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THE EXTENDED ADJOINT METHOD

Stanislas Larnier1 and Mohamed Masmoudi1

Abstract. Searching for the optimal partitioning of a domain leads to the use of the adjoint method
in topological asymptotic expansions to know the influence of a domain perturbation on a cost function.
Our approach works by restricting to local subproblems containing the perturbation and outperforms
the adjoint method by providing approximations of higher order. It is a universal tool, easily adapted
to different kinds of real problems and does not need the fundamental solution of the problem; fur-
thermore our approach allows to consider finite perturbations and not infinitesimal ones. This paper
provides theoretical justifications in the linear case and presents some applications with topological
perturbations, continuous perturbations and mesh perturbations. This proposed approach can also be
used to update the solution of singularly perturbed problems.

Résumé. Pour décomposer de manière optimale un domaine, la méthode adjointe est utilisée dans
des développements asymptotiques topologiques qui permettent de connâıtre l’influence d’une pertur-
bation du domaine sur la fonction coût. Notre approche fonctionne en restreignant le problème à des
sous-problèmes locaux contenant la perturbation et surpasse la méthode adjointe en fournissant des
approximations d’ordre plus élèvé. C’est un outil universel qui s’adapte à différents types de problèmes
réels et ne nécessite pas la solution fondamentale du problème considéré. En outre, notre approche
permet de considérer des perturbations finies et non infinitésimales. Ce papier fournit des justifications
théoriques pour les cas linaires et présente des applications avec des perturbations topologiques, des
perturbations continues et des perturbations de maillage. L’approche proposée peut aussi être utilisée
afin de mettre à jour la solution de problèmes possédant une perturbation singulière.
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Introduction

The optimal partitioning of a domain Ω has important real-life applications like shape optimal design, de-
tection of inclusions, image classification and segmentation. Topological derivative methods have been used to
solve this kind of problems [1–9]. These approaches have some drawbacks:

â The asymptotic topological expansion is not easy to obtain for complex problems.
â It needs to be adapted for many particular cases like the creation of a hole on the boundary of an

existing one or on the original boundary of the domain.
â We don’t know how to calculate the variation of a cost function when a hole is to be filled.
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â In real applications of topology optimization, a finite perturbation is performed and not an infinitesimal
one such as an element deletion in a mesh.

Certain issues arise here, as for example the question on how large the topological change should be. In the
present paper, we propose an extension of the adjoint method to overcome these problems.

The problem of optimal partitioning of a domain Ω is equivalent to the problem of looking for an optimal
function c which takes a finite number of values 0, 1, . . . ,m− 1. If m = 2, c is the characteristic function of an
unknown optimal subdomain of Ω. For the sake of simplicity we will limit the study to the case where m = 2.

Even if we are dealing with a 0 − 1 optimization problem, it is possible to use variational methods. For a
cost function

j : Lp(Ω) → R, 1 ≤ p <∞
c 7→ j(c),

the topological asymptotic expansion consists in calculating the variation of j when c switches from 1 to 0
or from 0 to 1 in a small area. Generally, j depends on c via the resolution of a set of partial differential
equations. Explicit regularization terms related to the volume, or the measure of the boundary, as well as the
mean curvature, could be added to j and a more regular space than Lp could be considered.

It is possible to use differential calculus tools [10] for estimating the variation of j when c switches from 1
to 0 or from 0 to 1 in a small region ωε = x0 + εω, where x0 is a point of Ω, ε is a small scalar, and ω is a
given domain. The perturbation δc = ±χωε obtained when c switches from 1 to 0 or from 0 to 1 in a small
region ωε, is small in Lp(Ω) even if not small in magnitude. We will refer to δc as a singular perturbation. If j
is differentiable, we have ∣∣∣∣j(c+ δc)− j(c)−

∫
Ω

g1δc

∣∣∣∣ = O(||δc||2Lp),

where g1 ∈ Lq(Ω), 1
p + 1

q = 1 is the gradient of j. Moreover, if g1 is regular, we obtain the following expansion:

|j(c+ δc)− j(c)− |ωε| g1(x0)| = O(|ωε|
2
p ) + ◦(|ωε|). (1)

There are two cases:

â when p < 2, the rest in Equation (1) is of higher order and the topological gradient is equal to g1, the
gradient of j. We refer to [10] for more details.

â when p ≥ 2, the quantity g1 is the first term of the topological gradient, the ”rest” O(|ωε|
2
p ) could

contribute to the topological gradient by a second (or hidden) term g2.

The goal of this paper is to provide a simple, efficient and general way to calculate the second term g2. In the
case p ≥ 2, the asymptotic expansion (1) is technically correct, but it may lead to wrong conclusions.

The adjoint method is the classical way to calculate g1, the gradient of j, at each point of the domain Ω
and at a lower computing cost. In fact, at least for the case p < 2, there is no need to calculate the variation
of the state with respect to c, because its contribution is of higher order. And when p ≥ 2, the variation of
the solution gives the second term g2 of the topological gradient. In simple cases, this second term g2 is quite
easy to estimate using the explicit knowledge of the fundamental solution of the problem and there is no need
to calculate the unknown variation of the state with respect to the considered perturbation [1–9, 11]. In this
case, the formal application of the chain rule gives only the first term. In some cases, such as the insertion
of infinitesimal cracks [7], since |ωε| = 0, the first term is equal to zero and the variation of the cost function
is equal to the hidden contribution. Currently, some authors such as Bonnet are interested by asymptotic
topological expansions of higher-order [12,13].

Like we said before, these methods have many limitations. The fundamental solution is not known explicitly
for more realistic models. The asymptotic expansion needs to be adapted for too many particular cases like
the creation of a hole on the boundary of an existing one or on the original boundary of the domain. The
number of particular cases increases if the type of boundary conditions on the hole is considered. In [14], the
case of the Laplace equation with the creation of a hole on a polygonal boundary has been studied. In topology
optimization, we need to know how to fill an existing small hole, a problem studied by Guillaume et al. [15].
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In most contributions, the elementary solution is used to calculate the local variation of the state around
the singular perturbation. The key idea of this paper is to take into account this variation by solving a local
perturbed problem defined in a small fixed domain D containing the singular perturbation. The state of the
initial uniform problem is imposed as a Dirichlet condition on the boundary of D. The size of the domain D
varies with the studied problem.

From the application point of view, this method is non invasive and can be easily adapted to any solver. It
could be used with parallel computing algorithms when multiple evaluations are needed.

From the theoretical point of view, this method could be seen as an improvement of the domain truncation
method, where the variation of the Dirichlet to Neumann operator is needed [1, 4, 8]. Here we just need to
study the variation of a local solution. Thus, our method could be a tool in theoretical investigations. This
paper presents theoretical justifications and examples in the linear case. In [16], the method has been used in
a nonlinear case with mesh perturbations in fluids dynamics.

