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A Wavelet-Balance Approach for Steady-State Analysis analysis has never been explored. In this paper, we propose a novel

of Nonlinear Circuits wawelet-basedalgorithm, named thewavelet-balance method, to
access the periodic steady-state problem. Taking advantage of the
Xin Li, Bo Hu, Xieting Ling, and Xuan Zeng wavelets, the proposed method works more efficiently in time domain

than those frequency—domain techniques, and has a solid theoretical
background based on wavelet approximation theory.

The rest of this paper is organized as follows. In Section II, we
first introduce the basic principle of the wavelet-balance method for
steady-state analysis, then compare the proposed algorithm with con-
ventional Fourier-based techniques [5]-[10] in Section lll. Numerical
experiments are presented in Section IV to demonstrate the compu-

Abstract—in this paper, a novel wavelet-balance method is proposed for tational efficiency of the proposed algorithm. Finally, we draw con-
steady-state analysis of nonlinear circuits. Taking advantage of the supe- clusions in Section V and outline some important background of the
rior computr?\tional properti(_es of wavelets, th_e proposed method presents \yavelet basis functions in the Appendix.
several merits compared with those conventional frequency—domain tech-

niques. First, it has a high convergence rat@D(h*), where h is the step
length. Second, it works in time domain so that many critical problems in ~ |l. WAVELET BALANCE APPROACH FORSTEADY -STATE ANALYSIS

frequency domain, such as nonlinearity and high order harmonics, can be L .
handled efficiently. Third, an adaptive scheme exists to automatically se- A+ Principle of Wavelet Balanced Steady-State Analysis

lect proper wavelet basis functions needed at a given accuracy. Numerical  \jithout loss of generality, we assume that a circuit is described by
experiments further prove the promising features of the proposed method . . . .
an ordinary differential equation of the type

in solving steady-state problems.
Index Terms—Nonlinear circuit, steady-state analysis, wavelet balance. dX

where[X (t) = X1 (t) X2(t) -+ Xn(t)]" are thelV unknown state
variables, ang’( X, t) is a given nonlinear vector function.
The basic idea of the wavelet-balance method in this paper is to ex-
pand the unknown state variables by wavelet series, but not the Fourier
series that have been used in the conventional techniques [5]-[10].
|. INTRODUCTION Assume the steady-state response period of the circiit snd the

9 : . .
A major difficulty in time-domain simulation of nonlinear circuits, SOP0eV spacﬁ [0, Z] IS studied for wavelet expansion. Usually, be-
such as power supplies, highamplifiers, modulators and oscillators, C2US€ the period doesn't satisfy some specific conditions needed for

etc., is that the transient response may stand for quite a long time bef§RY€Iets, for exampld, > 4 corresponding to the wavelet basis func-

the steady-state is reached. This problem makes it infeasible to call@s in [121] {17[3] i]sgaling operation should be applied to map the
0[0, L], i.e.,

late the steady-state response by conventional transient simulatio8grval[0:
gorithms because direct integration of the circuit equations throughout
the transients consumes unbearable computing time.

During the past several decades, a great number of techniques Rang o € [0.T].1 € [0. L], andK is a constant which equals Ig/T'.
been developed to solve the periodic steady-state problem [1]‘[1éhbstituting/ (2)' into (1), we obtain
which may be categorized into three classes: shooting methods [1]-[4],
harmonic balance methods [5]-[10] and sample balance methods [11]. dX f <X L)

)

I=K-t @)

The shooting methods attempt to find a set of initial conditions satis- K- ar

fying the two-point boundary constraint, such that the circuit starts in ] ) ]
periodic steady state directly. However, the shooting methods consum#? order to find the steady-state solutions, the state variablds
expensive computing time since they require to numerically integreR€€ €xpanded by wavelets

@)

the system equations time after time. The harmonic balance methods "X (D)

assume the circuit solutions in the form of Fourier series. Moreover, Xa(0)

they divide the circuit into a linear and a nonlinear part so that the X() = o

linear subnetwork could be solved efficiently in frequency domain. Un- ' :

fortunately, the harmonic balance methods need to repeatedly execute L X (1)

DFT and IDFT operatlon_s, during the solution process, and emplo_y a r Oy Cr o+ Cium Bi(l)

large number of harmonic components to achieve an accurate simu- C. Cor oo Con Ba(l)
. . . . 21 22 2M 2

lation result. Therefore, they also expend substantial computing time. = . . i . .

