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Coefficient of Restitution Interpreted 
as Damping in Vibroimpact 

K. H. Hunt 
During impact the relative motion of two bodies is often taken to be simply represented 
as half of a damped sine wave, according to the Kelvin- Voigt model. This is shown to be 
logically untenable, for it indicates that the bodies must exert tension on one another 
just before separating. Furthermore, it denotes that the damping energy loss is propor­
tional to the square of the impactin{f velocity, instead of to its cube, as can be deduced 
from Goldsmith's work. A damping term h"i is here introduced; for a sphere impacting 
a plate Hertz gives n = 3/2. The Kelvin- Voigt model is shown to be approximated as a 
special case deducible from this law, and applicable when impacts are absent. Physical 
experiments have confirmed this postulate. 
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Introduction 

Section 1.1. This analysis is confined to compact solid bodies 
(normally regarded as elastic) impacting one another at fairly low 
velocities, e.g., below 20 ips (50 em/sec), for reasonable shapes of 
impacting profiles when the material is, say, hardened steel. No ac­
count is taken of the possible effect of reflected elastic shock waves 
on the forces in the zone of contact considered. Long rods impact­
ed axially, and beams or plates impacted transversely, are there­
fore not regarded as "compact solid bodies" [1j,I though it may be 
possible to incorporate the present conclusions as a part of a sys­
tem which includes other vibratory effects as well. 

Section 1.2. The classical definition of "coefficient of restitu­
tion" e is, in simple one-dimensional impact between two rigid 
bodies in pure translation, the ratio of their relative speed after 
impact to that before, so tha.t 

v0 = ev1 , (1) 

v; and v0 being the relative speeds respectively "in" and "out." In 
[1] there is a good account of many experiments conducted with 
different materials, usually solid spheres, to determine values for 
e. Yet in these experiments, now rather antiquated, the effects of 
surface curvature on e are not isolated. Nevertheless, for given im­
pacting bodies e invariably decreases as Vi increases. For high Vi 

one or both bodies can permanently deform plastically, but, as 

1 Numbers in brackets designate References at end of paper. 

stated in Section 1.1, this eventuality is not taken account of here, 
because the typical impact in the elastic range now to be analyzed 
is that which leaves both bodies unchanged in dimension and 
properties. Surely, then, one might conclude that, if the bodies are 
unchanged, e must he unity and the impact perfectly reversible; 
hut it need not he, because, while most of the elastic strain energy 
is restored, a proportion, which increases as Vi increases, is dissi­
pated in heat (random molecular vibrations) and, perhaps, in mi­
croscopic slip between grains if the material in question is crystal­
line. For a limited range of low vi, and for most materials with a 
linear elastic range, [1, p. 258], it appears that one can write with 
tolerable accuracy 

(2) 

For steel, bronze, or ivory, a will have a value somewhere between 
0.002 and 0.008 sec/in. (i.e., 0.08-0.32 sec/m), but the linear law of 
equation (2) cannot apply above some limiting value of vi which 
depends on the material and on the geometry of the surfaces at or 
near the zone of contact. 

Section 1.3. If one of the bodies is taken to be stationary, the 
loss, over a total single-impact sequence, of the kinetic energy of 
the moving body (of mass m) is 

1 ( 2 2 D.E = 2m v1 - v0 ), 

and, using successively equations (1) and (2), 

1 2 ( t:.E = 2 mv1 1 

1 2{ = 2 mv1 1 

e2) 

Now, since a is much less than 1 '(and because it is empirically de­
termined we cannot expect perfect exactitude anyway), one may 

1



(a) 

F 

.... 
() 
0: e 

APPROACH 

IMPACTING 
MASS 

(b) 

m 
::..,/EDGE OF 'FIXED' BODY 

'-----1 .. ~ (AT MOMENT OF IMPACT) 
Vj 

F 

.... 
() 
0:: 
0 

'"" 

--- 0 APPROACH 
Fig. 1 

MAXIMUM 

X 

ignore a 2v;2 in comparison with 2av;, and thus write with accept­
able accuracy 
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Section 1.4. Some workers in vibroimpact, e.g., [2], and others 
concerned with impact dampers, for instance, have (sometimes 
with remarkable success) considered impact to be instantaneous, 
and have used a constant e irrespective of v;. In such work the "ap­
proach," namely, the extent by which the center's of mass of the 
two impacting bodies move toward and away from one another as a 
result of the localized deformation near the zone of contact, is ig­
nored, and this practice may be justifiable when the interval of 
time between successive contacts is substantially longer than the 
duration of one contact. In [3], however, neither the time of con­
tact nor the approach are ignored; the equation governing the peri­
od of contact during a single impact is taken to be a half period of 
damped harmonic vibration during which, in the absence of any 
other excitation, the standard form of linear equation 

mx + ex + kx = 0 (4) 

(in which c is a constant coefficient of viscous damping and k a lin­
ear spring-constant presumed to match the force-approach law) is 
taken to apply. In effect equation (4) matches precisely the ideal 
Kelvin-Voigt viscoelastic solid [4]. In the Appendix the conse­
quences of the assumptions inherent in equation (4) are developed 

qualitatively, and the conclusions reached confirm the validity of 
the analysis which now follows. 