This extension of the adjoint method is called the numerical vault for two reasons. The imposed Dirichlet
condition on the boundary of D makes our solution very stable and recalls the vault in architecture which is
supported by its surrounding walls. Moreover, similarly to the vault, our method is very simple and has great
potential for applications.

Section 1 recalls the adjoint technique and presents the basic concept of the vault method. In Section 2, we
consider the linear case and present a theoretical justification for the numerical vault as an extension to the
adjoint method. Some simple examples are also considered to illustrate the theoretical study. In Section 3, we
show that the numerical vault is not limited to the estimation of the variation of a cost function, but can be
applied to update the solution of a singularly perturbed problem. In Section 4, we present some applications of
the numerical vault to topological perturbations and we show that the hidden term g2 is not small in comparison
to g1. Moreover, in the case of a continuous perturbation, the numerical vault allows us to obtain a higher order
behavior. We applied our method to continuous material properties and mesh perturbations. An application
to elastography is presented in Section 5 and in Section 6, the numerical vault is applied to update the solution
in the case of an image restoration problem.

1. The adjoint method

1.1. The adjoint technique

We first recall the adjoint method in a formal way. Consider the following steady state equation

F (c, u) = 0 in Ω, (2)

where c is a distributed parameter in a domain Ω. The aim is to minimize a cost function j(c) := J(uc) where
uc is the solution of Equation (2) for a given c.

Let us suppose that every term is differentiable. We are considering a perturbation δc of the parameter c.
Since c is a distributed parameter, its discretization leads to a huge vector. A fast gradient computation is

therefore of high importance.
Equation (2) can be seen as a constraint, and as a consequence, the Lagrangian is considered:

L(c, u, p) = J(u) + (F (c, u), p),

where p is a Lagrange multiplier and (·, ·) denotes the scalar product in a well-chosen Hilbert space.
To compute the derivative of j, one can remark that j(c) = L(c, uc, p) for all c, if uc is the solution of

Equation (2). The derivative of j is then equal to the derivative of L with respect to c:

dcj(c)δc = ∂cL(c, uc, p)δc+ ∂uL(c, uc, p)∂cu δc.
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All these terms can be calculated easily, except ∂cu δc, the solution of the linearized problem:

∂uF (c, uc)(∂cu δc) = −∂cF (c, uc) δc.

To avoid the resolution of this equation for each δc, the term ∂uL(c, uc, p) is cancelled by solving the following
adjoint equation in p. Let pc be the solution of the adjoint equation:

∂uF (c, uc)
T pc = −∂uJT .

So the derivative of j is explicitly given by

dcj(c)δc = ∂cL(c, uc, pc).

This method works only when the problem is differentiable and δc is an admissible perturbation. Several
counter-examples, where one of these conditions is not satisfied, are given in [10].

1.2. Generalized adjoint technique

Note that if the Lagrangians L(c+ δc, . . . , . . . ) and L(c, . . . , . . . ) are defined on the same space, we have

j(c+ δc)− j(c) = L(c+ δc, uc+δc, pc)− L(c, uc, pc),

it can be split in two terms:

j(c+ δc)− j(c) = (L(c+ δc, uc+δc, pc)− L(c+ δc, uc, pc)) + (L(c+ δc, uc, pc)− L(c, uc, pc)).

In the case of a regular perturbation δc, the second term gives the main variation and the first term is of higher
order. In the case of a singular perturbation, the first term is of the same order as the second one and cannot
be ignored. Then the variation of uc has to be estimated.

In the topology optimization papers [1, 4–8, 17], the local variation of uc can be expressed thanks to the
elementary solution of the problem to solve. This solution is singular at x0 and gives the local variation of uc
around x0. In general, it is not always simple to get an explicit expression of the elementary solution. This is
particularly true for problems with discontinuous coefficients, if the discontinuity is located at x0.

Due to this difficulty, a numerical estimation of this variation is presented. The basic idea of the numerical
vault is to update the solution uc by solving a local problem defined in a small domain around x0.

If the Lagrangians L(c+ δc, . . . , . . . ) and L(c, . . . , . . . ) are not defined on the same space, we have

j(c+ δc)− j(c) = L(c+ δc, uc+δc, pc+δc)− L(c, uc, pc).

In this case, the direct solution uc and also the adjoint pc are updated with the numerical vault.

2. Estimation of the variation of a cost function with the numerical vault

For the sake of simplicity, only the linear case is studied. Consider the variational problem depending on a
parameter ε

aε(u, v) = `ε(v) ∀v ∈ Vε, (3)

where Vε is a Hilbert space, aε is a bilinear, continuous and coercive form and `ε is a linear and continuous
form. Typically, Vε is such that H1

0 ⊂ Vε ⊂ H1.
In this study, a singular perturbation means a finite variation located in an infinitesimal area: the size of the

perturbation goes to zero when ε goes to zero. Depending on the problem, ε can be the thickness of a coating
layer around a variety of dimension ≤ n − 1 in the space of dimension n. In the case of a hole, ε can be the
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diameter of a tube around a curve in the space of dimension 3. And we do not forget the classical case, where
ε is the diameter of a hole created around a point x0.

Let uε be the solution of the problem (3) and u0 be the solution of the initial problem without any perturbation
at ε = 0.

The objective is to calculate the variation, with respect to ε, of

j(ε) := Jε(uε).

The cost function Jε is of class C1, the adjoint problem associated to the problem (3) and the cost function
Jε is defined as follows

aε(w, pε) = −∂uJε(uε)w ∀w ∈ Vε, (4)

where pε is the solution of this problem.
Suppose that aε, `ε and Jε are integrals over a domain Ω.
The domain Ω is split into two parts, a part D containing the perturbation, and its complementary Ω0 = Ω\D.

The perturbation can be located on the boundary of Ω. For this reason, the domain D is not necessarily included
in the domain Ω.

The forms aε, `ε, and the cost function Jε are decomposed in the following way:

â aε = aΩ0 + aεD,
â `ε = `Ω0

+ `εD,
â Jε = JΩ0

+ JεD,

where aΩ0
, lΩ0

et JΩ0
are independent of ε.

The constants α and M are positive constants used in respectively the minoration and the majoration of the
bilinear forms.

Similarly, we consider

â VΩ0
, the space consisting of functions of Vε and V0 restricted to Ω0,

â VεD , the space consisting of functions of Vε restricted to D,
â V0

D , the space consisting of functions of V0 restricted to D,
â VεD,0 , the subspace of VεD, with null trace on ∂D,
â V∂D , the space of traces on ∂D of VΩ0 .

2.1. Updating the direct solution

In this section, we assume that V0 ⊂ Vε. When the perturbation consists in inserting a hole in the domain
with a Dirichlet condition on the boundary of the hole, this condition does not hold. This case will be considered
in Section 2.2.

