP and Bq are subspaces of En with dimensions p and q, respectively, and AP is not orthogonal to Bq. Suppose CP is the projection of AP in Bq, and DP is an arbitrary p-dimensional subspace of Bq. Denote by()',() and <P the angles between AP and DP, AP and Bq, and CP and DP, respectively. Then cos ()' = cos() cos ¢.

Proof Let a and 8 be the p-vectors corresponding to AP and DP, respectively. Denote by O:'H, av and aM the horizontal, vertical and mixed parts, respectively, = cos(} cos </J. 0 COROLLARY (Minimum). Suppose AP and Bq are subs paces of En with dimensions p and q, respectively, 1 :::; p < q < n. Then the angle (} between AP and Bq equals the minimum of the angle between AP and an arbitrary p-dimensional subspace DP of Bq.

Further Properties

Now we consider some more interesting properties of higher dimensional angles. is a metric space (see, for example, Blumenthal [START_REF] Blumenthal | Theory and Applications of Distance Geometry[END_REF]), inequality ( 5) is obtained.

For equality to hold in [START_REF] Hotelling | Relations between two sets of variates[END_REF], it is necessary and sufficient that the point B* lies on the metric segment A* C*. So there exist nonzero scalars h and k such that f3 = ha+ k1, where a, f3 and 1 are the decomposable p-vectors corresponding to the subspaces A, Band C, respectively. Since f3 is decomposable, we have 

/3 1\ y = 0, y E B,
dimA' =dimE'= dimC' = p-r, A' n C' = A' n B' = B' n C' = { 0}.
Denote by a', (3' and 1' the (pr )-vectors corresponding to A', B' and C', respectively. From (6) it follows that ha' 1\ y' + k1' 1\ y' = 0, y' E B'.

One can choose a basis in En (which is not orthogonal in general) such that

a' = a e1 1\ • • • 1\ ep-n I / = Cep-r+l 1\ • • • 1\ e2p-2r,
where a and c are nonzero scalars. The vector y' can be decomposed as follows:

p-r p-r n-2p+2r Y 1 = L Uiei + L Vjep-r+j + L Wte2p-2r+t• i==l j==l t=l
So we obtain o THEOREM 4 (Complement). Suppose AP and Bq are subspaces of En with dimensions p and q, respectively, 1 :::; p < q < n, p :::; nq, Bj_ the orthogonal complement of Bin En. Denote by (J and (Jj_ the angles between A and Band between A and Bj_, respectively. Then

p~ ~r haL VjCI 1\ • • • 1\ ep-r 1\ ep-r+j + kc L Uiep-r+I 1\ • • • 1\ e2p-2r 1\ ei+ j=l i=l =0. n-2p+2r +ha L Wtel 1\ • • • 1\ ep-r 1\ e2p-2r+t+ t=l n-2p+2r +kc L Wtep-r+I 1\ • • • 1\ e2p-2r 1\ e2p-2r+t t==l Ifr < p-1, thenp-
cos 2 (J + cos 2 (Jj_ < 1 -' (7) 
where equality holds if and only if either p = 1 or (J(Jj_ = O(p > 1 ).

Proof Inequality (7) follows from decomposition (3) and Lemma 4. Equality in [START_REF] Flanders | Differential Forms[END_REF] holds if and only if

C'tM = 0.
This occurs if and only if either p = 1, or p > 1 and a = a H or a = av. o Theorems 3 and 4 show some of the differences between the cases of higher and lower dimensions.

Principal Angles

Let AP and Bq be subspaces of En with dimensions p and q, respectively, 1 :::; p:::; q < n. The principal angles between AP and Bq, 0 :::; fh :::; The following theorem gives a simple relation between the higher dimensional angle (J and the principal angles 01, 02, ... , Op. M was denoted by cos{L,M} only as a symbol in [START_REF] Miao | On principal angles between subs paces in Rn[END_REF]. Now, Theorem 5 shows that this symbol cos{ L, M} is really the cosine of an angle.

Grassmann Manifolds

The set of all p-dimensional subspaces of En with suitable topology forms a Grassmann manifold G(p, n-p). The theory of angles between subspaces of En is closely connected with the geometry of Grassmann manifolds. In this way, several theorems of distance geometry can be used to obtain the corresponding results of differential geometry.

For example, by normalization, we can restrict p-vectors to have unit lengths. All these unit p-vectors form a hypersphere sN -I of 1\P En' where N = dim 1\P En = (;). Denote by G the submanifold of sN -I consisting of points corresponding to decomposable unit p-vectors. Then G is the isometrically immersed image of the Grassmann manifold G (p, n -p) into SN -t. Research on geometric properties of G is an interesting topic in differential geometry (see, for example, W. H. Chen [START_REF] Chen | The differential geometry of Grassmann manifolds as submanifolds (in Chinese)[END_REF], who pointed out that G is an algebraic submanifold). In order to obtain the immersed equations for G into sN -I' we choose an orthonormal basis { ej} in En' and then get an induced orthonormal basis { EK} in 1\P En, where Therefore a unit p-vector a can be represented as where The quantities )..K are the usual Cartesian coordinates in the induced Euclidean space EN or 1'-.P En, and the ui,iz .. •ip 's are called Grassmann coordinates of o:; they will change sign if any two subscripts are interchanged. Our immersed equations are just the conditions for a p-vector to be simple, which are known as Plucker equations and can be written out explicitly as follows: where subscripts { a1, a2, ... , ap} and {b1, b2, ... , bp} are two arbitrary arrangements of {1, 2, ... ,p}, and aj means that aj is omitted. (See Jiang [10, p. 84]; for some particular cases also see Cartan [11, pp. 18-20]).

