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THE MATLAB ODE SUITE

LAWRENCE F. SHAMPINE� AND MARK W. REICHELTy

Abstract. This paper describesmathematical and software developments for a suite of programs
for solving ordinary di�erential equations in Matlab.

Key words. ordinary di�erential equations, sti�, BDF, Gear method, Rosenbrock method,
non-sti�, Runge-Kutta method, Adams method

AMS subject classi�cations. 65L06, 65L05, 65Y99, 34A65

1. Introduction. This paper presents mathematical and software developments
that are the basis for a suite of programs for the solution of initial value problems of
the form

y0 = F (t; y)

on a time interval t0 � t � tf , given initial values y(t0) = y0. The solvers for sti�
problems allow the more general form

M (t) y0 = f(t; y)

with a mass matrixM (t) that is non-singular and (usually) sparse. The programs have
been developed for Matlab [29], a widely used environment for scienti�c computing.
The environment imposed constraints, briey described in Section 2, on the choice
of methods and on how the methods were implemented. On the other hand, it has
features, some of which are available in C and FORTRAN 90, that make possible an
interesting and powerful user interface.

We begin in Section 3 by developing a new family of formulas for the solution of
sti� problems called the numerical di�erentiation formulas, NDF's. They are substan-
tially more e�cient than the backward di�erentiation formulas, BDF's, and of about
the same applicability. These formulas are conveniently implemented in a backward
di�erence representation. Perhaps the least convenient aspect of using backward dif-
ferences is changing step size. A new way of accomplishing this is developed that is
both compact and e�cient in Matlab.

In Section 4 we devise a new linearly implicit one-step method for solving sti�
systems. This modi�ed Rosenbrock method overcomes a serious defect in a method
of Wolfbrandt [40] and the e�cient error estimating companion of Zedan [42]. An
interpolant is derived that is \free" and of better quality than one previously used for
Wolfbrandt's method.

Section 5 describes briey how to modify the computational schemes developed
for the NDF's and the modi�ed Rosenbrock method so as to solve e�ciently problems
posed conveniently in terms of a mass matrix.

In Section 6, we discuss briey three explicit methods for non-sti� problems and
their implementations in the Matlab environment. The two codes based on Runge-
Kutta methods replace those of the previous generation of solvers. They are based
on improved formulas that have an interpolation capability. The interface remedies
de�ciencies in the original design and exploits interpolation to achieve smooth plots.
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2 L. F. SHAMPINE and M. W. REICHELT

The third code is a variable order implementationof Adams-Bashforth-Moulton PECE
formulas.

In the context of Matlab the software interface is of primary importance. Sec-
tion 7 explains how the language was exploited to devise an interface that is unob-
trusive, powerful, and extendable. Indeed, in the course of developing the suite, the
interface was extended in a remarkably convenient way to add to the codes for sti�
problems the capability of working with sparse Jacobians. Later the interface was
extended again to allow a more general form of the di�erential equations for sti�
problems.

Section 8 describes an exceptionally strong scheme for the numerical approxima-
tion of the partial derivatives required by the programs for solving sti� problems. The
new suite provides for general sparse Jacobians.

In Section 9, a selection of numerical examples illustrates the methods and their
realizations. Section 10 gives conclusions and acknowledgements, and describes the
availability of the codes.

2. Design Constraints. Certain aspects of the environment and the Matlab

language a�ected profoundly the selection of numerical methods and their imple-
mentation. Here we state briey important constraints on the design of the suite,
contrasting them implicitly with what might be typical of scienti�c computation in
batch mode.

Although it is by no means always the case, the typical problem in the Matlab

environment is solved interactively and the results displayed graphically. The former
argues for an interface that places minimal demands on the user. The fact that
graphical accuracy of, say, 0.1% is common inuences greatly the choice of numerical
method. To obtain smooth plots e�ciently and for other purposes, it is necessary
that the integrators have an interpolation capability.

As a rule the functions de�ning the di�erential equations are not particularly
expensive to evaluate. The language itself and interactive computation combine with
this to make overhead a comparatively important part of the overall cost. This is to
be addressed in two ways: careful exploitation of the capabilities of the language to
minimize the e�ects of overhead, especially the fact that array operations are fast,
and a careful weighing of algorithmic devices to decide whether potential bene�ts are
worth the overhead.

Some issues are particularly important for the solution of sti� problems. The
typical problem is either of modest size or has a Jacobian that is highly structured.
Matlab handles storage dynamically and retains copies of arrays. The language
provides for sparse arrays and linear algebra is fast.

3. Implicit Formulas for Sti� Systems. Unquestionably the most popular
methods for the solution of sti� problems are the backward di�erentiation formulas,
BDF's. The BDF's have a particularly simple form when the step size is a constant
h and backward di�erences are used. In a step from (tn; yn) to (tn+1; yn+1), where
tn+1 = tn + h, the backward di�erentiation formula of order k, BDFk, is

kX
m=1

1

m
rmyn+1 � hF (tn+1; yn+1) = 0(1)
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This implicit equation for yn+1 is typically solved with a simpli�ed Newton (chord)
method. The iteration is started with a value predicted by the simple formula

y
(0)
n+1 =

kX
m=0

rmyn(2)

The leading term in the truncation error of BDFk is

1

k + 1
hk+1y(k+1)(3)

which is conveniently approximated by

1

k + 1
rk+1yn+1(4)

General-purpose BDF codes adapt the step size to the solution of the problem.
For practical reasons the typical implementation of the BDF's is quasi-constant step
size, meaning that the formulas used are always those for a constant step size h and
the step size is held constant to the extent possible. When it is necessary or desirable
to change the step size to a new step size hnew, previous solution values computed at
a spacing of h are interpolated to obtain values at a spacing of hnew.