Let us consider uεD, the local update of u0:
Find uεD ∈ VεD solution of
aεD(uεD, v) = `εD(v) ∀v ∈ VεD,0,

uεD = u0 on ∂D.
(5)

and ũε the update of u0 is given by:

ũε =

{
uεD in D,
u0 in Ω0.

(6)

We assume the following hypothesis.

Hypothesis 1. There exist three positive constants η, C and Cu independent of ε and a positive real valued
function f defined on R+ such that

lim
ε→0

f(ε) = 0,

‖Jε(v)− Jε(u)− ∂uJε(u)(v − u)‖Vε ≤ C‖v − u‖2Vε , ∀v, u ∈ B(u0, η),
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‖uε − u0‖VΩ0
≤ Cuf(ε),

lim
ε→0
‖pε − p0‖Vε = 0.

Proposition 1. Under Hypothesis 1, we have

‖uε − ũε‖Vε = O(f(ε)).

Proof. Hypothesis 1 tells us that
‖uε − u0‖VΩ0

= O(f(ε)).

The trace properties allows us to write:

‖uε − u0‖V∂D = O(f(ε)).

We can write it under the following form

‖uε − u0‖V∂D = min
φ=uε−u0 on ∂D

‖φ‖VεD .

As a consequence, we define ϕ ∈ VεD as the minimum of ‖ϕ‖VεD under the constraint ϕ = uε−u0 on ∂D, then

‖ϕ‖VεD = ‖uε − u0‖V∂D = O(f(ε)).

We have ϕ− (uε − uεD) = 0 on ∂D, we can use the coercivity of aεD:

α‖ϕ− (uε − uεD)‖2VεD ≤ a
ε
D(ϕ− (uε − uεD), ϕ− (uε − uεD))

≤ aεD(ϕ,ϕ− (uε − uεD))− aεD(uε, ϕ− (uε − uεD)) + aεD(uεD, ϕ− (uε − uεD)).

and the continuity of the bilinear form aεD:

α‖ϕ− (uε − uεD)‖2VεD ≤M‖ϕ‖VD‖ϕ− (uε − uεD)‖VD − `εD(ϕ− (uε − uεD)) + `εD(ϕ− (uε − uεD))

≤M‖uε − u0‖V∂D‖ϕ− (uε − uεD)‖VεD .

Using ‖ϕ‖VεD = O(f(ε)), ‖ϕ− (uε − uεD)‖VεD = O(f(ε)) and the triangular inequality, we obtain:

‖uε − uεD‖VεD = O(f(ε)).

With the equality
‖uε − ũε‖2Vε = ‖uε − u0‖2VΩ0

+ ‖uε − uεD‖2VεD ,
we obtain the final result. �

Theorem 1. Under Hypothesis 1, we have

j(ε)− j(0) = Lε(ũε, p0)− L0(u0, p0) + o (f(ε)) .

According to litterature [1, 4–8], the difference Lε(ũε, p0)− L0(u0, p0) is of order f(ε).

Proof: We just split this variation into two terms

j(ε)− j(0) = Lε(uε, p0)− L0(u0, p0) =
[
Lε(uε, p0)− Lε(ũε, p0)

]
+
[
Lε(ũε, p0)− L0(u0, p0)

]
.

and prove that
Lε(uε, p0)− Lε(ũε, p0) = o (f(ε)) .
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Using Hypothesis 1, we have

Lε(uε, p0)− Lε(ũε, p0) = Jε(uε)− Jε(ũε) + aε(uε, p0)− aε(ũε, p0)

= ∂uJ
ε(uε)(uε − ũε) + o (f(ε)) + aε(uε − ũε, p0),

and with Equation (4), we obtain

Lε(uε, p0)− Lε(ũε, p0) = −aε(uε − ũε, pε) + aε(uε − ũε, p0) + o (f(ε))

= aε(uε − ũε, p0 − pε) + o (f(ε)) .

Using the continuity of aε, Hypothesis 1 and Proposition 1, we obtain the final result.
�

Remark 1. Generally, for topological perturbations ‖pε − p0‖Vε = O
(

(f(ε))
1
2

)
and j(ε)− j(0) = Lε(ũε, p0)−

L0(u0, p0) + O
(

(f(ε))
3
2

)
[4]. We will see in the following section that if we update locally u and p, the rest

could be of order O
(
f(ε)2

)
.

2.2. Updating the direct and adjoint solutions

In this section V0 is not necessary a sub-space of Vε. This is the case when the perturbation is a hole of
radius ε with a Dirichlet boundary condition on its boundary. The definition of ũε remains unchanged and we
update p0 in the same way.

Let us consider pεD the local update of p0


Find pεD ∈ VεD solution of
aεD(w, pεD) = −∂uJεD(uεD)w, ∀w ∈ VεD,0,

pεD = p0 on ∂D.
(7)

and p̃ε the update of p0 is given by:

p̃ε =

{
pεD in D,
p0 in Ω0.

(8)

We assume the following hypothesis.

Hypothesis 2. There exist four positive constants η, C, Cu and Cp independent of ε and a positive real valued
function f defined on R+ such that

lim
ε→0

f(ε) = 0,

‖Jε(v)− Jε(u)− ∂uJε(u)(v − u)‖Vε ≤ C‖v − u‖2Vε , ∀v, u ∈ B(u0, η),

‖uε − u0‖VΩ0
≤ Cuf(ε),

‖pε − p0‖VΩ0
≤ Cpf(ε).

Proposition 2. Under Hypothesis 2, we have

‖pε − p̃ε‖Vε = O(f(ε)).

Proof. Hypothesis 2 tells us that
‖pε − p0‖VΩ0

= O(f(ε)).

The trace properties allows us to write:

‖pε − p0‖V∂D = O(f(ε)).
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We can write it under the following form

‖pε − p0‖V∂D = min
φ=pε−p0 on ∂D

‖φ‖VεD .

As a consequence, we define ϕ ∈ VεD as the minimum of ‖ϕ‖VεD under the constraint ϕ = pε−p0 on ∂D, then

‖ϕ‖VεD = ‖pε − p0‖V∂D = O(f(ε)).

We have ϕ− (pε − pεD) = 0 on ∂D, we can use the coercivity of aεD:

α‖ϕ− (pε − pεD)‖2VεD ≤ a
ε
D(ϕ− (pε − pεD), ϕ− (pε − pεD))

≤ aεD(ϕ− (pε − pεD), ϕ)− aεD(ϕ− (pε − pεD), pε) + aεD(ϕ− (pε − pεD), pεD).

