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In this paper, a novel wavelet-balance method is proposed for steady-state analysis of nonlinear circuits. Taking advantage of the superior computational properties of wavelets, the proposed method presents several merits compared with those conventional frequency-domain techniques. First, it has a high convergence rate ( ), where is the step length. Second, it works in time domain so that many critical problems in frequency domain, such as nonlinearity and high order harmonics, can be handled efficiently. Third, an adaptive scheme exists to automatically select proper wavelet basis functions needed at a given accuracy. Numerical experiments further prove the promising features of the proposed method in solving steady-state problems.

I. INTRODUCTION

A major difficulty in time-domain simulation of nonlinear circuits, such as power supplies, high-Q amplifiers, modulators and oscillators, etc., is that the transient response may stand for quite a long time before the steady-state is reached. This problem makes it infeasible to calculate the steady-state response by conventional transient simulation algorithms because direct integration of the circuit equations throughout the transients consumes unbearable computing time.

During the past several decades, a great number of techniques have been developed to solve the periodic steady-state problem [START_REF] Aprille | Steady-state analysis of nonlinear circuits with periodic inputs[END_REF]- [START_REF] Filicori | Nonlinear circuit analysis through periodic spline approximation[END_REF], which may be categorized into three classes: shooting methods [START_REF] Aprille | Steady-state analysis of nonlinear circuits with periodic inputs[END_REF]- [START_REF] Parkuhurst | Determining the steady-state output of nonlinear oscillatory circuits using multiple shooting[END_REF], harmonic balance methods [START_REF] Ushida | Frequency-domain analysis of nonlinear circuits driven by multi-tone signals[END_REF]- [START_REF] Yamagami | Analysis of communication circuits based on multidimensional Fourier transformation[END_REF] and sample balance methods [START_REF] Filicori | Nonlinear circuit analysis through periodic spline approximation[END_REF]. The shooting methods attempt to find a set of initial conditions satisfying the two-point boundary constraint, such that the circuit starts in periodic steady state directly. However, the shooting methods consume expensive computing time since they require to numerically integrate the system equations time after time. The harmonic balance methods assume the circuit solutions in the form of Fourier series. Moreover, they divide the circuit into a linear and a nonlinear part so that the linear subnetwork could be solved efficiently in frequency domain. Unfortunately, the harmonic balance methods need to repeatedly execute DFT and IDFT operations during the solution process, and employ a large number of harmonic components to achieve an accurate simulation result. Therefore, they also expend substantial computing time. The sample balance methods directly approximate the time-domain state-variable waveforms by suitable basis functions, such as periodic cubic splines, and use time-domain samples as problem unknowns. Nevertheless, there doesn't exist a strong theory to ensure the convergence features of these methods.

Recently, the wavelet theory has been well developed [START_REF] Meyer | Ondelettes ét opétateurs, I: Ondelettes[END_REF], [START_REF] Chui | An Introduction to Wavelets[END_REF] and widely used in many applications, such as solving partial differential equations [START_REF] Bacry | A wavelet based space-time adaptive numerical method for partial differential equations[END_REF], [START_REF] Cai | Adaptive multi-resolution collocation methods for initial boundary value problems of nonlinear PDE's[END_REF] and performing high-speed circuit simulations [START_REF] Zhou | A fast wavelet collocation method for high-speed circuit simulation[END_REF], [START_REF] Zhou | An adaptive wavelet method for nonlinear circuit simulation[END_REF]. However, the wavelet-based method for steady-state analysis has never been explored. In this paper, we propose a novel wavelet-based algorithm, named the wavelet-balance method, to access the periodic steady-state problem. Taking advantage of the wavelets, the proposed method works more efficiently in time domain than those frequency-domain techniques, and has a solid theoretical background based on wavelet approximation theory.