The sample balance methods directly approximate the time-domain : : : : :

state-variable waveforms by suitable basis functions, such as periodic LCn1 Cn2 -+ Cru B (1)

cubic splines, and use time-domain samples as problem unknowns. =C-B() (4)

Nevertheless, there doesn't exist a strong theory to ensure the conver-

gence features of these methods. where ¢ € RN*M s the coefficient matrix,{B;(I),i =
Recently, the wavelet theory has been well developed [12], [13] and2,..., M}, are wavelet basis functions, ant/ is the total

widely used in many applications, such as solving partial differentisbimber of basis functions that have been employed. The wavelet basis
equations [14], [15] and performing high-speed circuit simulatiorfsinctions can be constructed by many means [13], but in this paper,
[16], [17]. However, the wavelet-based method for steady-statee prefer to use the basis functions in [16], [17] because they are



proved to have a high convergence rétgh*), whereh is the step wavelet basis functions, which are needed for approximating state vari-

length [16], [17]. ables, can be employed automatically. It, in turn, improves the compu-
Substituting (4) into (3), we get tational efficiency significantly.
A multiresolution approximation of %[0, L] is a sequence
K.-C. %I(Z) =f <CB(Z), IL) . 5) {Vs.J=...,-1,0,1,...} of closed subspaces &[0, L]
¢ ' ) --CcVoiCcVoCViC-

Then, discretize the state (5) at some interior collocation points 2) nj= Vi = {0}

o0

{li,12,....1x} [16], [17] as shown in (6) at the bottom of the page. 3) UT>" .V, = H?0, L]
Equations (1) to (6), are similar to those illustrated in [16] and [17]. 4) V7 = Vi—1 © W
But for steady-state response, the state variaklgg should further where the notatiorb stands for the direct sum. It is clear that the ap-

satisfy the two-point boundary constraint proximation accuracy depends on the wavelet space Jevidie higher
; the space level is, the less the error will be. As pointed out in [15]-[17],
X(0) = X(L). (7)  the magnitude of the wavelet coefficientslii; will indicate whether

a refinement, by increasing the wavelet space level, is needed or not.
For example, define the maximum relative magnitude of the wavelet

C-B(0) = C- B(L). @8) coefficients int¥V; as

Thus, we get one more vector equation for the coefficient méatrix

MAX ||
MAX|C;]

For nonautonomous circuits, the steady-state response peried R, =
determined by input excitations, and the const&nin (6) is known
in advance. Hence, there até - N problem unknowns in coefficient )
WpereMAX

matrixC' to be determined. Meantime, the total number of independe&ents i grzld\I'ISAt?(TCmﬁ)s(lm:n%;?rg:ﬁ:“:fao;itttzgvci‘vaelllevt\/ac\?;glt
algebraic equations in (6) and (8)(i84 + 1) - N. In order to solve o e g

- : . . : fficients. IfR, is gr rthan a given error toler incr
these equations, we define the merit function shown in (9) at the bottcr?we cients. Iffz, is greater than a given error toleranceve increase

. . he wavelet space levélto J', whereJ' > J [17].
of the page wherd - || denotes the Frobenius norm. Employing the More importantly, because of the compact support of wavelet bases
optimization algorithm, such as the Levenberg—Marquardt method in P Y, P PP ’

[18], to minimize the merit functior), we can obtain the Ieast-square-nOt all wavelet basis functions in higher wavelet spa&gs are needed
errolr solutionC’. as well as the steat’j _state response in order to achieve more accuracy. In fact, only basis functions, whose
" Y P positions near the singularities (which can be determined by the mag-

X(1)=C- B() nitude of the wavelet coefficients on levg), shall be included [17].