Equations 4 and 7 give us:

α‖ϕ− (pε − pεD)‖2VεD
≤aεD(ϕ− (pε − pεD), ϕ) + ∂uJ

ε
D(uε) (ϕ− (pε − pεD))− ∂uJεD(uεD) (ϕ− (pε − pεD))

≤aεD(ϕ− (pε − pεD), ϕ) + ∂uuJ
ε
D(uε) (ϕ− (pε − pεD), uε − uεD) + ‖ϕ− (pε − pεD)‖VεDo(f(ε)).

The continuity of the bilinear form aεD and the continuity of the linear form ∂uJ
ε
D lead to the following result:

α‖ϕ− (pε − pεD)‖VεD ≤M
(
‖ϕ‖VεD + ‖uε − uεD‖VεD + o(f(ε))

)
.

≤M
(
‖pε − p0‖V∂D + ‖uε − uεD‖VεD + o(f(ε))

)
.

Thanks to ‖pε − p0‖V∂D = O(f(ε)) and Proposition 1 ‖uε − uεD‖VεD = O(f(ε)), we have ‖ϕ − (pε − pεD)‖VεD =
O(f(ε)).

Using ‖ϕ‖VεD = O(f(ε)), ‖ϕ− (pε − pεD)‖VεD = O(f(ε)) and the triangular inequality, we obtain:

‖pε − pεD‖VεD = O(f(ε)).

With the equality

‖pε − p̃ε‖2Vε = ‖pε − p0‖2VΩ0
+ ‖pε − pεD‖2VεD ,

we obtain the final result. �

Theorem 2. Under Hypothesis 2, we have

j(ε)− j(0) = Lε(ũε, p̃ε)− L0(u0, p0) +O(f(ε)2).

According to litterature [1, 4–8], the difference Lε(ũε, p̃ε)− L0(u0, p0) is of order f(ε).

Proof: We just split this variation into two terms

j(ε)− j(0) = Lε(uε, pε)− L0(u0, p0)

= [Lε(uε, pε)− Lε(ũε, pε)] +
[
Lε(ũε, pε)− L0(u0, p0)

]
.

and prove that

Lε(uε, pε)− Lε(ũε, p̃ε) = O(f(ε)2).
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Using Hypothesis 2, we have

Lε(uε, pε)− Lε(ũε, p̃ε) = Jε(uε)− Jε(ũε) + aε(uε, pε)− aε(ũε, p̃ε)− `ε(pε) + `ε(p̃ε)

= ∂uJ
ε(uε)(uε − ũε) +O(f(ε)2) + aε(uε − ũε, pε) + aε(ũε, pε − p̃ε)− `ε(pε − p̃ε)

and with Equations (3) and (4), we obtain

Lε(uε, pε)− Lε(ũε, p̃ε) = aε(ũε, pε − p̃ε)− `ε(pε − p̃ε) +O(f(ε)2)

= aε(ũε − uε, pε − p̃ε) +O(f(ε)2).

Using the continuity of aε, Propositions 1 and 2, we obtain the final result. �

Remark 2. Updating p is not necessary when V0 ⊂ Vε, but according to Theorem 2, we obtain a better
estimation of the variation of j when p is updated.

In the case of a Dirichlet condition on the boundary of the hole, V0 is not a subspace of Vε and we need to
update the adjoint.

2.3. Examples

2.3.1. Examples in literature

The most important hypothesis is
‖uε − u0‖VΩ0

= O(f(ε)). (9)

This assumption (9) is generally satisfied. See

â the elasticity case [1],
â the Poisson equation [5],
â the Navier-Stokes equation [6],
â the Helmholtz equation [8].

These results have been obtained in the frame of the domain truncation method.

2.3.2. The capacity case

This section presents an application of the previous results to the capacity problem. Let Ω ∈ R2 be a domain.{
∆u0 = 0 in Ω,

u0 = 1 on ∂Ω.
(10)

This equation implies that u0 = 1 in Ω is solution.
The cost function is the following

Jε(v) =
1

2

∫
Ωε

|∇v|2 dx, ∀v ∈ V. (11)

Let B(x0, ε) be a hole in the domain Ω, the perturbed domain is Ωε.
∆uε = 0 in Ωε,

uε = 0 on ∂B(x0, ε),

uε = 1 on ∂Ω.

(12)

Let D be equal to B(x0, R)\B(x0, ε) with R > ε and B(x,R) ⊂ Ω.
The update of u0 is defined by

ũε =

{
uεD in D,
u0 in Ω\D.

(13)



10 THE EXTENDED ADJOINT METHOD

where uεD is the solution of the following equation
∆uεD = 0 in D,

uεD = 0 on ∂B(x0, ε),

uεD = 1 on ∂B(x0, R).

(14)

The hypothesis ‖uε − u0‖VΩ0
= O(f(ε)) is satisfied [4].

The elementary solution of the Laplace equation in two dimensions is − ln(r)
2π where r = |x− x0|.

The update is

ũε =

{
ln(|x−x0|)−ln(ε)

ln(R)−ln(ε) in D,

1 in Ω\D.
(15)

Let Γ be the outer boundary of the domain D and n the normal oriented towards the exterior on the boundary.
With the approximation ũε, the cost function (11) can be written as follows

Jε(ũε) = π

∫
Γ

∂ũε

∂n
ũεr dr. (16)

Taking into account Theorem 1 we obtain

j(ε)− j(0) = Jε(uε)− J0(u0) = Jε(ũε)− J0(u0) + o (f(ε)) ,

and given the update definition (15), we have

Jε(ũε)− J0(u0) = π

∫ R

ε

|∇uε|2r dr

⇔ Jε(ũε)− J0(u0) =
π

(ln(R)− ln(ε))
2

∫
r=R

1

r
(ln(r)− ln(ε)) r dr

⇔ Jε(ũε)− J0(u0) =
π

(ln(R)− ln(ε))
.

The final result is

j(ε)− j(0) = Jε(uε)− J0(u0) =
−π

ln(ε)
+ o

(
1

ln(ε)

)
.

This result is exactly the same as the one obtained in [4].

3. Approximation of a perturbed solution

In this section, we assume that V0 ⊂ Vε. The aim of the previous section was to estimate the variation of
a cost function with respect to a local perturbation. In this part, the vault method is used to construct an
approximation of the perturbed solution u.

We assume the following hypothesis.

Hypothesis 3. There exists a constant Cu independent of ε and a positive real valued function f defined on
R+ such that

lim
ε→0

f(ε) = 0,

‖uε − u0‖VΩ0
≤ Cuf(ε),

‖aεD − a0
D‖L2(VεD) = O(f(ε)).

The norm ‖.‖L2(VεD) means the norm of the bilinear form.
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Proposition 3. Under Hypothesis 3, we have

‖uε − ũε‖Vε = O(f(ε)),

‖aε − a0‖L2(Vε) = O(f(ε)).

Proof. Thanks to Proposition 1, we have

‖uε − ũε‖Vε = O(f(ε)).