In addition to varying the step size, general-purpose BDF codes also vary the
order of the formula. Unfortunately, the stability of the BDF's worsens as the order
is increased. Although the �rst and second order BDF methods are A-stable (and
L-stable), the formulas are not even zero-stable for orders higher than 6. In fact, the
stability of the formula of order 6, BDF6, is so poor that it is not used in the popular
codes.

In this section we obtain a family of formulas called the NDF's that are closely
related to the BDF's and o�er some advantages. A backward di�erence representation
is particularly convenient for these formulas, so we develop a way of changing the step
size when using this representation that is well-suited to Matlab. Finally, some of the
important details of implementing the NDF's in the program ode15s are discussed.

3.1. The Numerical Di�erentiation Formulas. To address the issue of the
poor stability of the higher order BDF's, Klopfenstein [25] and Reiher [31] considered
a related family of formulas. Noting that the standard predictor equation (2) involves
one more value from the past than is used by the BDFk method (1), they considered
how this extra value might be used to improve the stability of BDFk. Klopfenstein
studied methods of the form

kX
m=1

1

m
rmyn+1 � hF (tn+1; yn+1) � �k

�
yn+1 � y(0)n+1

�
= 0(5)

that he called numerical di�erentiation formulas, NDF's. Here � is a scalar parameter
and the coe�cients k are given by

k =
kX

j=1

1

j

When � = 0, the NDF's reduce to the BDF's. Reiher [31] investigated the same class
of formulas, but wrote them in Lagrangian form.
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The role of the term that Klopfenstein added to BDFk is illuminated by the
identity

yn+1 � y(0)n+1 = rk+1yn+1

and the approximation (4) to the truncation error of BDFk. It follows easily that for
any value of the parameter �, the method is of order (at least) k and the leading term
in the truncation error is �

�k +
1

k + 1

�
hk+1y(k+1)(6)

For NDF's of orders 3-6, Klopfenstein and Reiher computed parameters � that
maximize the angle of A(�)-stability, yielding formulas more stable than the corre-
sponding BDFk. The situation at order 2 was special. Because BDF2 is already
A-stable, Klopfenstein considered how to choose � so as to reduce the truncation er-
ror as much as possible whilst still retaining A-stability. He proved a theorem to the
e�ect that the optimal choice is � = �1=9, yielding a truncation error coe�cient half
that of BDF2. This implies that while maintaining L-stability, NDF2 can achieve the
same accuracy as BDF2 with a step size about 26% bigger, a substantial improvement
in e�ciency.

A few details about e�ciency will be useful in what follows. When selecting a step
size, a code tries to choose the largest h for which the leading term in the truncation
error is no bigger than a given tolerance. For BDFk, the term is given by (3) and
for NDFk, by (6). Both have the form Chk+1y(k+1). A smaller truncation error
coe�cient C allows a given accuracy to be achieved with a larger step size h and the
interval of integration to be traversed in fewer steps. Because steps taken with BDFk
and NDFk cost the same, the integration is more e�cient with the formula having
the smaller C. More speci�cally, for a given error tolerance, if BDFk uses a step size
of h, then NDFk can use a step of size rh, where

r =

2
664

�
1

k + 1

�
�
�k +

1

k + 1

�
3
775

1
k+1

(7)

For NDF2 with � = �1=9, this gives r = 1:26 and we say that NDF2 is 26% more
e�cient than BDF2.

Unfortunately, the formulas derived by Klopfenstein and Reiher at orders higher
than 2 are less successful. The price of improved stability is reduced e�ciency. In our
estimation, the improvements are not worth the cost. If they had found a formula of
order 6 that is su�ciently stable to be used, then it would not matter that it is less
e�cient than BDF6. But the angle of A(�)-stability for their NDF6 is improved from
18� to only 29�, an angle that is still too small for us to consider using the formula.

Taking a tack opposite to Klopfenstein and Reiher, we computed values of � that
make the numerical di�erentiation formulas more accurate (hence more e�cient) than
the BDF's and not much less stable. Because Klopfenstein's NDF2 with � = �1=9
optimally improves accuracy while retaining L-stability, we adopted this as the order
2 method of our NDF family. For orders 3-5, our goal was to obtain an improvement
in e�ciency similar to that of NDF2 (26%) with the proviso that we were not willing
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Table 1

The Klopfenstein-Shampine NDF's and their e�ciency and A(�)-stability relative to the BDF's.

order NDF coe� step ratio stability angle percent
k � percent BDF NDF change
1 -0.1850 26% 90� 90� 0%
2 -1/9 26% 90� 90� 0%
3 -0.0823 26% 86� 80� -7%
4 -0.0415 12% 73� 66� -10%
5 0 0% 51� 51� 0%

to accept a stability angle less than 90% of that of the corresponding BDFk. Using
Matlab, an M-�le of a few lines provides for the computation of the stability angle
and plotting of the stability region by the root-locus method.

Using equation 7 and the root-locus method, we selected the � values shown
in Table 1. At order 3 we could obtain the desired e�ciency and stability without
di�culty. However, at order 4 we could achieve no more than a 12% increase in
e�ciency and still get a stability angle of 66�, which is 90% of the angle of 73� of
BDF4. Stability is especially important at order 5 because it is the highest we plan
to use and because the stability of BDF5 is signi�cantly worse than that of lower
order formulas. After �nding that we could not achieve worthwhile improvements in
e�ciency without unacceptable reductions in stability, we chose � = 0, hence took
NDF5 = BDF5.