The rest of this paper is organized as follows. In Section II, we first introduce the basic principle of the wavelet-balance method for steady-state analysis, then compare the proposed algorithm with conventional Fourier-based techniques [START_REF] Ushida | Frequency-domain analysis of nonlinear circuits driven by multi-tone signals[END_REF]- [START_REF] Yamagami | Analysis of communication circuits based on multidimensional Fourier transformation[END_REF] in Section III. Numerical experiments are presented in Section IV to demonstrate the computational efficiency of the proposed algorithm. Finally, we draw conclusions in Section V and outline some important background of the wavelet basis functions in the Appendix.

II. WAVELET BALANCE APPROACH FOR STEADY-STATE ANALYSIS

A. Principle of Wavelet Balanced Steady-State Analysis

Without loss of generality, we assume that a circuit is described by an ordinary differential equation of the type

dX dt = f (X; t) (1)
where [X(t) = X1(t) X2(t) 1 1 1 XN (t)] T are the N unknown state variables, and f (X; t) is a given nonlinear vector function.

The basic idea of the wavelet-balance method in this paper is to expand the unknown state variables by wavelet series, but not the Fourier series that have been used in the conventional techniques [START_REF] Ushida | Frequency-domain analysis of nonlinear circuits driven by multi-tone signals[END_REF]- [START_REF] Yamagami | Analysis of communication circuits based on multidimensional Fourier transformation[END_REF]. Assume the steady-state response period of the circuit is T , and the Sobolev space H 2 [0; L] is studied for wavelet expansion. Usually, because the period T doesn't satisfy some specific conditions needed for wavelets, for example, L 4 corresponding to the wavelet basis functions in [START_REF] Zhou | A fast wavelet collocation method for high-speed circuit simulation[END_REF], [START_REF] Zhou | An adaptive wavelet method for nonlinear circuit simulation[END_REF], a scaling operation should be applied to map the interval [0; T ] to [0; L], i.e.,

l = K 1 t (2)
where t 2 [0; T ]; l 2 [0; L], and K is a constant which equals to L=T . Substituting (2) into (1), we obtain

K 1 dX dl = f X; l K : (3) 
In order to find the steady-state solutions, the state variables X (l) are expanded by wavelets

X (l) = X 1 (l) X 2 (l) . . . XN (l) = C 11 C 12 1 1 1 C 1M C21 C22 1 1 1 C2M . . . . . . . . . . . . CN 1 CN 2 1 1 1 CN M 1 B 1 (l) B 2 (l) . . . B M (l) = C 1 B(l) (4) 
where C 2 R N2M is the coefficient matrix, fBi (l); i = 1; 2; . . . ; M g, are wavelet basis functions, and M is the total number of basis functions that have been employed. The wavelet basis functions can be constructed by many means [START_REF] Chui | An Introduction to Wavelets[END_REF], but in this paper, we prefer to use the basis functions in [START_REF] Zhou | A fast wavelet collocation method for high-speed circuit simulation[END_REF], [START_REF] Zhou | An adaptive wavelet method for nonlinear circuit simulation[END_REF] because they are proved to have a high convergence rate O(h 4 ), where h is the step length [START_REF] Zhou | A fast wavelet collocation method for high-speed circuit simulation[END_REF], [START_REF] Zhou | An adaptive wavelet method for nonlinear circuit simulation[END_REF]. Substituting (4) into (3), we get

K 1 C 1 dB(l) dl = f CB(l); l K : (5) 
Then, discretize the state (5) at some interior collocation points fl 1 ; l 2 ; . . . ; l M g [START_REF] Zhou | A fast wavelet collocation method for high-speed circuit simulation[END_REF], [START_REF] Zhou | An adaptive wavelet method for nonlinear circuit simulation[END_REF] as shown in ( 6) at the bottom of the page.

Equations ( 1) to ( 6), are similar to those illustrated in [START_REF] Zhou | A fast wavelet collocation method for high-speed circuit simulation[END_REF] and [START_REF] Zhou | An adaptive wavelet method for nonlinear circuit simulation[END_REF].