On the other hand, according to Menger, a subset of a metric space is called (metrically) convex provided it contains for each two of its points at least one between-point (see Blumenthal [8,p. 41]). Now from Theorem 3 and its proof we infer the following result. THEOREM 6. The Grassmann manifold G (p, np) as a submanifold of a sphere is a metric space. When n > 3 and p > 1, it is not metrically convex.

Theorem 6 shows another difference between higher and lower dimensions.

0COROLLARY.

  For arbitrary a, (3 E N En, we have (a, a) ((3, (3) ~ (a, (3) 2 ,

  of a with respect to Bq. Then aH corresponds to CP, and we have Hence cosO'= l(a,<5)1 _l(aH,<5)1 lal • 1<51 lal • 1<51 laHI l(aH,<5)1 = ~ . laHI • 1<51

THEOREM 3 ( 5 )

 35 Triangle inequality). Let A, B and C be three different pdimensional subspaces of En, 1 < p < n. Denote by (} AB, (} AC and (} BC the angles between A and B, A and C, and B and C, respectively. Then (Equality in (5) holds if and only ifdim(AnBnC) = p-1 and the !-dimensional orthogonal complements A', B' and C' of An B n C in A, B and C, respectively, lie in one and the same plane and B' is placed in the smaller pair of vertical angles formed by A' and C'. Proof Denote N = dim f\P En. Let SN -l be the unit hypersphere in f\P En. Identifying opposite points of sN -1 , we obtain an elliptic space :EN -1 . Three different p-dimensional subspaces A, B and C of En correspond to three different points A*, B* and C* in :EN -1 . Then (} AB, (} BC and (} AC equal the distances between the points A* and B*, B* and C*, and A* and C*, respectively. Since :EN -1

  and hence ha/\y+k!/\y=O, yEB.

  An B n C), from fJ = ha + k1 we get dim( An C) = r.Let A', B' and C' be the orthogonal complements of An B n C in A, Band C, respectively. Then

  r 2: 2, we will get for all i,j and t. But y' 1= 0 and A' n B' = B' n G' = {0}, so we must have h = k = 0, which is impossible by assumption. Therefore we getdim( A n B n G) = p -1.Consequently, by Theorem 1, (JAB, (J AC and (J BC are equal to the angles between A' and B', A' and G', and B' and G', where A', B' and G' are the !-dimensional orthogonal complements of An B n C in A, Band G, respectively. The rest of the proof is trivial.

  02 :::; • • • :::; (}P :::; 1r /2, are given by =max{ l:l•l:l :a ..L am,b ..L bm,m = 1,2, ... ,i -1}, where a E AP, bE Bq (see Miao and Ben-Israel [4, p. 81]).

THEOREM 5 .

 5 Suppose the angle between AP and Bq is 0, and the principal angles between them are 01, 02, ... , Op. Then cos(} = cos fh cos (}2 . .. cos ()p• Proof By normalization, all these ai's and b/s can be assumed to be unit vectors. Put a= a1 1\ a2 1\ • • • I\ ap, then a is the p-vector corresponding to subspace AP, and (a, a) = 1. Noting that af = bi cos(}i, i = 1, 2, ... ,p, we get aH = cos Ot cos 02 • • •cos Opbt I\ b2 I\ • • • I\ bp. Therefore cosO = iaHi = cos Ot cos 02 • • •cos Op. 0 Remark. The product of cosines of principal angles between subspaces L and

p 2 :

 2 :) -1 )j+luajbz•••bp Ub 1 a 1 •••ar••ap = Ua 1 a 2 •••ap Ub 1 bz•••bp, j=l

  The angle(} between subspaces AP and Bq,p ~ q, is defined by

	Proof One easily verifies that
	(aH, av) = (aH, aM) = (av, O:'M) = 0.
	Ia HI (}=arccos~•
	By direct computation, we get the following lemmas.
	LEMMA 2. The decomposition (3) is invariant under transformations of basis in
	subspace A. Precisely, if in the linear subspace A we choose another basis {an, we have the corresponding p-vector a' and projections a'rr, a~ and a~, and
	a'= ka, a'rr = kaH , a~= kav , a~= kaM
	for some nonzero scalar k.

LEMMA 3. (a, aH) 2:0, where equality holds if and only ifaH = 0. 0 DEFINITION.
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