Klopfenstein did not attempt to improve the accuracy of BDF1 in the same way
that he did with BDF2. Perhaps he did not want to lose the one step nature of BDF1.
Considering that both the predictor and the error estimator already make use of a
previously computed solution value, this would not really be a loss. We derived a
more accurate member of the family of NDF's at order 1 just as Klopfenstein did at
order 2. The numerical di�erentiation formula of order 1 is

yn+1 � yn � � (yn+1 � 2yn + yn�1) = hF (tn+1; yn+1)

The boundary of the stability region of a linear multistep method consists of those
points z for which the characteristic equation �(�) � z�(�) = 0 has a root � of mag-
nitude 1. For NDF1

�(�) = (1� �)�2 � (1 � 2�)� � �
�(�) = �2

The root-locus method obtains the boundary as a subset of the points z = �(�)=�(�)
as � = exp(i ) ranges over all numbers of magnitude 1. For this formula

Re(z) = 1� (1� 2�) cos( ) � 2� cos2( )

If 1� 2� � 0, then

Re(z) � 1� (1 � 2�)� 2� = 0

A su�cient condition for these formulas to be A-stable is that 1=2 � � because then
there are no points of the boundary of the stability region in the left half complex
plane. At order 1 the requirement that the formula be A-stable does not prevent the
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truncation error coe�cient from being reduced to 0. However, the coe�cient cannot
be made too small, else the formula would not \look" like a �rst order formula (the
leading term in the Taylor series expansion of the error would not dominate). We
chose the parameter so that the improvement in e�ciency at order 1 would be the
same as at order 2, namely 26%. This is achieved with � = �0:1850.

The roles of stability and accuracy are di�erent in practical computation. The
stability of the family of formulas implemented in a variable-order code governs its
applicability, the class of problems that can be solved e�ciently by the code. It is
well-known [37] that the popular variable-order BDF codes might choose to integrate
with a formula that su�ers from a stability restriction rather than a lower order
formula that does not. This is the reason that the codes limit the maximum order;
none uses order 6 and some do not use order 5. In addition, users may be given the
option of reducing the maximum order still further. In light of this one might argue
that the applicability of a variable-order BDF code is determined more by the least
stable member of the family than by the stability of individual members. Further, if
two variable-order codes are both applicable to a given problem, meaning that all the
formulas are stable for the problem, it does not matter if the formulas in one code have
larger A(�)-stability regions than those in the other. It does matter if the formulas in
one code are more e�cient than those in the other. As a family of formulas of orders
1-5, the NDF's we have selected are signi�cantly more e�cient than the BDF's and
have about the same applicability to sti� problems.

It is plausible that a fully variable step size implementation would be more stable
than the quasi-constant step size implementation we have discussed and there are
some BDF codes, e.g., [5] and [8], that use it. However, Curtis [10] argues that the
di�culties with a quasi-constant step size implementation reported in [8] are the result
of an insu�ciently exible step size selection rather than the approach itself. Also,
there are theoretical results [18] to the e�ect that with acceptable constraints on how
often the order is changed, integration with a quasi-constant step size implementation
is stable. Even in the case of the BDF's there have been few investigations of stability
when the step size is not constant. Reiher [31] investigated the family of second order
NDF's when the step size is not constant. Such investigations are rather complicated
and it is di�cult to be optimistic about the prospects for choosing appropriate val-
ues of � for a fully variable step size implementation. Because quasi-constant step
size implementations have been quite satisfactory in practice, we have not pursued
numerical di�erentiation formulas for fully variable step size.

3.2. Changing the Step Size. Each of the popular representations of the BDF
formulas has its advantages and disadvantages. Backward di�erences are very conve-
nient for implementing both the BDF's and NDF's. The basic algorithms are simple
and can be coded compactly in a way that takes advantage of the e�cient handling
of arrays in Matlab. But a disadvantage of using backward di�erences is the di�-
culty of changing the step size. A new scheme is developed here that is based on an
interesting factorization of the dependence of a di�erence table at one step size to the
table at a di�erent step size.

There are e�cient ways of halving and doubling the step size due to Krogh [26],
but we consider the general case because we prefer more exibility in the selection
of step size. Suppose that a constant step size h has been used and the integration
has reached tn. There are available solution values y(tn�j) at tn�j = tn � jh for
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j = 0; 1; :::; k . The interpolating polynomial P (t) is

P (t) = y(tn) +
kX

j=1

rjy(tn)
1

j!hj

j�1Y
m=0

(t � tn�m)

By de�nition rjP (tn) = rjy(tn). In this representation the solution is held in the
form of the current value y(tn) and a table of backward di�erences

D =
�rP (tn);r2P (tn); :::;rkP (tn)

�
Changing to a new step size h� 6= h amounts to evaluating P (t) at t� = tn � jh� for
j = 0; 1; :::; k and then forming

D� =
�r�P (tn);r�2P (tn); :::;r�kP (tn)

�
Here the asterisk on the backward di�erence r� indicates that it is for step size h�.

Equating the representations of P (t) with step sizes h and h� leads to the identity

kX
j=1

r�jP (tn)
1

j!h�j

j�1Y
m=0

�
t� t�n�m

�
=

kX
j=1

rjP (tn)
1

j!hj

j�1Y
m=0

(t � tn�m)

Evaluating this identity at t = t�n�r for r = 1; :::; k leads to the system of equations

kX
j=1

r�jP (tn)Ujr =
kX

j=1

rjP (tn)Rjr

In matrix terms this is

D�U = DR

and we seek a convenient expression for D� in terms of D.
The entries of the k � k matrix U are

Ujr =
1

j!h�j

j�1Y
m=0

�
t� � t�n�m

�
=

1

j!

j�1Y
m=0

(m � r)

Evidently Ujr = 0 for r < j so that U is upper triangular. For r > j

Ujr = (�1)j
�
r

j

�

The diagonal entries of U have magnitude 1 so the matrix is non-singular, but U is
quite special because U2 = I. To see this, we �rst note that U2 is upper triangular.
Then for r � i,

�
U2
�
ir
=

rX
j=i

(�1)i
�
i

j

�
(�1)j

�
r

j

�

=

�
r

i

� r�sX
s=0

(�1)s
�
r � i

s

�

=

�
r

i

�
(1� 1)r�i
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This shows that
�
U2
�
ii
= 1 and

�
U2
�
ir
= 0 for r 6= i, hence U2 = I.