Section 1.5. According to equation (4) the damping force, c .:i:, 
is greatest when x is highest, that is to say at the precise moment 
of impact when .:i: = v;. This damping term c.:i:, and the spring term 
kx, can be combined to produce a form of hysteresis loop shown as 
OABCDO in Fig. 1(a), the shape of which is, as it turns out, close 
to a half ellipse, provided that the damping .is small. This half-el­
lipse hysteresis loop is in conflict with the expected shape of a loop 
that arises from a compressive load being applied to and removed 
from a body within its elastic range at a slow rate. A loop of this 
more realistic form is sketched in Fig. 1(b). Because the applied 
load is compressive, through a pair of profiles that touch but are 
not otherwise joined together, no tensile force is admissible; i.e., 
since the "force" in Fig. 1(b) is everywhere compressive (namely, 
above the Ox-axis) the loop cannot be allowed to extend into the 
region below the Ox-axis. Moreover, the compressive force at the 
moment the load is appljed is zero. These arguments lead to the 
form of hysteresis loop drawn in Fig. 1(b), the loop coming to a 
sharp point at the origin. The half ellipse in Fig. 1(a), that arises 
simply from the direct intrusion of equation (4), is sufficiently dif­
ferent from the loop of Fig. I (b) to raise doubts about its validity 
as a model of what actually occurs, because (a) , for the region 0 < x 
< OC of the load-removal portion, it hypothesises a tensile force 
(which would tend to lengthen the period of contact and reduce 
the speed at which the impacting body leaves), and (b), at the mo­
ment of impact, there is a "shock" application of a supposed force 
that arises entirely from the damping term c .:i: in equation (4) . 

Section 1.6. True, when the impacting bodies are highly resil­
ient (namely, when c is very much less than the critical damping 
coefficient), these two anomalous effects may be so small as to 
cause no concern to someone establishing a mathematical model 
suitable for analogue or digital simulation. It is however demon­
strated below, equation (16), that a much better moqel can quite 
easily be set up which, in contrast to the one just described, shows 
promise of being usefully adaptable both to bodies with nonlinear 
elastic properties and to coefficients of restitution substantially 
less than unity. 

Section 1.7. Fig. 1(a) fails in another respect to meet the re­
quired conditions; the half-ellipse hysteresis loop remains to all in­
tents and purposes identically proportioned with respect to t he 
rest of the diagram whatever the maximum approach Xm. The area 
of the loop, which represents the energy loss DE, would then (for 
resilient bodies) be closely proportional to xm2, which, since 

1 2 ~ 1 k 2 2 mvi ~ 2 xm, 

may be taken as being proportional to u? Yet equation (3) re­
quires DE to be much more nearly proportional to v;3 t han to v;2. 

Section 1.8. Equation (4) has the advantage of simplicity. As 
it stands, for an isolated half period of impact-duration, it is linear, 
and in the well-known classical form. But, since the overall pattern 
of impact (including .relative movements across clearances, etc.) is 
far from linear- at best it is piecewise linear- one may justifiably 
propose some improvement on the highly idealized Kelvin-Voigt 
model, particularly now that there are available siml!lation tech­
niques that readily accept nonlinearities and still give high accura­
cy. Clearly the hysteresis loop in Fig. 1(a) should be abandoped 
and replaced by one looking more like that in Fig. 1(b). Its shape 
should be consistent with damping forces being zero both when x 
= 0 (.:i: = v; or .:i: = -vo) and when x = Xm (.X = 0). A damping term 
of the form A(x)P(x)q satifies these boundary condit ions, and a way 
is described next for determining suit able values for A, p , and q. 