As a0 = aΩ0
+ a0

D and aε = aΩ0
+ aεD, we have

‖aε − a0‖L2(Vε) = O(f(ε)).

�

A singular local perturbation has two effects: a local high frequency effect and a global low frequency effect.
The local effect is caught by ũε. In the previous section, the global effect is taken into account by the adjoint.
In this section, we are considering the variation of the solution, the adjoint cannot be used, and we need to
solve an auxiliary problem in order to calculate the global low frequency variation.

Let us consider δuε the solution of{
Find δuε ∈ V0 solution of
a0(δuε, v) = aε(uε − ũε, v), ∀v ∈ V0.

(17)

The approximation of uε with the numerical vault is noted ˜̃uε and defined as follows

˜̃uε = ũε + δuε. (18)

Proposition 4. Under Hypothesis 3, we have

‖δuε‖V0 = O(f(ε)).

Proof. Thanks to the coercivity of a0, we have

α‖δuε‖2V0 ≤ a0 (δuε, δuε) = aε (uε − ũε, δuε) .

Thanks to the continuity of aε, we have

aε (uε − ũε, δuε) ≤M‖uε − ũε‖Vε‖δuε‖V0 .

Hypothesis 3 and Proposition 3 allow us to conclude. �

Theorem 3. Under Hypothesis 3 and with the definition of ˜̃uε, we have∥∥uε − ˜̃uε
∥∥
Vε = O((f(ε))2).

Proof. Thanks to the coercivity of aε, we have

α
∥∥uε − ˜̃uε

∥∥2

Vε ≤ a
ε
(
uε − ˜̃uε, uε − ˜̃uε

)
= aε

(
uε − ũε, uε − ˜̃uε

)
− aε

(
δuε, uε − ˜̃uε

)
.

Thanks to the definition of ˜̃uε, we have

α
∥∥uε − ˜̃uε

∥∥2

Vε ≤ a
0
(
δuε, uε − ˜̃uε

)
− aε

(
δuε, uε − ˜̃uε

)
.
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Thanks to Proposition 3, we have

‖aε − a0‖L2(Vε) = O(f(ε)),

so

|a0
(
δuε, uε − ˜̃uε

)
− aε

(
δuε, uε − ˜̃uε

)
| ≤ Cf(ε)‖δuε‖V0

∥∥uε − ˜̃uε
∥∥
Vε .

Thanks to Proposition 4, we have

‖δuε‖V0 = O(f(ε)).

This implies that ∥∥uε − ˜̃uε
∥∥
Vε = O((f(ε))2).

�

Algorithm 1 Algorithm to approximate the perturbed solution

1: Solve the global problem using a0 to obtain u0 (3).
2: Solve the local problem using aεD to obtain uεD (5).
3: Solve the global problem using a0 to obtain δuε (17).

4: The solution is ˜̃uε = ũε + δuε.

We solved a local problem and two global problems at ε = 0. The proposed method is interesting when the
problem is easy to solve at ε = 0. This the case when the initial problem can be solved using spectral methods
with constant coefficient.

It is also interesting when the matrix arising from a0 is factorized. In the case of iterative method, when the
same matrix is used to solve many problems, it is possible to build efficient preconditioners.

This method can be considered by researchers who do not use the adjoint method [18–23]. The low frequency
effect can be taken into account by solving several time the same initial systems.

4. Application to topological and continuous variations

4.1. Problem statement

The aim of this section is to approximate the variation of a cost function in the following cases: topological
pertubation, mesh perturbation, continuous variation of stiffness perturbation.

We model an experiment as follows: the domain Ω is a rectangle filled with an elastic material, the left
vertical side is fixed and a vertical force of intensity µ in the downward direction is applied on the middle of
the right vertical side, see Figure 1. The other sides are free.

Let Ω be a rectangular bounded domain of R2 and Γ be its boundary, composed of two parts Γ1 and Γ2. The
considered problem has Dirichlet boundary conditions on Γ1 and Neumann boundary conditions on Γ2. The
rectangle is subject to a displacement u solution of the following equation:

−∇.σ(u) = 0 in Ω,

u = 0 on Γ1,

σ(u)n = g on Γ2.

(19)

with

φ(u) =
1

2
(Du+DuT ),

σ(u) = hH0φ(u),

where H0 is the Hooke tensor and h(x) = 1 and ρ represents the material presence or absence.
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Figure 1. From left to right, a model without perturbation, two models with perturbations

The optimization problem consists in minimizing the following cost function

j(h) =

∫
Γ2

g.u dx, (20)

with the following constraint ∫
Ω

h(x)dx = C,

where C is the material quantity to retain.
For each element, the function h is modified, then the exact variation is computed using the cost function

(20) with u0 the solution of Equation (19) and uε the solution of
−∇.σε(uε) = 0 in Ωε,

uε = 0 on Γ1,

σε(uε)n = g on Γ2.

(21)

For each element, the numerical vault variation is computed using Theorem 2 which is equivalent to

j(hε)− j(h) =

∫
Γ2

(g.ũε − g.u) dx−
∫

Ωε
σ(ũε).∇(ũε) dx+

∫
Ω

σ(u).∇(u) dx, (22)

with

ũε =

{
uεD in D,
u0 in Ω0,

(23)

where uεD is the solution of the following equation
−∇.σε(uεD) = 0 in D,

uεD = 0 on Γ1,

σε(uεD)n = g on Γ2.

(24)

Remark 3. In this particular problem, the adjoint solution p is equal to −u, so u and p have opposite updates.



14 THE EXTENDED ADJOINT METHOD

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

0.5

1

1.5

2

2.5

x 10
−7

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

2

4

6

8

10

12

x 10
−8

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

0.5

1

1.5

2

2.5

3

3.5

x 10
−8

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

0.5

1

1.5

2

2.5

x 10
−7

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

2

4

6

8

10

12

x 10
−8

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

0.5

1

1.5

2

2.5

3

3.5

x 10
−8

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

0.5

1

1.5

2

2.5

x 10
−7

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

2

4

6

8

10

12

x 10
−8

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

0.5

1

1.5

2

2.5

3

3.5

x 10
−8

Figure 2. Topological perturbation: from left to right, mesh with 516, 2064 and 8256 elements.
On the top row, actual variation, on the middle row, the estimation obtained with the numerical
vault and on the bottom row, the estimation obtained with the adjoint method

L1 norm L2 norm L∞ norm

method difference relative err. difference relative err. difference relative err.

mesh adjoint 5.64 × 10−5 0.4191 9.53 × 10−6 0.6729 7.10 × 10−6 0.8012

516 vault 5.64 × 10−6 0.0419 1.02 × 10−6 0.0718 8.41 × 10−7 0.0948

mesh adjoint 4.99 × 10−5 0.3843 4.59 × 10−6 0.6512 3.07 × 10−6 0.8084

2064 vault 3.21 × 10−6 0.0247 5.02 × 10−7 0.0711 3.88 × 10−7 0.1023

mesh adjoint 4.50 × 10−5 0.3587 2.01 × 10−6 0.6141 1.18 × 10−6 0.8147

8256 vault 2.34 × 10−6 0.0186 2.15 × 10−7 0.0660 1.50 × 10−7 0.1035

Table 1. Topological perturbation: comparative results of the variations obtained with the
adjoint method and with the vault method.