But for steady-state response, the state variables X(l) should further satisfy the two-point boundary constraint

X(0) = X(L): (7) 
Thus, we get one more vector equation for the coefficient matrix

C C 1 B(0) = C 1 B(L): (8) 
For nonautonomous circuits, the steady-state response period T is determined by input excitations, and the constant K in ( 6) is known in advance. Hence, there are M 1 N problem unknowns in coefficient matrix C to be determined. Meantime, the total number of independent algebraic equations in ( 6) and ( 8) is (M + 1) 1 N . In order to solve these equations, we define the merit function shown in ( 9) at the bottom of the page where k1k denotes the Frobenius norm. Employing the optimization algorithm, such as the Levenberg-Marquardt method in [START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF], to minimize the merit function Q, we can obtain the least-squareerror solution C, as well as the steady-state response

X(l) = C 1 B(l) X(t) = C 1 B(Kt): (10) 
On the other hand, in autonomous cases, there are totally M 1 N + 1 unknown variables, since the oscillation period T and consequently the constant K in (6) are undeterminated. Recall that the overall number of independent algebraic equations in ( 6) and ( 8) is (M + N ) 1 N , which is greater than or at least equals to the number of problem unknowns. Therefore, the same optimization algorithm can be used to minimize the merit function ( 9) and find the least-square-error solutions of coefficient matrix C and the unknown parameter K.

In summary, the essence of the proposed wavelet-balance method is to approximate the state variables by wavelet basis functions, but not the Fourier basis e j2k=T as in many conventional algorithms. Moreover, the wavelets are forced to keep "balance" at the two boundary points in [START_REF] Pala-Schonwalder | A discrete time approach to the steady state analysis of nonlinear autonomous circuits[END_REF], so that the steady-state solution is guaranteed when the state equation is solved.

B. Adaptive Technique

One of the main advantages of the wavelet-balance method is that there exists an adaptive scheme, which relies on the multiresolution analysis in wavelet theory [START_REF] Cai | Adaptive multi-resolution collocation methods for initial boundary value problems of nonlinear PDE's[END_REF]- [START_REF] Zhou | An adaptive wavelet method for nonlinear circuit simulation[END_REF]. Using adaptive techniques, those wavelet basis functions, which are needed for approximating state variables, can be employed automatically. It, in turn, improves the computational efficiency significantly.

A multiresolution approximation of H 2 [0; L] is a sequence fV J ; J = . . . ; 01; 0; 1; . . .g of closed subspaces of H 2 [0; L] 1)

1 11 V 01 V 0 V 1 111 2) \ +1 J=01 V J = f0g 3) [ +1 J=01 V J = H 2 0; L] 4) VJ = VJ01 8 WJ
where the notation 8 stands for the direct sum. It is clear that the approximation accuracy depends on the wavelet space level J . The higher the space level is, the less the error will be. As pointed out in [START_REF] Cai | Adaptive multi-resolution collocation methods for initial boundary value problems of nonlinear PDE's[END_REF]- [START_REF] Zhou | An adaptive wavelet method for nonlinear circuit simulation[END_REF], the magnitude of the wavelet coefficients in W J will indicate whether a refinement, by increasing the wavelet space level, is needed or not. For example, define the maximum relative magnitude of the wavelet coefficients in W J as

RJ = MAX C J i MAXjC i j (11) 
where MAXjC J i j is the maximum magnitude of the wavelet coefficients in W J , and MAXjC i j is the maximum magnitude of all wavelet coefficients. If RJ is greater than a given error tolerance ", we increase the wavelet space level J to J 0 , where J 0 > J [START_REF] Zhou | An adaptive wavelet method for nonlinear circuit simulation[END_REF].

More importantly, because of the compact support of wavelet bases, not all wavelet basis functions in higher wavelet spaces W J are needed in order to achieve more accuracy. In fact, only basis functions, whose positions near the singularities (which can be determined by the magnitude of the wavelet coefficients on level J ), shall be included [START_REF] Zhou | An adaptive wavelet method for nonlinear circuit simulation[END_REF].