Section 1.9. The force-approach law based on the Hertzian 
theory for localized normal and frictionless contact between linear­
ly elastic bodies is not itself linear (as required by equation (4)) 
but is nonlinear and of the form F = kx312. The theory, described 
in [1, 5] and by many other authorities, cannot br. regarded as valid 
unless the zone of contact is of small dimensions in comparison 
with the radii of curvature of the impacting bodies in its vicinity, 
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and unless it has very large radii of curvature in comparison with 
its linear dimensions. For two bodies of steel (elastic modulus 30 X 

106 lb/in. 2 (2.068 X 10 N/m2) and Poisson's ratio 0.30) impacting in 
spherical regions whose radii of curvature are Rt and R 2, the force­
approach law becomes 

F = Ktx312 (J.. + __!_) -2 
Rt R2 

(5) 

where K1 = 2.19 X 107 if R 1, R2 and x are measured in in. and Fin 
lb, or K 1 = 3.83 X 106 if R~, R2, and x are measured in em and F in 
newtons. The maximum shear stress (occurring at points on the 
common normal a little below the surfaces of the bodies) is of value 

T = K2 v (it + i
2

)

2

F. (6) 

K 2 being 1.16 X 104 if r is to be read in lb/in. 2 ; or K 2 = 9.02 X 107 

for -r in N/m2• In [1 and 5], and elsewhere, it is explained how 
equations (5) and (6) can be formulated for more general shapes of 
contacting contours, and the results here presented can with com­
plete validity be extended if desired. 

Section 1.10. According to [6], direct compressive contact 
stresses (of a highly localised nature) exceeding 200,000 lb/in.2 

(1.38 X 109 N/m2) are not uncommon for conditions of continuous 
operation in rolling bearings, and in certain circumstances an ac­
ceptable limit may be as high as 500,000 lb/in.2 (3.45 X 109 N/m2). 

For ductile materials [1] the most probable form of impact failure 
is in shear and, according to the Hertzian theory, maximum shear 
is about 0.31 times the maximum compressive stress, this factor 
being used in writing equation (6). So, in view of the foregoing, a 
limiting value T!im of 0.31 X 200,000 = 62,000 lb/in. 2 (4.27 X 108 

N/m2) appears to be reasonable, even conservative, for alloy steels 
with surface properties suitable not only for rolling bearings, but 
also for other joint-pairs with highly localized regions of contact 
such as those often found in cams, gears, etc. This limiting local­
ized shear-stress value is, incidentally, 10 times higher than the 
unrealistically low limit used in part of [3], and it is seen below to 
be reasonably compatible with impact speeds of the magnitudes 
mentioned in Section 1.1. 

Secion l.ll. The 3/2-power law of equation (5) does not apply 
when, for instance, contact is between perfectly flat surfaces; then, 
at least ideally, the area of the zone of contact does not change 
during the time of impact, and a linear force-approach law would 
probably apply. For parallel cylinders in longitudinal contact along 
a narrow zone on either side of a line, an index somewhere between 
1 and 1.5 could be expected to match the conditions fairly well, 
and this does not conflict greatly with various formulas to be found 
in [1, 3, 6, 7, 9, 10]. Harris [6] emphasises that, unless conditions 
are very special, a uniform force per unit length of roller cannot be 
assumed. In any case a formula for cylinders in longitudinal con­
tact must depend for its validity on extremely precise alignment 
and highly exact knowledge of the axial distribution of the applied 
load; even in precision engineering applications information on 
these two matters may be hard, or impossible, to guarantee. So, de­
spite the doubts about these special geometries yielding valid for­
mulas, a more general form of the force-approach law of equation 
(5), namely, 

F = l1x" (7) 

will be used in what follows, and it will be found that it is possible 
to use a variable damping coefficient in an equation derived by ex­
tension and generalization of equation (4). It is then seen that the 
damping factor A (see Section 1.8) can be made independent of the 
index n in equation (7). 

2 Analytical Formulation 
Section 2.1. Consider first nonlinear elastic impact (e = 1) of a 

mass m with an impacting speed v; Fig. 2. The kinetic energy at 
contact is (lf2)mvi2, and, provided next that the proposition of 

F 

0 

Fig. 2 

F 
/ 

0 
x m x 

Fig. 3 

small energy dissipation holds, this can be equated with reason­
able accuracy, via equation (7), to the maximum elastic-strain en­
ergy stored, i.e., for a maximum approach Xm, 

or 

and 

1 2 
2mvi ( __ k_) X (n+l) 

n + 1 m ' 

~ 2k (n+j) 

vi = m(n + 1) Xm --r:-. 