The k � k matrix R is full. In terms of � = h�=h 6= 1, its entries are

Rjr =
1

j!

j�1Y
m=0

(m � r�)

Because this matrix depends on the new step size, it must be constructed each time
the step size is changed. This can be done e�ciently by columns according to

R1;r = �r�

Rj+1;r = Rj;r

�
j � r�

j + 1

�

Multiplying the basic relation on the right by U , we arrive at an interesting
factorization that shows how the di�erence tables depend on the step sizes:

D� = D (RU )

The entries of U are integers that do not depend on h nor on k, so they can be
de�ned in a code for the maximum k permitted once and for all. Because the matrix
R depends on the step sizes h and h�, it must be computed each time the step size
is changed. The computation is simple and inexpensive. In Matlab this way of
changing the step size is compact and e�cient.

3.3. The ode15s Program. The ode15s code is a quasi-constant step size im-
plementation in terms of backward di�erences of the Klopfenstein-Shampine family of
NDF's. The user interface is common to all the codes in the suite, but some options
apply only to the codes for sti� problems or even only to this particular code. For
example, as we observed in connection with the derivation of the NDF's, it is easy
to accomodate the BDF's in this framework. The user is, then, given the option of
integrating with the classic BDF's rather than the default choice of the NDF's. Also,
the user can reduce the maximumorder from the default value of 5 should this appear
desirable for reasons of stability.

To implement the NDF formula, we rewrite the Klopfenstein form to make its
evaluation e�cient. The identity

kX
m=1

1

m
rmyn+1 = k

�
yn+1 � y

(0)
n+1

�
+

kX
m=1

mrmyn

shows that equation (5) is equivalent to

(1� �) k
�
yn+1 � y

(0)
n+1

�
+

kX
m=1

mrmyn � hF (tn+1; yn+1) = 0

(This generalizes a form of BDFk that we learned from F.T. Krogh.) When the
implicit formula is evaluated by a simpli�ed Newton (chord) method, the correction
to the current iterate

y
(i+1)
n+1 = y

(i)
n+1 +�(i)
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is obtained by solving

�
I � h

(1� �) k J
�
�(i) =

h

(1� �) k
F (tn+1; y

(i)
n+1) �	 �

�
y
(i)
n+1 � y

(0)
n+1

�

Here J is an approximation to the Jacobian of F (t; y) and

	 =
1

(1� �) k
kX

m=1

mrmyn

is a quantity that is �xed during the computation of yn+1. This is done by de�ning

d(i) = y
(i)
n+1 � y(0)n+1

and computing

d(i+1) = d(i) +�(i)

y
(i+1)
n+1 = y

(0)
n+1 + d(i+1)

Proceeding in this manner the fundamental quantity rk+1yn+1 is obtained directly
and more accurately as the limit of the d(i).

Where the \previously computed" solution value comes from at the start of the
integration is worth comment. The standard device is to predict then with the �rst
order Taylor series (forward Euler) method. The Nordsieck (Taylor) representation is
in terms of y0 and hy00. It is so natural to set hy00 = hF (t0; y0) in this representation
that it is rarely appreciated that this amounts to forming a �ctitious y�1. The equiv-
alent for the backward di�erence form is to set ry0 = hF (t0; y0). After initializing in
this way, the start is no di�erent from any other step.

Many of the tactics adopted in the code resemble those found in the well-known
codes DIFSUB [17], DDRIV2 [24], LSODE [22], and VODE [7]. In particular, local
extrapolation is not done. The selection of the initial step size follows Curtis [10] who
observes that by forming partial derivatives of F (t; y) at t0, it is possible to estimate
the optimal initial step size when starting at order 1.

In the context of Matlab it is natural to retain a copy of the Jacobian matrix.
Of the well-known codes mentioned, only VODE exploits this possibility. VODE em-
ploys a number of devices with the aim of using a matrix factorization as long as
possible. This does not seem appropriate to us when working in Matlab with its
fast linear algebra and Jacobians of modest size or sparse Jacobians. We form and
factor the iteration matrix for the simpli�ed Newton method every time the step size
or order is changed. Our basic approach is to form a new Jacobian only when the
simpli�ed Newton iteration is converging too slowly. A small point is that we approx-
imate the Jacobian at the current solution (tn; yn) rather than at a predicted solution

(tn+1; y
(0)
n+1) as is done in the other codes cited. This means that it is never necessary

to approximate a Jacobian more than once at a given point in the integration. Also,
it is consistent with what must be done with another method that we take up in
Section 4. As in [34], we monitor the rate of contraction of the iteration and predict
how far the current iterate is from yn+1. The process is terminated if it is predicted
that convergence will not be achieved in four iterations. Should this happen and
the Jacobian not be current, a new Jacobian is formed. Unlike VODE which forms
a Jacobian every now and then, this is the only time that Jacobians are formed in
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ode15s. If the Jacobian is current, the step size is reduced by a factor of 0:3 and the
step tried again.

Our scheme for reusing Jacobians means that when the Jacobian is constant,
the code will normally form a Jacobian just once in the whole integration. There
is an option of informing the codes that the Jacobian is constant, but it is of little
importance to ode15s for this reason. It is pointed out in [35] that the well-known
set of sti� test problems [15] contains a good many problems with constant Jacobians
and that this would cause di�culties of interpretation when the codes were \smart"
enough to take advantage of the fact. VODE and ode15s do recognize these problems
and form very few Jacobians when solving them. Our scheme also results in ode15s

forming very few Jacobians when it is applied to a problem that is not sti�. The codes
in the suite that are intended for non-sti� problems are more e�cient when applied to
non-sti� problems than those intended for sti� problems. This said, it must be added
that ode15s does surprisingly well when applied to a non-sti� problem because it
forms few Jacobians and the extra linear algebra is performed e�ciently in Matlab.