(11

X () =C - B(Kt). 10
( ) (&) (10) Ill. COMPARISON WITH CONVENTIONAL FOURIER-BASED

On the other hand, in autonomous cases, there are tétailyV + 1 TECHNIQUES
unknown variables, since the oscillation peribdnd consequently the  The key feature of the wavelet-balance method is the fact that
constanty’ in (6) are undeterminated. Recall that the overall number @favelet basis has compact support or local support in time domain,
independent algebraic equations in (6) and (8)}is+ V) - N, which  \whereas Fourier basis’>"*/T has a global support. Hence, the
is greater than or at least equals to the number of problem unknowggposed wavelet-balance method presents following advantages.
Therefore, the same optimization algorithm can be used to minimizerirst, the wavelet-balance method has a high-convergence rate, re-
the merit function (9) and find the least-square-error solutions of Co%fulting in low computational complexity. It is demonstrated in [16],
ficient matrix C' and the unknown parametar. [17] that the wavelet basis functions presented there, which are also
In summary, the essence of the proposed wavelet-balance methqgkisd in this paper, have a high convergence@ste' ), whereh is the
to approximate the state variables by wavelet basis functions, but 8fp |ength, i.e., the distance between two adjacent collocation points.
the Fourier basis’*™"*/" as in many conventional algorithms. More-  Second, the wavelet-balance method works in the time domain, so
over, the wavelets are forced to keep “balance” at the two boundafat many critical problems in frequency domain, such as nonlinearity
points in (8), so that the steady-state solution is guaranteed when 4@ high-order harmonics, can be handled efficiently. It is well known
state equation is solved. that when the circuit response is highly distorted by strong nonlinear-
ities, the use of Fourier series with a large number of harmonics may
cause considerable computation time, owing to the great number of un-
One of the main advantages of the wavelet-balance method is thmbwn variables [11].
there exists an adaptive scheme, which relies on the multiresolutiorThird, but most importantly, the adaptive scheme introduced in Sec-
analysis in wavelet theory [15]-[17]. Using adaptive techniques, thosen I1.B can automatically select proper wavelet basis functions needed

B. Adaptive Technique

K.C.{dBd(lh) dBd(llﬂ dB((j;‘M)}:{f<CB(ll),%> f(CB(lz),%) f(CB(zM)w%’f)} (6)

2

0~ HCB(O) _OB(I) I(-CdB(h) _f <CB(]1), Iy ) I(-CdB(]M) — <CB(IM), ]IAT',> 9)

dl K dl




TABLE I
SIMULATION RESULTS OF THEWAVELET EXPANSION (WITHOUT ADAPTIVE
SCHEME) FOR MOS AMPLIFIER

TABLE |

SIMULATION RESULTS OF THE FOURIER
EXPANSION FORMOS AMPLIFIER

Wavelet Space Overall Basis Relative Simulation
Level J Function Number Error for Vi,
0 23 9.731733x10™
1 43 5.427637x1072
E 2 83 2.770902x1072
3 163 1.328406x10°
L 4 323 5.888023x1073
5 643 2.250459x10°
Fig. 1. MOS amplifier wherdR = 1 k2 andC = 0.1 uF.
TABLE Il

SIMULATION RESULTS OF THEWAVELET EXPANSION (WITH ADAPTIVE

SCHEME) FOR MOS AMPLIFIER

- - - - - Wavelet Space Overall Basis Relative Simulation
Basis Function Relative Simulation Error for Level J Function Number Error for Vpyy
Number Vour
T 0603 N107 0 23 9.731733%1072
o 2' PR 4" o2 1 43 5.427637x10°
o1 248149 5" 102 2 77 2.770964x10°2
161 s 5528X1 02 3 123 1.329575x1072
: X 4 195 5.933110x10°3
321 4.832508x10 ; 5 319 5 440557510°
641 1.463385x10 6 515 1.233280x10°

at a given accuracy. High-level wavelet basis functions are only em-
ployed near singularities. Actually, the response of nonlinear circuits 10|
will exhibit localized singularities, which can be easily captured by the
wavelet approach through adaptivity.

In addition, itis reported in [5]-[11] that the entire nonlinear network
can be decomposed into a linear and a nonlinear multiport subnetwork
with the same number of ports. Because the linear part can be solved in
frequency domain, computation efficiency can be achieved by choosing
the required number of state variables as the same number of linear
subnetwork ports, no matter what the actual number of the dynamic
elements is. This idea can also be applied to the proposed wavelet-
balance method, but the detailed implementation is beyond the scope
of this paper and will not be presented here. 10

-~ Harmmonic Balance
-4 Wawlet (Nonadaptive)
—— Wawelet (Adaptive)

Relative Simulation Error
-
o-
N

10 10° 10' 10° 10
IV. NUMERICAL EXPERIMENTS Computatlon Time (Sec)