THE EXTENDED ADJOINT METHOD 15

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

−8

−6

−4

−2

0

x 10
−8

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

−8

−6

−4

−2

0

x 10
−8

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−5

Figure 3. Mesh perturbation: from left to right, actual variation, the estimations obtained
with the numerical vault and with the adjoint method

L1 norm L2 norm L∞ norm

method difference relative err. difference relative err. difference relative err.

adjoint 1.75 × 10−3 953.17 9.7249 × 10−5 463.06 3.32 × 10−5 367.67

vault 2.00 × 10−7 0.1091 2.0570 × 10−8 0.0979 5.41 × 10−9 0.0599

Table 2. Mesh perturbation: comparative results of the variations obtained with the adjoint
method and with the vault method.

4.2. Numerical results

In this section, the domain D is made of four layers of elements around the perturbed element. The first
experiment is relative to topological perturbation, the aim being to approximate the variation of the cost
function when an element is removed. The actual variation of the cost function, the estimations obtained with
the adjoint method and with the numerical vault are computed on three different meshes made of 516, 2064
and 8256 elements. The deletion of each mesh element is considered. Figure 2 shows the variation of the cost
function for each element when this element is deleted. In Table 1, the differences in the L1, L2 and L∞ norms
and the relative errors in the L1, L2 and L∞ norms are given for all the results obtained with the numerical
vault and with the adjoint method. One can note that the results obtained with the numerical vault are nearer
to the actual variation than the estimations obtained with the adjoint method.

The second experiment is relative to mesh perturbation, the aim being to approximate the variation of the
cost function when the mesh is modified. To perform the mesh modifications, at each node, one node is moved
towards the node on the left in the first layer of elements. The nodes on the boundary of the domain are not
modified. The actual variation of the cost function, estimations obtained with the adjoint method and with
the numerical vault are computed on a mesh made of 2064 elements. Figure 3 shows the variation of the cost
function for each node when this node is moved, the most interesting points are the legends of the plots. In
Table 2, the differences in the L1, L2 and L∞ norms and the relative errors in the L1, L2 and L∞ norms are
given for all the results obtained with the numerical vault and with the adjoint method. One can note that the
numerical vault outperforms the adjoint method.

The last experiments concern continuous variations of stiffness perturbations. Figures 4 and 5 present
different experiments which aim at comparing the estimations obtained by the vault method and by the adjoint
method with the actual variation. The mesh is made of 8256 elements. For each experiment, the locations of the
perturbations are given on the left image and the associated graphs are on the right. In the curves, the abscissa
is the inhomogeneity stiffness varying from 0 to 2.5 with the material stiffness equal to 1 and the ordinate is
the variation of the cost function. Different cases are considered by varying the location, the number and the
size of the perturbations.
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Figure 4. From left to right, the perturbations and the associated curves with blue-circle for
the exact variation, red-asterisk for the estimation obtained by the numerical vault and green-
square for the estimation obtained by the adjoint method. The abscissa is the inhomogeneity
stiffness varying from 0 to 2.5 with the material stiffness equal to 1 and the ordinate is the
variation of the cost function.
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Figure 5. From left to right, the perturbations and the associated curves with blue-circle for
the exact variation, red-asterisk for the estimation obtained by the numerical vault and green-
square for the estimation obtained by the adjoint method. The abscissa is the inhomogeneity
stiffness varying from 0 to 2.5 with the material stiffness equal to 1 and the ordinate is the
variation of the cost function.

In Figure 4, the beam has an homogeneous material property, a rectangular shape and some perturbations
introduced. The perturbations are inside the beam or at the extremity or at random locations with two different
sizes. In Figure 5, the beam has a predefined shape. In each graph, the abscissa is the material property of
the perturbation and the ordinate is the computed result of the cost function with the different methods. The
legend is the following: blue-circle for the exact variation, red-asterisk for the estimation obtained by numerical
vault and green-square for the estimation obtained by the adjoint method. One can note that the estimation
by the adjoint method is an approximation of first order and the vault method is more precise.

5. Elastography

5.1. Problem statement

The aim of this section is to detect small inclusions in elastography [24–29] which is a technique giving the
directional displacement of a material under motion. This medical imaging technique relies on the fact that
elastic properties of tissues provide medical information that allows to detect or classify tumors which tend to
be stiffer than the surrounding soft tissue.

This imaging experiment is only an example, other applications such localization of conductivity inhomo-
geneities can also be considered [30,31].

We model an experiment as follows: the domain Ω is a rectangle filled with an elastic material, the left
vertical side is fixed and the right vertical side is moved by a small amount µ in the left direction, see Figure 6.
The other sides are free. In order to ensure uniqueness of the resulting displacement, we also prevent vertical
translations.
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Figure 6. From left to right, the experiment without inclusion, two experiments with inclusions

Let Ω be a rectangular bounded domain of R2 and Γ be its boundary, composed of two parts Γ1 and Γ2. The
points of the rectangle are submitted to a horizontal displacement u solution of the following equation:

−∇.σ(u) = 0 in Ω,

u = 0 on Γ1,

σ(u)n = µ on Γ2,

(25)

with

φ(u) =
1

2
(Du+DuT ),

σ(u) = hH0φ(u),

where σ(u) is a stress distribution, H0 is the Hooke tensor and h(x) = 1 and ε represents the material stiffness.
Unlike the previous illustration with the topology optimization, this time ε represents a stiff material property
compared to the main part of the model, see Figure 6. Stiff material inhomogeneities are more difficult to detect
than soft ones.

The optimization problem is to minimize the following cost function

J(h) =

∫
Ω

|uh − uobs|2 dx. (26)

5.2. Numerical results

Two experiments are presented in this section to establish that an algorithm using the numerical vault to
compute an approximation of the variations of the cost function is able to recover the localization of some
material inclusions. The stiffness of the inclusion is supposed to be known.

In the first experiment, there is only one inclusion. The algorithm computes the estimation of the cost
function obtained by the numerical vault for each element of the mesh. The considered element is supposed
to be the inhomogeneity, the computations are only local. The domain D is made of four layers of elements
around the considered element. Figure 7 presents the horizontal displacements without and with the inclusion,
the inclusion and the location result. The detection obtained with the numerical vault allows to detect the
correct location of the inclusion and gives already an idea of its shape.