4. Linearly Implicit Formulas for Sti� Systems. In this section it is con-
venient at �rst to consider diferential equations in autonomous form

y0 = F (y)

Rosenbrock methods have the form

yn+1 = yn + h

sX
i=1

biki

where the ki are obtained for i = 1; 2; :::; s by solving

Wki = F

0
@yn + h

i�1X
j=1

aijkj

1
A + hJ

i�1X
j=1

dijkj

Here W = I � hdJ and J = @F (yn)=@y. Rosenbrock methods are said to be linearly
implicit because the computation of yn+1 requires the solution of systems of linear
equations.

A Rosenbrock formula makes explicit use of the Jacobian evaluated at the begin-
ning of the step. It is some trouble for users to supply a function for the Jacobian
and it can be quite inconvenient to work out analytical expressions for the partial
derivatives. For this reason codes like ROS4 [21] permit the use of numerical Jaco-
bians and others require it. This may be satisfactory, but the order of a Rosenbrock
formula depends on J being equal to @F (yn)=@y and it is di�cult to compute reliably
accurate Jacobians by numerical means.

A number of authors have explored formulas of the form stated without assuming
that J is equal to @F (yn)=@y. Wolfbrandt studied W-formulas, formulas that make
no assumption about the relationship of J to the Jacobian. A second order formula
presented in [40] sparked considerable interest. It is delightfully simple:

Wk1 = F (yn)

Wk2 = F

�
yn +

2

3
hk1

�
� 4

3
hdJk1

yn+1 = yn +
h

4
(k1 + 3k2)
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Here the parameter d = 1=
�
2 +

p
2
�
. The order of this formula does not depend on

J , but its stability does. If J is equal to the Jacobian, the formula is L-stable. As
noted in [40], W-methods reduce to explicit Runge-Kutta formulas when J = 0. This
particular formula reduces to the improved Euler method.

One of the attractions of Rosenbrock and W-methods is that they are one-step.
However, it is not easy to retain this property when estimating the error, and the
error estimate of [40] for Wolfbrandt's formula gives it up. Scraton [33] managed to
achieve a one-step error estimate for this formula by making stronger assumptions
about J . Speci�cally, he assumed that

J =
@F

@y
(tn; yn) + hB + O

�
h2
�

He and others making this assumption have motivated it by the possibility of using a
Jacobian evaluated previously to avoid the cost of forming a current Jacobian. It also
seems a reasonable assumption for describing approximations to current Jacobians
that are obtained numerically. The fact is, we must assume that J is approximately
equal to @F=@y if we are to apply the usual linear stability theory to conclude the
good stability that leads us to consider such formulas in the �rst place. We shall
describe formulas based on Scraton's assumption as modi�ed Rosenbrock formulas.

The error estimate that Scraton derived for Wolfbrandt's formula is not qualita-
tively correct at in�nity. In his dissertation, Zedan modi�ed Scraton's estimator to
correct this and also derived an estimator in the conventional form of a pair of formu-
las of orders 2 and 3. Both approaches to error estimation lead to one-step formulas.
In the case of the Wolfbrandt pair, if J is the Jacobian, the companion formula of
order 3 is A-stable. Zedan made a clever choice of parameters to obtain a companion
that does not require an additional evaluation of F ; at each step three systems of
linear equations are solved with the same matrixW and there are two evaluations of
F . The investigation is described in [43] and a code based on this pair and a higher
order pair is to be published [42].

The paper [38] shows how to improve further Scraton's estimate to obtain the
correct behavior at in�nity. We began developing a code based on Wolfbrandt's
formula with this estimate and learned the hard way that the formula and its various
error estimates all have a fundamental defect. In the remainder of this section, we
explain the di�culty and develop a new formula and error estimate that avoids it.
We also develop an interpolant. We close with some details of the implementation of
the new triple in the program ode23s.

4.1. A Modi�ed Rosenbrock Triple. Wolfbrandt's formula and the error es-
timates cited all evaluate F only at tn and tn+2h=3. As pointed out in [36], schemes
of this kind can go badly wrong when solving problems with solutions that exhibit
very sharp changes, \quasi-discontinuities". If a solution component should change
sharply between tn + 2h=3 and tn + h, the formula and its error estimate may not
recognize that the change took place. As far as the formula can discern, the solution
changes smoothly throughout the step. Because a one-step formula does not make
use of previously computed solution values, the sharp change is not recognized after
the step to tn + h. Quasi-discontinuities are very real possibilities when solving sti�
problems and robust software must be able to deal with them.

A family of second order, L-stable W-methods depending on one parameter is
presented in [40] and there seems to be no strong reason for favoring the one that
reduces to the improved Euler method when J = 0. Zedan's derivation of a companion
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third order formula was done solely for Wolfbrandt's formula, but using the equations
of condition from his thesis or [43], it is easy enough to derive A-stable companions
for other choices of parameter. Unfortunately, it is not possible to obtain a pair that
makes only two evaluations of F with one being at tn+1. There is, however, another
way to achieve this, and that is to �nd a pair that is FSAL, First Same As Last. By
making the �rst evaluation of F for the next step the same as the last of the current
step, we have at our disposal another function evaluation that is usually \free" because
most steps are successful.

The W-method that is the basis of our procedure reduces to another familiar
explicit Runge-Kutta method when J = 0, namely the midpoint Euler method. In
practice Rosenbrock methods are written in a form that avoids unnecessary matrix
multiplications, see e.g. [36]. The formula that follows is written in such a form
and is given for non-autonomous equations. When advancing a step from (tn; yn) to
tn+1 = tn + h, the modi�ed Rosenbrock formula is

F0 = F (tn; yn)

k1 = W�1 (F0 + hdT )

F1 = F (tn + 0:5h; yn + 0:5hk1)

k2 = W�1 (F1 � k1) + k1

yn+1 = yn + hk2

F2 = F (tn+1; yn+1)

k3 = W�1 [F2 � e32 (k2 � F1)� 2 (k1 � F0) + hdT ]

error � h

6
(k1 � 2k2 + k3)

Here

W = I � hdJ
J � @f

@y
(tn; yn)

d = 1=
�
2 +

p
2
�

T � @f

@t
(tn; yn)

e32 = 6 +
p
2

If the step is a success, the F2 of the current step is the F0 of the next; the formula
is FSAL. Because the pair samples at both ends of the step, it can recognize a quasi-
discontinuity.