In this section, three circuit examples have been examined to dembig- 2.  Simulation results for MOS amplifier.

strate the effectiveness of our proposed wavelet-balance method for

steac_iy-state analysis. All of the circuit examples are simulated on a \ m — AAN Y +

Pentium I11-550 computer. ’__J R, L,

A. MOS Amplifier = o ST RS Vour
Shown in Fig. 1 is a very simple MOS amplifier from which we can _

make a full comparison between the proposed wavelet-balance methoc £
and those conventional Fourier-based techniques. We test the circuit

in Fig. 1 with a square-wave input of amplitudd V and frequency 1 Fig. 3. Power supply wher€, = 1 uF,C. = C; = 1 mF,L; = 0.1
kHz. First, we expand the state variableu by Fourier series. Table| H, R, = 5 Q2 andR, = 1 K.

gives the relative simulation errors when different basis function num-

bers are employed. The relative error is defined as for quite a long time until the transients die out, so that an accurate

steady-state response can be obtained.

Second, we expand the state variables by wavelets and apply the
wavelet-balance method to calculate the steady-state response. When
the adaptive technigue is not used, all basis functions in given wavelet
whereyspick (t) represents the exact steady-state response obtainedpgces are employed for computation. Table Il gives the relative simula-
SPICE andyiou: (t) represents the simulation response by the Fouri@on errors under different wavelet basis function numbers. Comparing
expansion. Note that the state equation should be integrated by SPT@EIle 11 with Table I, one would find that the wavelet-balance method

_ Slyspicr(t) — yrou (1)]? dt
e \/ Jlyspior(t)]? dt (12)



TABLE [V
SIMULATION RESULTS OF THEFOURIER EXPANSION FORPOWER SUPPLY
Basis Function Number Relative Simulation Computation Time
Ve Vea Veq I Total Error for Vyyp (Sec.)
11 11 i1 11 44 8.058812x107 0.380
21 21 21 21 84 1.545737x10° 0.681
41 a4 41 41 164 3.086698x10™ 1.512
61 61 61 61 244 1.563388x10™* 4.646
TABLE V
SIMULATION RESULTS OF THEWAVELET EXPANSION (WITH ADAPTIVE SCHEME) FOR POWER SUPPLY
Wavelet Space Basis Function Number Relative Simulation Computation Time
Level J Ver Ves Ves 1., Total Error for Vo r (Sec.)
0 13 13 13 13 52 8.086976x10° 0410
1 23 23 23 23 92 8.808400x10 0.851
2 31 29 23 31 114 1.420685x10™ 1.161
3 37 29 23 43 132 5.251310x10° 1.873
9.104 . T v x 10°
10.5 S
T #+ 10 ¥ *
9.102] " + . ] + .
+ + 9.5} + +
o 91t + 1 +
E + s o :
=1 + E e
£ 9.008! ] 5 85 % "
+ < 8 % +
+ | +
9.096 + 75 'f_]_ + J
P s
9.094 et : 4 K T
0 0.005 0.01 0.015 0.02 6.5 ) ) )
Time (Sec.) "o 0.005 0.01 0.015 0.02
Time (Sec.)

Fig. 4. Steady-state responseVdf .+ in power supply.
Fig. 5. Steady-state responselof, in power supply.
hasn’'t gained any point in this example. The convergence rate of the

Fourier expansion is a little higher than that of the wavelet approach. i +
Third, we show that the wavelet-balance method can improve its ef-
F(Vou) ClT L
L

ficiency significantly after the adaptive algorithm is applied. Let the Vour

error tolerance = 10~ and employ the adaptive technique to se-

lect proper basis functions automatically. Seven wavelet spaces (from

level O to level 6) in all are applied by the adaptive algorithm during

the course of iteration. Table Ill displays the relative simulation errdig. 6. Van der Pol oscillator wher€; = 1 F L, = 1 H and

and the total number of selected wavelet basis functions as differdntVor) = 5+ (Vour — Vgur/3).

wavelet spaces are included. Two comments can be made according to

the data in Tables I-lll. wavelets. Therefore, as displayed in Tables | and Ill, the wavelet