III. COMPARISON WITH CONVENTIONAL FOURIER-BASED TECHNIQUES

The key feature of the wavelet-balance method is the fact that wavelet basis has compact support or local support in time domain, whereas Fourier basis e j2k=T has a global support. Hence, the proposed wavelet-balance method presents following advantages.

First, the wavelet-balance method has a high-convergence rate, resulting in low computational complexity. It is demonstrated in [START_REF] Zhou | A fast wavelet collocation method for high-speed circuit simulation[END_REF], [START_REF] Zhou | An adaptive wavelet method for nonlinear circuit simulation[END_REF] that the wavelet basis functions presented there, which are also used in this paper, have a high convergence rate O(h 4 ), where h is the step length, i.e., the distance between two adjacent collocation points.

Second, the wavelet-balance method works in the time domain, so that many critical problems in frequency domain, such as nonlinearity and high-order harmonics, can be handled efficiently. It is well known that when the circuit response is highly distorted by strong nonlinearities, the use of Fourier series with a large number of harmonics may cause considerable computation time, owing to the great number of unknown variables [START_REF] Filicori | Nonlinear circuit analysis through periodic spline approximation[END_REF].

Third, but most importantly, the adaptive scheme introduced in Section II.B can automatically select proper wavelet basis functions needed at a given accuracy. High-level wavelet basis functions are only employed near singularities. Actually, the response of nonlinear circuits will exhibit localized singularities, which can be easily captured by the wavelet approach through adaptivity. In addition, it is reported in [START_REF] Ushida | Frequency-domain analysis of nonlinear circuits driven by multi-tone signals[END_REF]- [START_REF] Filicori | Nonlinear circuit analysis through periodic spline approximation[END_REF] that the entire nonlinear network can be decomposed into a linear and a nonlinear multiport subnetwork with the same number of ports. Because the linear part can be solved in frequency domain, computation efficiency can be achieved by choosing the required number of state variables as the same number of linear subnetwork ports, no matter what the actual number of the dynamic elements is. This idea can also be applied to the proposed waveletbalance method, but the detailed implementation is beyond the scope of this paper and will not be presented here.

Q = CB(0) 0 CB(L) K 1 C dB(l1) dl 0 f CB(l 1 ); l1 K 111 K 1 C dB(lM ) dl 0 f CB(l M ); lM K 2 (9) 

IV. NUMERICAL EXPERIMENTS

In this section, three circuit examples have been examined to demonstrate the effectiveness of our proposed wavelet-balance method for steady-state analysis. All of the circuit examples are simulated on a Pentium III-550 computer.

A. MOS Amplifier

Shown in Fig. 1 is a very simple MOS amplifier from which we can make a full comparison between the proposed wavelet-balance method and those conventional Fourier-based techniques. We test the circuit in Fig. 1 with a square-wave input of amplitude 61 V and frequency 1 kHz. First, we expand the state variable V OUT by Fourier series. Table I gives the relative simulation errors when different basis function numbers are employed. The relative error is defined as

Err R = [y SPICE (t) 0 y Four (t)] 2 dt [y SPICE (t)] 2 dt (12)
where y SPICE (t) represents the exact steady-state response obtained by SPICE and y Four (t) represents the simulation response by the Fourier expansion. Note that the state equation should be integrated by SPICE for quite a long time until the transients die out, so that an accurate steady-state response can be obtained. Second, we expand the state variables by wavelets and apply the wavelet-balance method to calculate the steady-state response. When the adaptive technique is not used, all basis functions in given wavelet spaces are employed for computation. Table II gives the relative simulation errors under different wavelet basis function numbers. Comparing Table II with Table I, one would find that the wavelet-balance method hasn't gained any point in this example. The convergence rate of the Fourier expansion is a little higher than that of the wavelet approach. Third, we show that the wavelet-balance method can improve its efficiency significantly after the adaptive algorithm is applied. Let the error tolerance " = 10 03 and employ the adaptive technique to se- lect proper basis functions automatically. Seven wavelet spaces (from level 0 to level 6) in all are applied by the adaptive algorithm during the course of iteration. Table III displays relative simulation error and the total number of selected wavelet basis functions as different wavelet spaces are included. Two comments can be made according to the data in Tables I-III.