The derivation of a FSAL formula requires a decision about whether the inte-
gration is to be advanced with the higher order result, local extrapolation, or the
lower. We have experimented a little with both possibilities and have come to favor
advancing with the lower order formula. In large measure this is because the lower
order formula is a W-formula, so is less sensitive to the quality of the approximate
Jacobian. With this choice and a good approximation to the Jacobian, the lower order
formula is L-stable and the higher is A-stable. This implies that the error estimate
is unduly conservative at in�nity. It could be corrected in the manner of [38], but we
have found more reliable results are obtained with the more conservative estimate.

As mentioned in Section 2, we considered it essential that all codes in the new
suite have an interpolation capability, a matter scarcely considered previously for
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modi�ed Rosenbrock methods. On p. 129 of his dissertation, Zedan describes briey
a scheme he uses in a research code. In our notation, after a successful step from tn to
tn + h, he represents the solution throughout the step with the quadratic polynomial
that interpolates yn, yn+1, and F0 = F (tn; yn). Using F0 is dangerous; it is easily
seen by considering the test equation y0 = �y that the behavior of the interpolant
is unsatisfactory when h� is large. We have derived an interpolant in a manner
customary for explicit Runge-Kutta formulas. The idea is to derive a formula of
the same type for computing a solution at tn + h� when h� = sh. The matrix
W � = I � h�d�J , so if we take the parameter d� = d=s, then W � = W . It is easily
found that with similar de�nitions, it is possible to obtain a second order W-method
for the intermediate value that requires no major computations not already available
from the step itself. Speci�cally, it is found that a second order approximation to
y (tn + sh) is provided by

yn+s = yn + h

�
s (1� s)

1� 2d
k1 +

s (s� 2d)

1� 2d
k2

�

It is seen by inspection that this quadratic interpolant is continuous. It has better
behavior than the one depending on F0, in essence because of the W�1 implicit in
the ki. The formula, its error estimate, and the interpolant displayed above form a
new modi�ed Rosenbrock triple.

4.2. The ode23s Program. The code ode23s based on the triple presented
above provides an alternative to ode15s. ode23s is especially e�ective at crude tol-
erances, when a one-step method has advantages over methods with memory, and
when Jacobians have eigenvalues near the imaginary axis. It is a �xed order method
of such simple structure that the overhead is low except for the linear algebra, and
linear algebra is fast in Matlab. The integration is advanced with the lower order
formula, so ode23s does not do local extrapolation. To achieve the same stability in
ode15s, the maximum order would have to be restricted to 2, the same as the order
in ode23s.

Although our implementation of ode23s resembles that of an ordinary Rosenbrock
method with numerical Jacobians, in principle it is quite di�erent because a modi�ed
Rosenbrock method does not depend on having accurate Jacobians, just reasonable
approximations. To enhance the robustness of ode23s, we employ an exceptionally
strong algorithm for the computation of numerical Jacobians that is described in
Section 8.

We have considered algorithms along the lines of one mentioned in [11] for recog-
nizing when a new Jacobian is needed and we have also considered tactics like those
of [40] and [42] for this purpose. This is promising and we may revisit the matter, but
for this version of ode23s we decided to form a new Jacobian at every step for several
reasons. First of all, a formula of order 2 is most appropriate at crude tolerances.
At such tolerances solution components often change signi�cantly in the course of a
single step, so it is often appropriate to form a new Jacobian. Secondly, the Jacobian
is typically of modest size or sparse, so that its evaluation is not very expensive com-
pared to evaluating F . Finally, we placed a premium on the reliability and robustness
of ode23s, which is enhanced by evaluating the Jacobian at every step. A special
case is su�ciently common to warrant special attention. If the code is told that the
Jacobian is constant, it will evaluate the Jacobian just once rather than at every step.

For non-autonomous problems ode23s requires an approximation to @f=@t in
addition to the approximation to @f=@y. For the convenience of the user and to make
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the use of all the codes the same, we have chosen always to approximate this partial
derivative numerically. Because the step size h provides a measure of the time scale,
approximating @f=@t is a less delicate task than approximating @f=@y.

5. Sti� Systems of More General Form. In this section we consider how
to modify the computational schemes developed for the NDF's and the modi�ed
Rosenbrock method so as to solve e�ciently a system of the more general form

M (t) y0 = f(t; y)

with a mass matrix M (t) that is non-singular and (usually) sparse. Of course, the
schemes could be applied in their original form to the equivalent system

y0 = F (t; y) =M�1(t) f(t; y)

but small modi�cations make it possible to avoid the inconvenience and expense of
this transformation.

The modi�ed Rosenbrock method was derived for autonomous systems and its
application to these more general problems is awkward when M depends on t. For
this reason ode23s has been extended only to problems with constantM . We see how
to modify the evaluation of the formulas by applying them to the equivalent problem
y0 = F (t; y) and rewriting the computations in terms ofM and f(t; y). The �rst stage
k1 is obtained by solving

Wk1 = (I � hdJ)k1 = F0 + hdT

Here

F0 = M�1f(t0; y0) =M�1f0

J � @F

@y
=M�1@f

@y

T � @F

@t
=M�1@f

@t

Scaling the equation for k1 by M leads to�
M � hd

@f

@y

�
k1 = f0 + hd

@f

@t

This form allows the user to pose the problem in terms of M and f(t; y). Moreover,
proceeding in this way avoids repeated solution of the linear equations that arise
when the di�erential equation is transformed in order to apply the usual form of the
method. A similar modi�cation is possible for all the computations. The usual form
of the method is recovered when M = I.