In the second experiment, there are two inclusions. The algorithm is the same as previously so it is only
looking for one inclusion. Figure 8 presents the horizontal displacements without and with the inclusions, the
inclusions considered and the location result. The detection obtained with the numerical vault by looking for
one inclusion is not fully accurate but allows us to localize two inclusions. Another set of computations is
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Figure 7. From left to right, in the first row, the horizontal displacements for the uniform ma-
terial and the perturbed material. In the second row, the inclusion and the detection obtained
with the numerical vault.

performed by creating a perturbation in each localization zone. The small size of localization zones reduces the
complexity of our computations. The result is neatly improved and gives better localizations.

In both cases, the detection can be improved by using the numerical vault to test the elements surrounding
the localization. It may permit to obtain a better localization and gives an idea of the inclusion shape. A mesh
refinement or mesh displacement, followed by some computations with the numerical vault will also generate a
better detection.

6. Image restoration

6.1. Problem statement

The aim of this section is to illustrate Section 3 by reconstructing a perturbed solution using the numerical
vault. A classical way to restore an image u from its noisy version v defined in a domain Ω ⊂ R2 is to solve the
following PDE problem {

−∇.(c∇u) + u = v in Ω,

∂nu = 0 on ∂Ω,
(27)

where c is a positive constant or a tensor [32] and ∂n denotes the normal derivative to ∂Ω.
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Figure 8. From left to right, in the first row, the horizontal displacements for the uniform
material and the perturbed material. In the second row, the inclusions and the detection ob-
tained with numerical vault by looking for one inclusion. In the third row, two initial detection
zones and the two localization results with the numerical vault by looking for two inclusions.
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Topological gradient has been applied to the restoration problem in order to determine a diffusion coefficient
c preserving the edges [33,34]. In this section, the estimation obtained by the numerical vault is employed.

At a given point x0 ∈ Ω, we insert a small insulating crack σε = x0 + εσ(n) where σ(n) is a straight crack
and n is a unit vector normal to the crack. We now consider Ωσ = Ω\σε the perturbed domain created by
inserting this crack. The perturbed solution uε ∈ H1(Ωσ) satisfies

−∇.(c∇uε) + uε = v in Ω,

∂nu
ε = 0 on ∂Ω,

∂nu
ε = 0 on σε.

(28)

The corresponding variational formulation is given by{
find uε ∈ H1(Ωσ) such that

aε(uε, w) = `ε(w) ∀w ∈ H1(Ωσ),
(29)

where aε is the bilinear form, defined on H1(Ωσ)×H1(Ωσ) by

aε(u,w) =

∫
Ωσ

c∇u∇w + u w dx,

and `ε is the linear form, defined on L2(Ωσ) by

`ε(w) =

∫
Ωσ

v w dx.

The domain Ω is decomposed in two parts. A part D containing the perturbation and its complementary
Ω0 = Ω\D. So the forms aε and lε are decomposed in the following way:

aε(u,w) = aΩ0
(u,w) + aεD(u,w) =

∫
Ω0

c∇u∇w + u w dx+

∫
D

c∇u∇w + u w dx,

`ε(w) = `Ω0
(w) + `εD(w) =

∫
Ω0

v w dx+

∫
D

v w dx,

where aΩ0
and lΩ0

are independent of ε.
The local perturbed solution uεu0 ∈ H1(D) satisfies

−∇.(c∇uεu0) + uεu0 = v in D,

∂nu
ε
u0 = 0 on σε,

uεu0 = u0 on ∂D.

(30)

Let ũε be the update of u0

ũε =

{
uεu0 in D,
u0 in Ω0.

(31)

The function vε satisfies 
−∇.(c∇ũε) + ũε = vε in Ωε,

∂nũ
ε = 0 on σε,

∂nũ
ε = 0 on ∂Ωε.

(32)
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The function δuε satisfies {
−∇.(c∇δuε) + δuε = v − vε in Ω,

∂nδu
ε = 0 on ∂Ω.

(33)

The approximation of uε is ˜̃uε = ũε + δuε.

6.2. Topological gradient, solving the perturbed problem

The function u0 ∈ H1(Ω) is the solution of the following direct problem:{
−∇ · (c∇u0) + u0 = v in Ω,

∂nu
0 = 0 on ∂Ω,

(34)

where ∂n denotes the normal derivative to ∂Ω.

Figure 9. Cracked domain.

The edge detection method consists in looking for a crack σ such that the energy j(ε) = Jε(u
ε) = 1

2

∫
Ωε
|∇uε|2

is as small as possible [33]. The function uε is the solution of Equation 28. This amounts to state that the
energy outside the edges is as small as possible.

The cost function j has the following asymptotic expansion

j(ε)− j(0) = ε2g(x0,n) + o(ε2), (35)

where the topological gradient g is given by

g(x0,n) = −πc(∇u0(x0) · n)(∇p0(x0) · n)− π|∇u0(x0) · n|2.

The function p0 is the solution to the adjoint problem:{
−∇ · (c∇p0) + p0 = −∂uJ0(u0) in Ω,

∂np
0 = 0 on ∂Ω.

(36)

The functions u0 and p0 are calculated in the initial domain without cracks. The topological gradient can
be written g(x,n) = nTM(x)n, where M(x) is the 2× 2 symmetric matrix defined by

M(x) = −πc∇u
0(x)∇p0(x)T +∇p0(x)∇u0(x)T

2
− π∇u0(x)∇u0(x)T . (37)

For a given x, g(x,n) takes its minimal value when n is the eigenvector associated to the lowest eigenvalue
λmin(x) of M(x). This value is the topological gradient associated to the optimal orientation of the crack σε
at the location x.

The edges are located at points x where λmin(x) is the most negative and their orientation is given by the
corresponding eigenvector.
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Algorithm 2 Algorithm for image restoration with numerical vault

Input: noisy image v, diffusion coefficient c0, ε > 0, threshold δ < 0.
Output: restored image u.

1: Initialization: c = c0.
2: Computation of u0 and p0, solutions of direct and adjoint problems, see equations (34) and (36).
3: Computation of the tensor M(x) using equation (37).
4: Computation of the smallest eigenvalue λmin(x) of M(x) at each point of the domain.

5: Set c(x) =

{
ε if λmin(x) < δ,
c0 otherwise.

6: Computation of uεu0 solutions of direct problems in D around {x ∈ Ω, λmin(x) < δ}.

7: Set ũε =

{
uεu0 in D,
u0 in Ω0.

8: Computation of δuε, solution of direct problem, see Equation (33).

9: Set ˜̃uε = ũε + δuε.

Figure 10. Set of gray-level images used for tests.