1) After the adaptive algorithm is applied, the number of wavelet ~ expansion exhibits higher convergence rate than the Fourier
bases which are used at a given space level is reduced since not approach after the adaptive scheme is employed.
all basis functions in that wavelet space are needed for compu+inally, Fig. 2 depicts the relation between simulation accuracy and
tation. On the other hand, the simulation error for given spac®mputational time for the above three different approaches. Note that
level J doesn’t change much as shown in Tables Il and Ill. Thisnder small basis function numbers, the wavelet-balance method is
demonstrates that the adaptive algorithm has the potential to piudt so efficient as the Fourier approach because almost all low-level
up the most important basis functions and those ones neglectealvelet basis functions are employed in order to capture those glob-
by the adaptive scheme don'’t contribute a lot to the simulatialized components of the circuit response. However, as the wavelet
accuracy. space-level increases, the adaptive scheme begins to take effect and

2) Taking advantage of the property of compact support, thegh level wavelet bases are only used in those regions where the circuit
adaptive algorithm can automatically select proper waveletsponse exhibits localized singularities. Therefore, under large basis
basis functions. However, Fourier bases have global suppérhction numbers, the wavelet-balance method begins to catch up with
and it is infeasible to realize such a selection in time domain #ise Fourier approach in accuracy and become more efficient.




TABLE VI
SIMULATION RESULTS OF THEFOURIER EXPANSION FORV AN DER POL OSCILLATOR
Basis Function Number Relative Simulation Computation Time
Ve I, Total Error for Vyur (Sec.)
11 11 22 4.963203x10°! 0.981
21 21 42 2.722372x10! 1.803
41 41 82 1.119378x10"! 2.203
61 61 122 6.799617x10* 6.159
71 71 142 6.744133x10 8.482
TABLE VI
SIMULATION RESULTS OF THEWAVELET EXPANSION (WITH ADAPTIVE SCHEME) FOR VAN DER POL OSCILLATOR
Wavelet Space Basis Function Number Relative Simulation Computation Time
Level J Vo I, Total Error for V,y (Sec.)
0 13 13 26 4.885475x10°! 0.962
1 23 23 46 2.617620x10! 2223
2 41 35 76 1.298582x10™! 2.452
3 57 55 112 7.386915x1072 2.784
4 75 55 130 5.622640x1072 6.880
B. Power Supply 3
The power-supply circuit shown in Fig. 3 is one of the several exam- ol by
ples that has been used in the past to test various steady-state analysis T 4t i -
algorithms for nonautonomous circuits [1], [2], [4], [7]- The input exci- 1l +*‘ﬁ; +
tation in Fig. 3 is a standard sinusoidal signal of amplittd® V and ° Y +
frequency 60 Hz. First, we expand the state variables, Voo, Vs E ol 1
andl,, by Fourier series. Table 1V displays the simulation errors and E- + +
computation times when different basis function numbers are used. < 4l +
Second, we expand the state variables by wavelets and apply the adap- +
tive scheme to automatically choose necessary wavelet basis functions + ++++++++
with error tolerance = 10™°. Table V gives the simulation results 2 et
obtained by the wavelet-balance method. The effect of the adaptive al-
gorithm is well illustrated by Tables IV and V that the wavelet expan- 35 2 4 6 8 10 12
sion overtakes the Fourier technique in efficiency as the basis function Time (Sec.)

number increases.
Figs. 4 and 5 depict the steady-state respdriser and ., ob- Fig. 7. Steady-state response¥y in Van der Pol oscillator.
tained by the wavelet-balance method at space léve! 3. As indi-

cated by the distribution of collocation poifitshe wavelet basis func- the wavelet-balance method (with adaptive scheme at error tolerance
tions which are adaptively employed for representing are much - — 1(=2) respectively. Again, the wavelet-balance method reveals its
more than those fdrou, since the waveform af.4 is more singular effectiveness in both speed and accuracy when solving the steady-state
than that ofour. In addition, most wavelet basis functions in Fig. Syroplems.

concentrate in interval [0, 0.005] where the responsérefexhibits Fig. 7 depicts the output waveforka,y+ simulated by the wavelet-

a fast transition. The above comparison demonstrates that the waygiance method at space level= 4. Note that the adaptive scheme

forms with different singularities are treated by the adaptive scherggly automatically employ high level basis functions in interval [2, 5]
differently. High-level wavelet bases are only used near sharp trangjq [7, 10], where fast transitions take place.