(8) 

(9) 

For an intermediate position x, 0 < x < Xm, 

.!.mv2 1 lx 
2 = 2 mv/ - Fdx 

0 

and 

v = I 2k I X (n+j) - x<n+1l (10) 
m(n + 1) V m • 

Section 2.2. Now in fact there is an (assumed relatively small) 
hysteretic energy loss represented by the area of a hysteresis loop, 
Fig. 3. This area can be equated to t:.E and, combining equations 
(3) and (9), 

t:..E _!!___ (__E:._) 3/2 X ¥ 
-Jrnn+1 '" · 

(11) 
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If the notion of a nonconstant damping coefficient is accepted, one 
may also write, assuming q = 1 (see Section 1.8) 

E = ¢cvdx 

where the j' refers to the. circuit around the loop in Fig. 3. Now, 
with an energy loss assumed to be small, equation (10) can be used 
with fair accuracy to give v and, since the loop's area is shared suf­
ficiently equally between "inward" and "outward" paths, the cy­
clic integral can be written 

rXm 
2 Jo cvdx, 

which in turn leads to 

The next question is how to evaluate this integral to produce the 
nonconstant c in managable form. This question can quite easily 
be resolved if one introduces the constant )\ (see Section 1.8, mak­
ing p = n), and thus writing 

c = A.x". (13) 

Then equation (12) becomes integrable and reduces to 

AE = ~~ 2!? (-1_ \(~\X ~ill 
vm n+1 n+1) 3)m (14) 

This expression for D.E is required to be the same as that of equa­
tion (11). Thus one reaches the extremely simple conclusion that 

3 
A. = 2 a!?, (15) 

Note that, as anticipated in Section 1.11, equation (15) does not 
contain the index n. Using it with an nth power force-approach 
law, the equation (applicable to a free damped half cycle of vi­
broimpact) is now not equation (4) but 

or (16) 

The index q (see Section 1.8) need not be taken as unity; several 
suitable choices could be made so long as they are compatible with 
equation (12) being easily integrable and leading to an expression 
in which Xm has a power of 

3(n + 1) 
2 

For instance if q = 2, )\ comes out to 

~ah!?m(n + 1); 

then instead of the second of equations (16) one has 

the damping factor )\ being no longer independent of n. 

3 Closure 
Section 3.1. The authors have found it quite simple to incor­

porate equation (16) in digital computer simulation of a forced vi­
broimpact system, and in some instances the response is signifi­
cantly at variance with that of an equivalent linearized model. 
Some specimen hysteresis loops, obtained from trial runs, are pre­
sented in Fig. 4. These all apply to a steel body weighing about one 
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pound (4.448 N) having a convex spherical surface of radius R1 = 1 
in. (2.54 em) impacting a concave spherical steel surface of radius 
R2 = -2 in. ( -5.08 em). The undamped force-approach law, equa­
tion (5), then becomes 

with K3 = 3.1 X 107 if x is in in., F inlb, or Ka = 3.4 X 107 for x in 
em, F in newtons (4.27 X 108 N/m2) and, corresponding with a 
shear stress of 62,000 lb/in.2 (see Section 1.10), the maximum al­
lowable force, by equation (6), is 600 lb (2690 N). As can be seen 
from Fig. 4, when the impacting speed is 16 ips (40 em/sec) this fig­
ure of 600 lb is exceeded, but the shear stress (equation (6)) is pro­
portional to the cube root of normal force, and the figure of 62,000 
lb/in. 2 (4.27 X 108 N/m2) is not exceeded by more than about 15 
percent. With the same impacting speed the shear stress can be re­
duced by altering the surface-geometries, e.g., by wrapping the 
concave surface more around the convex impacting mass. How­
ever, if the two impacting surfaces were to match one another too 
closely, the Hertzian analysis would no longer be valid (see Section 
1.9, particularly the italicized portion); for this reason much of the 
modeling described in [3] cannot be applied to this form of impact­
pair. 

Section 3.2. Hysteresis loops similar to those in Fig. 4 have 
been drawn for a = 0.002, 0.004, 0.008, and 0.016 sec/in. As men­
tioned in Section 1.2, values of a somewhere between 0.002 and 
0.008 sec/in. (0.08 - 0.32 sec/m) appear to be reasonable. For a to 
have a value as low as 0.002 the material would have to be particu­
larly' resilient. For a material with a as large as 0.016 sec/in. (0.64 
sec/m) the hysteresis loop may, with large Vi, become so large as to 
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call into question several of the assumptions made in the deriva­
tion of equation (15). Nevertheless, a hysteresis loop of moderately 
convincing shape is, even then, automatically produced, and it is 
tentatively put forward that the method here described might be 
usefully applied in modeling situations quite far removed from 
those initially regarded as applicable. 