The ode15s code allows the mass matrix to depend on t. The requisite modi�ca-
tions can be deduced just as with a constant mass matrix except at one point. The
simpli�ed Newton method used to evaluate the implicit formula solves linear systems
with the iteration matrix

I � h

(1� �)k J

and right hand sides involving

F (tn+1; y
(i)
n+1) = M�1(tn+1)f(tn+1; y

(i)
n+1)
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Here

J � @F

@y
(tm; ym) =M�1(tm)

@f

@y
(tm; ym)

for some m � n. Because the mass matrix depends on t, it is not possible to remove
all the inverses by a simple scaling of the equations. The standard procedure exploits
the fact that the iteration matrix is itself an approximation. The equations are scaled
by M (tn+1) to remove all the inverses from the right hand sides and then the scaled
iteration matrix is approximated further as

M (tm)� h

(1� �)k J

where

J � @f

@y
(tm; ym)

With this approximation, it is again found that the computational scheme can be
written in a form that reduces to the usual one when M (t) = I.

6. Explicit Formulas for Non-Sti� Systems. Previous versions of Matlab

had two codes, ode45 and ode23, based on explicit Runge-Kutta formulas. These
programs have been replaced in the new suite by codes with the same names that
remedy some de�ciencies in the original design and take advantage of signi�cant de-
velopments in the theory and practice of Runge-Kutta methods. The new suite also
adds an explicit Adams code, ode113, based on a PECE implementation of Adams-
Bashforth-Moulton methods.

6.1. The ode45 Program. Of the two explicit Runge-Kutta codes in the previ-
ous generation of Matlab solvers, it appears that the code based on the lower order
pair was favored. This seems to be mainly because plots obtained using the code
based on the higher order pair are sometimes not smooth. Also, the higher order
pair is not as reliable as the lower at the very lax default tolerance of the old ode23.
These objections are overcome in the new suite by the use of more stringent default
tolerances and new formulas.

Workers in the �eld employ a number of quantitative measures for evaluating the
quality of a pair of formulas. A pair of formulas due to Dormand and Prince [12] has
become generally recognized as being of high quality and signi�cantly more e�cient
than the Fehlberg pair used in the previous version of ode45. The authors of the pair
refer to it as RK5(4)7FM, but it is also known as DOPRI5, DP(4,5), and DP54. It is
FSAL and was constructed for local extrapolation.

Exploiting the freedom provided by a seven stage FSAL formula, Dormand and
Prince [13] obtained a number of inexpensive interpolants. They have communicated
to us another interpolant of order 4 that is of high quality and \free". By \free" is
meant that after a step is accepted, it is possible to construct an interpolant valid
throughout the span of the step with no additional evaluations of F . Because solu-
tion components can change substantially in the course of a single step, the values
computed at the end of each natural step may not provide adequate resolution for
graphical display of the solution. This is remedied by computing intermediate values
by interpolation, speci�cally by computing four values spaced evenly within the span
of each natural step. Plotted in Figure 1 are the solution components of the non-
sti� initial value problem rigid, the Euler equations of a rigid body without external
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forces as proposed by Krogh. The solid curves result from the default output of ode45,
the discrete values are the results at the end of each step, and the dashed curves result
from connecting these results. Clearly the values obtained by interpolation between
the natural output points are necessary for adequate representation of the solution.
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Fig. 1. The rigid solution as computed by ode45. The continuous curves result from the
default output of ode45. The discrete values are the results at the end of each step. The dashed
curves show what happens when the new interpolation capability is disabled.

The implementation of ode45 was inuenced both by its predecessor and by RK-
SUITE [4]. Though the other codes for non-sti� problems in the suite, ode23 and
ode113, are to be preferred in certain circumstances, ode45 is the method of choice.

6.2. The ode23 Program. The new version of ode23 is based on the Bogacki-
Shampine (2; 3) pair [3] (see also [37]). This FSAL pair was constructed for local
extrapolation. In the standard measures, the pair is of high quality and signi�cantly
more e�cient than the pair used in the previous version of ode23. Accurate solution
values can be obtained throughout a step for free by cubic Hermite interpolation
to the values and slopes computed at the ends of the step. The pair is used in a
number of recent software projects, including RKSUITE, the Texas Instruments TI-
85 engineering graphics calculator, and the teaching package Di�erential Systems of
Gollwitzer [20].

At the default tolerances ode23 is generally more expensive than ode45, but not
by a great deal, and it is to be preferred at cruder tolerances. The advantage it enjoys
at crude tolerances is largely because a step in ode23 is about half as expensive as a
step in ode45, hence the step size is adjusted more often. When a step fails in ode23,
fewer evaluations of F are wasted. This is particularly important in the presence of
mild sti�ness because of the many failed steps then. The stability regions of the (2; 3)
pair are rather bigger than those of the (4; 5) pair when scaled for equal cost, so ode23
is advantageous in the presence of mild sti�ness.

6.3. The ode113 Program. The code ode113 is a descendant of the variable-
order Adams-Bashforth-Moulton suite ODE/STEP, INTRP [39]. Though the code
di�ers considerably in detail, its basic algorithms follow closely those of STEP and
need no ampli�cation here. Like the other codes for non-sti� problems, it does local
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extrapolation. Adams methods are based on polynomial interpolants that are used to
obtain output at speci�c points. The authors of ODE/STEP, INTRP, tried to obtain
as cheaply as possible solutions of moderate to high accuracy to problems involving F
that are expensive to evaluate and to do so as reliably as possible. This was accom-
plished by monitoring the integration very closely and by providing formulas of quite
high orders. In the present context the overhead of this monitoring is comparatively
expensive. Although more than graphical accuracy is necessary for adequate resolu-
tion of solutions of moderately unstable problems, the high order formulas available in
ode113 are not nearly as helpful in the present context as they are in general scienti�c
computation. These considerations lead us to expect that ode113 will usually be the
most e�cient code in the suite in terms of the number of evaluations of F , but not
the fastest.