tions, which is exactly the reason why the wavelet-balance method is

more efficient than the Fourier approach in this example. V. CONCLUSION REMARKS

We present in this brief, a novel wavelet-balance method for steady-
state analysis of nonlinear circuits. As a counterpart of those Fourier-

Because of the high nonlinearity, the Van der Pol oscillator isa3sed techniques, the wavelet-balance method works in time domain
served as a benchmark circuit for various steady-state algorithgisy has a solid theoretical background based on the wavelet approxi-
for autonomous circuits, such as those in [4], [8], [9]. The circuiyation theory. Taking advantage of the superior computational proper-
schematic is quite simple as illustrated in Fig. 6. Tables VI and Vijes of wavelets, the proposed method can automatically select proper
display the simulation results obtained by the Fourier expansion aggkis functions for computation so that it presents greater efficiency

1Each wavelet basis function is combined with a collocation point, and tﬁhan the conventional Fourier-based techniques in many practical prob-
wavelet basis function is localized in the neighborhood of its corre’spondill%ns' From this point of view, the wavelet-balance method exploits

collocation point. Therefore, the distribution of collocation points reflects th@ NEW approach to access the steady-state problem besides those fre-
distribution of wavelet basis functions. quency domain methods that have been used for a long time.

C. Van der Pol Oscillator



APPENDIX

In this Appendix, we briefly present some important background ?ﬁ
the wavelet basis functions used in this paper.

In Sobolev spacél 2 [0, L], we firstintroduce the following function
subspaces:

Vo= { m (), n2(t), m (L = t),m2(L — t), po,-1(t) }
_ 1 = span )

©0,0(t), 00,1(t);s- -+, v0,L-4(t), po,L—3(L — 1)
W, =span{¥, x(t),-1 < K < 27 — 2},
V=V, 4+ W, T3>0

J>0
(A1)

The total number of basis functions in subspligés N = 271 L+ 3.
On the other hand, the following collocation points are chosen for
—y andW;,J > 0, respectively

f:O,%,l,Q,...,L—l,L—%,L, forvV_,

1 1.5 25 27 -15 1 .

t= 9U+2° 97 97 57 L= 27+2” for W,
(A.11)

The above content only gives a simple outline of the wavelet basis

functions and collocation points used in this paper, and further details

where the definitions of functiong: (t), 12 (t),¢o,—1(t), {0,k (t),
0 < K >L—4},¢or s(L—t)and{¥;x(t),-1 < K <
27 — 2,7 > 0} are given belowspan{fi, f2,..., fv} is a function
set formed by all linear combinations of the functiofis f-, ..., fn .-

In (A.1), the functiony,(t),n2(¢) are used to handle nonhomo-
geneity of the boundary data

m(t) = (1-1?

1 3

s 7 4 .
na(t) = 2ty — 262 + éti —gt=Di+t-2i A2
where [1]
n _ ft", ift2>0 21
= {O, otherwise A3
The boundary scaling functions are (3]
3 . 11 . 3, .
wo,-1(t) = @u(t) = §ti - Eti + 5t 1)} [4]
3 3 1 3
— (=2 ~(t-3
=25+ (=3 5]
k’Po,Lf;s(f) = in(L —t) (A-4)
and the interior scaling functions (6]
por(t)=p(t—K), 0<K<L-4 (A.5) 7
where
1 5 [8l
p(t) = gfi —3(t- DI+ (t-2)7%
2 : 1 : [9]
— 5= 3)% + gt- 4%, (A6)
The boundary wavelet functions are [10]
by i(t) = 'k/‘ho(?“rt), Vi,0(t) = s (2Jt)
Vyp7_y(t) = v [27 (L - 1)] [11]
U120 -(1) = rol2” (L = 1)] (A7)
[12]
where
” [13]
Uro(t) = —;—9[14'¢’(t +2) + o(t + 1)] [14]
182 1 1
=-"2 |y 4 ) )
Gni(t) = —1o7 (VO + ZuE+ D+ 5ot +2)) (A8) 18]
and the interior wavelet functions are [16]
virt) =02’ —K), 1<K<2' -4 (A.9)
[17]
where
3 12 3 18
Y(t) = —?99(27‘) + 7@(27? -1)— ‘;99(21‘/ —2). (A.10) [18]

can be found in [15]-[17].
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