1) After the adaptive algorithm is applied, the number of wavelet bases which are used at a given space level is reduced since not all basis functions in that wavelet space are needed for computation. On the other hand, the simulation error for given space level J doesn't change much as shown in Tables II andIII. This demonstrates that the adaptive algorithm has the potential to pick up the most important basis functions and those ones neglected by the adaptive scheme don't contribute a lot to the simulation accuracy. 2) Taking advantage of the property of compact support, the adaptive algorithm can automatically select proper wavelet basis functions. However, Fourier bases have global support and it is infeasible to realize such a selection in time domain as wavelets. Therefore, as displayed in Tables I and III, the wavelet expansion exhibits higher convergence rate than the Fourier approach after the adaptive scheme is employed. Finally, Fig. 2 depicts the relation between simulation accuracy and computational time for the above three different approaches. Note that under small basis function numbers, the wavelet-balance method is not so efficient as the Fourier approach because almost all low-level wavelet basis functions are employed in order to capture those globalized components of the circuit response. However, as the wavelet space-level increases, the adaptive scheme begins to take effect and high level wavelet bases are only used in those regions where the circuit response exhibits localized singularities. Therefore, under large basis function numbers, the wavelet-balance method begins to catch up with the Fourier approach in accuracy and become more efficient. 

B. Power Supply

The power-supply circuit shown in Fig. 3 is one of the several examples that has been used in the past to test various steady-state analysis algorithms for nonautonomous circuits [START_REF] Aprille | Steady-state analysis of nonlinear circuits with periodic inputs[END_REF], [START_REF] Skelboe | Computation of the periodic steady-state response of nonlinear circuits by extrapolaton methods[END_REF], [START_REF] Parkuhurst | Determining the steady-state output of nonlinear oscillatory circuits using multiple shooting[END_REF], [START_REF] Frey | An integral equation approach to the periodic steady-state problem in nonlinear circuits[END_REF]. The input excitation in Fig. 3 a standard sinusoidal signal of amplitude 610 V and frequency 60 Hz. First, we expand the state variables V C1 ; V C2 ; V C3 and I L4 by Fourier series. Table IV displays the simulation errors and computation times when different basis function numbers are used. Second, we expand the state variables by wavelets and apply the adaptive scheme to automatically choose necessary wavelet basis functions with error tolerance " = 10 03 . Table V gives the simulation results obtained by the wavelet-balance method. The effect of the adaptive algorithm is well illustrated by Tables IV and V that the wavelet expansion overtakes the Fourier technique in efficiency as the basis function number increases.

Figs. 4 and 5 depict the steady-state response V OUT and I L4 ob- tained by the wavelet-balance method at space level J = 3. As indicated by the distribution of collocation points 1 , the wavelet basis functions which are adaptively employed for representing IL4 are much more than those for V OUT , since the waveform of I L4 is more singular than that of V OUT . In addition, most wavelet basis functions in Fig. 5 concentrate in interval [0, 0.005] where the response of IL4 exhibits a fast transition. The above comparison demonstrates that the waveforms with different singularities are treated by the adaptive scheme differently. High-level wavelet bases are only used near sharp transitions, which is exactly the reason why the wavelet-balance method is more efficient than the Fourier approach in this example.