6.3. Numerical results in image restoration

The Peak-Signal-to-Noise Ratio (PSNR) and the Structural SIMilarity (SSIM) [35] are used to quantify the
restorations. The PSNR formula is the following

PSNR = 10 log10

(
2552mn∑m−1

i=0

∑n−1
j=0 [I(i, j)−K(i, j)]2

)
,

where I and K are the images of dimension m× n which are compared. The SSIM follows this equation:

SSIM =
(2µIµK + c1)(2σI,K + c2)

(µ2
I + µ2

K + c1)(σ2
I + σ2

K + c2)
,

where µI is the average of I, µK is the average of K, σ2
I is the variance of I, σ2

K is the variance of K, σ2
I,K

is the covariance of I and K, c1 = (k1L)2 and c2 = (k2L)2 two variables to stabilize the division by a weak
denominator (where L is the dynamic range, usually 2#bits per pixel − 1, and k1 = 0.01, k2 = 0.03 by default).
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Figure 11. From left to right, the Barbara noisy image with σ = 15, the reconstructions with
respectively the isotropic diffusion and the numerical vault.

Figure 12. From left to right, the Girl noisy image with σ = 15, the reconstructions obtained
with respectively the isotropic diffusion and the numerical vault.

Barbara σ = 5 σ = 15 σ = 25
512 × 512 PSNR SSIM PSNR SSIM PSNR SSIM

Noisy 34.13 0.881 24.62 0.560 20.25 0.386
ID 35.78 0.942 27.92 0.760 25.32 0.638
FA 34.87 0.933 27.20 0.747 24.93 0.630
SA 35.74 0.938 27.87 0.758 25.28 0.638

Table 3. Comparative results of the restoration using the isotropic diffusion (ID), the first
approximation (31) (FA) and the second approximation (SA) obtained with Algorithm 6.2.

Figure 10 presents the set of gray-level images: Barbara, Boat, Hill, Man and Lena (512× 512); House and
Peppers (256× 256); Girl (462× 357) used for the tests. The domain D is made of one layer of elements around
the edge.

Table 3 presents the Barbara restoration results from images perturbed by additive Gaussian noises of stan-
dard deviation σ = 5, 15 and 25. The first approximation (31) (FA) is not sufficient. The second approximation
(SA) has similar results. Figure 11 shows the noisy image and illustrates the similarity between the restorations.
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σ = 5 σ = 15 σ = 25
PSNR SSIM PSNR SSIM PSNR SSIM

Noisy 34.18 0.885 24.63 0.537 20.29 0.348
Boat ID 36.14 0.926 29.97 0.797 27.56 0.709

SA 36.14 0.926 29.80 0.795 27.40 0.705

Noisy 34.13 0.888 24.63 0.536 20.27 0.328
Hill ID 36.17 0.930 30.32 0.794 28.25 0.711

SA 36.17 0.930 30.22 0.792 28.16 0.709

Noisy 34.13 0.844 24.62 0.451 20.21 0.272
Lena ID 37.24 0.931 31.42 0.819 29.14 0.754

SA 37.21 0.931 31.32 0.818 29.03 0.752

Noisy 34.13 0.878 24.60 0.522 20.25 0.332
Man ID 36.44 0.937 30.27 0.807 28.07 0.729

SA 36.43 0.937 30.15 0.805 27.91 0.726

Noisy 34.20 0.839 24.64 0.447 20.19 0.278
House ID 37.34 0.926 31.59 0.823 28.95 0.753

SA 37.24 0.925 31.24 0.820 28.52 0.747

Noisy 34.14 0.870 24.60 0.523 20.35 0.352
Peppers ID 37.48 0.954 30.93 0.859 28.10 0.786

SA 37.38 0.954 30.69 0.857 27.90 0.782

Noisy 34.17 0.815 25.12 0.437 20.81 0.271
Girl ID 37.72 0.944 31.04 0.786 28.22 0.698

SA 37.59 0.943 30.91 0.785 28.07 0.695

Table 4. Comparative results of the restoration using the isotropic diffusion (ID) and the
second approximation (SA) obtained with Algorithm 6.2.

PCG iter. σ = 5 σ = 15 σ = 25
Image ID SA ID SA ID SA

Barbara 10 8 10 7 9 5
Man 9 8 9 5 10 4

Table 5. Comparative results of number of iteration steps of PCG using the isotropic diffusion
(ID) and the second approximation (SA) obtained with Algorithm 6.2.

Table 4 presents the other image restoration results from images perturbed by additive Gaussian noises of
standard deviation σ = 5, 15 and 25. The restorations giving by the direct equation and by the numerical
vault are nearly equivalent. Figure 12 gives another visual results, the noisy image and illustrates the similarity
between the two restorations for the Girl image.

The numerical vault approach is faster than the classical method. For the reconstruction with the isotropic
diffusion (ID), Equation (27) needs to be solved with a diffusion coefficient c that depends on the topological
gradient. This resolution is made with a preconditioned conjugate gradient (PCG) method preconditioned
by a DCT solver and a constant diffusion coefficient c (see [36] for details). The method with the numerical
vault uses the same tools to compute the solution of Equation (33) with a constant diffusion coefficient c. The
computations to obtain the first update are only local, see Equation (30), and are negligible compared to the
problem size.
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Table 5 presents the number of iterations of PCG using the isotropic diffusion (ID) and the second approxima-
tion obtained with the algorithm (SA) from images perturbed by additive Gaussian noises of standard deviation
σ = 5, 15 and 25. For the same tolerance, in term of PCG iterations, the resolution with the numerical vault
is faster than the classical method.

7. Conclusion

In this work, the adjoint method has been extended with a new method named the numerical vault. The
theoretical sections justify that the numerical vault is able to capture the variation of the cost function in a
better way than the previous adjoint method. They also demonstrate that the vault method can be applied to
update the solution of a singularly perturbed problem.

The numerical applications on mesh perturbation and topological and continuous variations show the superi-
ority of the results obtained using the vault method compared to those obtained using the adjoint method. The
curves presented in the numerical applications have illustrated that the numerical vault captures higher order
of the variation compared to the adjoint method. As a result, inclusions in elastography could be successfully
localized. To solve these problems, only a very simple direct solution and some local computations have been
performed. Major advantages of the method are that the numerical vault is non invasive and can be used with
a parallel computing implementation.

The second interest is to offer a new method to resolve direct equations, avoiding the resolution of the
full direct perturbed equation, which can be costly in computing time, when only local zones are affected
by modifications of the equation operator. In the image applications, the purpose was not to obtain good
restoration results - they can be improved by using an anisotropic diffusion scheme [37] - but to demonstrate
that the approximation created with the numerical vault is equivalent to the direct solution.

The numerical vault is a universal tool that can be applied to many different linear problems as long as the
hypothesis holds. Research in nonlinear applications is under consideration.
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