Section 3.3. The whole proposition here put forward devolves 
in the first place on the validity of equation (2), which in turn is 
supported by the evidence of many experimenters who worked 
with a wide variety of apparatus over the best part of a century; 
see the bibliography in reference [1]. Even so one must not ignore 
the present need for up-to-date verification and extension of the 
concept of coefficient of restitution to new engineering materials. 
New experiments must not neglect, as earlier workers appear to 
have done, the dependence of coefficient of restitution on the ge­
ometry of the impacting surfaces. Also any experiment must be 
carefully contrived so that the cycle of impact is as simple as possi­
ble, so that there is no risk of making circuits of one or more small­
er hysteresis loops within the main one during a single impact. The 
authors suspect that this may have given rise to discrepancies in 
past experiments, and indeed that it accounts for extraordinarily 
low coefficients of restitution quoted in [2]. Even though the no­
tion of coefficient of restitution is inexact, the analysis here pur­
sued shows that, in an engineering context at least, there is much 
to recommend it, and there is scope for further refinement of it. 
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APPENDIX 
Suppose a perfectly elastic body of mass m is in the gap between 

two perfectly elastic massive blocks leaving an overall clearance g. 
If the two compressive force-approach laws (to left and right) are 
both taken to be linear, the combined piecewise linear force-ap­
proach law is as shown in Fig. 5(a). 

Now with the gap closed up to be just zero, the body in its cen­
tral position just touches both blocks (with zero compressive forc­
es on both sides), and the combined force-approach law is as in 
Fig. 5(b). The central horizontal portion of Fig. 5(a) has vanished, 
and the two linear end sections line up with one another exactly. 

The force-approach curve of Fig. 5(b) is, then, identical in shape 
with one that would result if the body were securely fastened to 
one of the blocks, the other block being removed, Fig. 5(c). Now, 
however, when the approach x is negative, the force is not com­
pressive acting on the left of the body but tensile acting on the 
right. 
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For free vibrations of the system in Fig. 5(c) the analogy with 
the classical spring-mass system immediately springs to mind. If, 
in actuality, a small amount of energy is dissipated each cycle in 
friction, why should one not reasonably postulate a thin hysteresis 
loop, roughly elliptical, spreading a little on either side of the origi­
nal (nondissipative) force-approach line? This loop would steadily 
diminish in size (exponentially) corresponding with the exponen­
tial decay of the amplitude in the classical theory of damped vibra­
tions, Fig. 6. And this common assumption is known to apply well 
in many instances of mechanical vibrations. But is it valid to su­
perpose such a loop on the, apparently identical, linear force-ap­
proach line in Fig. 5(b)? The theme of the present paper is that 
such superposition is dubious, because the instance of Fig. 5(b) en­
tails two impacts per cycle, whereas there are no impacts at all for 
Fig. 5(c). There is discontinuity between the positive and negative 
portions of Fig. 5(b), the body being in compressive contact first 
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Fig. 7 

(a l 

(b) 

Fig. 8 

on its right side, returning to its central position, and then, at the 
instant when it leaves the right-hand hlock, impacting comp­
ressively the left-hand block. The force-approach hysteretic law 
applicable to one cycle of the instance of Fig. 5(h) is, when small 
quantities of energy are lost, far more realistically represented by 
l•'ig. 7. The left and right-hand halves of Fig. 7 can be separated by 
a distance If and then applied as they stand to Fig. 5{a) with more 
authenticity than two separated half ellipses, Fig. 1 (a). 

When the force-approach law is nonlinear (as in Fig. 2), two 
loops of the form in Fig. 3 can he used on either side of a gap, and 
this has heen the hasis of the modeling mentioned in Section ::u. It 
is illuminating to see what happens if the gap g is made negative, 
the hody, when in its central position, now being under equal and 
opposite compressive force on either side. Then the two loops of 

(b) 

X 

Fig. 9 

the form in Fig.:~ overlap, Fig. B(a). The regultant (i.e., the sum) of 
these two loops (for a complete double-impact cyde) is drawn in 
Fig. R(h). Because the amplitude here is greater than 1}2\g\ there is 
still impact on both sides. When the amplitude is less than 1}J!,1 it 
may be expected that something like Figs. 9(a) and (h) applies. 
Now, of course, there is no impact at all, the body being firmly 
sandwiched between the blocks all the time, and the resultant loop 
of Fig. 9{h) begins to look much more like the expected elliptical 
shape used as a hasis for Fig. 6, and indeed supports the validity of 
the classical approach via a Kelvin- Voigt model in situations 
where there is no impact at all. 

The qualitative line of reasoning put forward in this Appendix 
therefore links the nonimpacting with the impacting situations 
and, though distinct from the main part of the paper, supports the 
analysis which is used in Section 2 to derive suitable differential 
equations for models that are considered to relate acceptably 
closely to reality. 
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