C. Van der Pol Oscillator

Because of the high nonlinearity, the Van der Pol oscillator is served as a benchmark circuit for various steady-state algorithms for autonomous circuits, such as those in [START_REF] Parkuhurst | Determining the steady-state output of nonlinear oscillatory circuits using multiple shooting[END_REF], [START_REF] Pala-Schonwalder | A discrete time approach to the steady state analysis of nonlinear autonomous circuits[END_REF], [START_REF] Frey | A class of relaxation algorithms for finding the periodic steady-state solution in nonlinear system[END_REF]. The circuit schematic is quite simple as illustrated in Fig. 6. Tables VI and VII display the simulation results obtained by the Fourier expansion and 1 Each wavelet basis function is combined with a collocation point, and the wavelet basis function is localized in the neighborhood of its corresponding collocation point. Therefore, the distribution of collocation points reflects the distribution of wavelet basis functions. the wavelet-balance method (with adaptive scheme at error tolerance " = 10 02 ) respectively. Again, the wavelet-balance method reveals its effectiveness in both speed and accuracy when solving the steady-state problems. Fig. 7 depicts the output waveform V OUT simulated by the waveletbalance method at space level J = 4. Note that the adaptive scheme only automatically employ high level basis functions in interval [START_REF] Skelboe | Computation of the periodic steady-state response of nonlinear circuits by extrapolaton methods[END_REF][START_REF] Ushida | Frequency-domain analysis of nonlinear circuits driven by multi-tone signals[END_REF] and [START_REF] Frey | An integral equation approach to the periodic steady-state problem in nonlinear circuits[END_REF][START_REF] Yamagami | Analysis of communication circuits based on multidimensional Fourier transformation[END_REF], where fast transitions take place.

V. CONCLUSION REMARKS

We present in this brief, a novel wavelet-balance method for steadystate analysis of nonlinear circuits. As a counterpart of those Fourierbased techniques, the wavelet-balance method works in time domain and has a solid theoretical background based on the wavelet approximation theory. Taking advantage of the superior computational properties of wavelets, the proposed method can automatically select proper basis functions for computation so that it presents greater efficiency than the conventional Fourier-based techniques in many practical problems. From this point of view, the wavelet-balance method exploits a new approach to access the steady-state problem besides those frequency domain methods that have been used for a long time.
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APPENDIX

In this Appendix, we briefly present some important background of the wavelet basis functions used in this paper.

In Sobolev space H 2 [0;L], we first introduce the following function subspaces:

V 01 = span 1(t); 2(t); 1(L 0 t); 2(L 0 t); '0;01(t) ' 0;0 (t);' 0;1 (t);.. .;' 0;L04 (t);' 0;L03 (L 0 t) W J = spanf9 J;K (t);01 K 2 J 0 2g; J 0 V J = V 01 + W J ; J 0

where the definitions of functions 1 (t); 2 (t);' 0;01 (t);f' 0;K (t); 0 K L 0 4g;' 0;L03 (L 0 t) and f9 J;K (t);01 K 2 J 0 2;J 0g are given below. spanff1;f2; .. .;fNg is a function set formed by all linear combinations of the functions f 1 ; f 2 ; .. .;f N .

In (A.1), the function 1 (t); 2 (t) are used to handle nonhomogeneity of the boundary data

where

The boundary scaling functions are The boundary wavelet functions are and the interior wavelet functions are J;K (t) = (2 J 0 K); 1 K 2 J 0 4

(A.9) where (t) = 0 3 7 '(2t) + 12 7 '(2t 0 1) 0 3 7 '(2t 0 2):

(A.10)

The total number of basis functions in subspace VJ is N = 2 J +1 L+3.

On the other hand, the following collocation points are chosen for V 01 and W J ; J 0, respectively t = 0; 1 2 ; 1; 2; . ..;L 0 1;L 0 1 2 ; L;

for V 01 t = 1 2 J +2 ; 1:5 2 J ; 2:5 2 J ; ...; 2 J 0 1:5 2 J ; L 0 1 2 J +2 ; for W J (A.11)

The above content only gives a simple outline of the wavelet basis functions and collocation points used in this paper, and further details can be found in [START_REF] Cai | Adaptive multi-resolution collocation methods for initial boundary value problems of nonlinear PDE's[END_REF]- [START_REF] Zhou | An adaptive wavelet method for nonlinear circuit simulation[END_REF].