Close monitoring of the solution is always valuable for reliability, and when F
is expensive and/or high accuracy is desired, ode113 is the fastest code. It is also
relatively e�cient in the presence of mild sti�ness. This is partly because it can resort
to formulas with relatively large scaled stability regions and partly because only one
evaluation of F is wasted on a failed step.

7. User Interface. Every author of an ODE code wants to make it as easy as
possible to use. At the same time the code must be able to solve reliably typical
problems. It is not easy to reconcile these goals. In developing an approach to
the task, we had the bene�t of experience with many codes. Naturally, experience
with the previous generation of codes in Matlab, the Runge-Kutta codes ode45 and
ode23, was very important. Other codes that were especially inuential are the suite
of explicit Runge-Kutta codes RKSUITE [4], the BDF and Adams-Moulton code
DDRIV2 [24], and the Adams-Bashforth-Moulton suite ODE/STEP, INTRP [39].

In the Matlab environment we considered it essential that it be possible to use
all the codes in exactly the same way. However, we also considered it essential to
provide codes for the solution of sti� problems. Methods for sti� problems all make
use of approximations to the Jacobian, @F=@y, of F (t; y). If a code for solving sti�
problems is to look like a code for non-sti� problems, it is necessary to conceal the
approximation of partial derivatives by doing it numerically. Unfortunately, it is
di�cult to approximate Jacobians reliably. Moreover, when it is not inconvenient
to supply some information about the structure of the Jacobian, it can be quite
advantageous. Indeed, this information is crucial to the solution of \large" systems.
Clearly a user interface to a code for sti� problems must allow for the provision of
additional information and this without complication when users do not have the
additional information or do not think it worth the trouble of supplying. The same is
true of other optional information, so a key issue is how to make options unobtrusive.
Further, the design must be extendable. We have already had experience with this.
After writing the codes for the solution of sti� problems, we added the capability of
working with sparse Jacobians. Providing this capability typically complicates the
interface so much that hitherto authors have preferred to write a separate code for
the task. Our approach deals with it easily. Later we again extended the codes for
sti� problems so that they could solve problems of more general form and again we
found that the approach dealt with it easily.

It is possible to use all �ve codes in the suite, ode15s, ode23s, ode45, ode23,
ode113, in precisely the same manner, so in the examples that follow the code ode15s
is generic. An initial value problem can be solved by
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[tout,yout] = ode15s('yprime',tspan,y0);

The results can then be displayed with the usual plotting tools of Matlab, e.g., by

plot(tout,yout)

In the syntax of Matlab, the arguments of ode15s are pure input arguments and
the arguments on the left of the assignment statement are pure output arguments.
Speci�cation of the general problem cannot be made easier because the input here is
the minimumneeded just to de�ne the mathematical problem. The argument yprime
is a string providing the name of a function that de�nes the di�erential equation. For
example, a non-sti� version of the van der Pol equation written as a �rst order system
is coded as function vdpns by creating a �le vdpns.m shown in Figure 2.

function dy = vdpns(t,y)

dy = zeros(2,1); % preallocate column vector dy

dy(1) = y(2);

dy(2) = (1-y(1)^2)*y(2)-y(1);

Fig. 2. The Matlab code for the initial value problem vdpns.

(Matlab displays the result of a line unless it ends with a semicolon. It is not
necessary to declare the sizes of arrays nor to declare data types.) The interval of
integration is provided in the vector tspan=[t0,tfinal] and the initial conditions in
the vector y0. ode15s needs the number of equations neq, but it is not necessary for
the user to supply this because the code can obtain it from y0 by using an intrinsic
for the length of a vector: neq = length(y0).

A feature of the language that we have exploited to simplify the user interface
is the ability to handle a variable number of input and output arguments. As a
simple example, ode15s monitors the cost of the integration with measures such as
the number of steps and the number of Jacobian evaluations. To see these statistics,
an extra output argument is used. Namely, the left hand side of the assignment has
the form [tout,yout,stats] instead of [tout,yout]. The user who is not interested
in these statistics ignores this optional output.

The language provides for empty arrays. We have exploited this for a number
of purposes, one being the de�nition of the entire initial value problem in a single
�le. We illustrate this in Figure 3 with the �le chm6ex.m containing a sti� initial
value problem for modelling catalytic uidized bed dynamics. This is a standard
test problem (CHM6 of [14]) proposed by Luss and Amundson [28]. Some numerical
results for this problem will be presented later.

The built-in function length seen in Figure 3 is used to test whether t is an
empty array. With the function coded in this manner, ode15s can be invoked with
empty or missing arguments for tspan and y0, e.g. ode15s('chm6ex',[],[]) or
ode15s('chm6ex'). Then when initializing, ode15s will call chm6ex with an empty
argument for t to obtain the information not supplied via the call list.

Having de�ned the mathematical problem, there remains the de�nition of the
computational problem. One part of this is speci�cation of output. Codes produce
answers at \natural" steps, i.e. steps they choose so as to solve the problem both
e�ciently and reliably. These steps tend to cluster where solution components change
rapidly, and for many methods answers at these points generally furnish satisfactory
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function [out1,out2,out3] = chm6ex(t,y)

if length(t) == 0 % return default tspan, y0, options

out1 = [0; 1000];

out2 = [761; 0; 600; 0.1];

out3 = odeset('atol',1e-13);

return;

end

dy = zeros(4,1); % preallocate column vector dy

K = exp(20.7 - 1500/y(1));

dy(1) = 1.3*(y(3) - y(1)) + 10400*K*y(2);

dy(2) = 1880 * (y(4) - y(2) * (1+K));

dy(3) = 1752 - 269*y(3) + 267*y(1);

dy(4) = 0.1 + 320*y(2) - 321*y(4);

out1 = dy;

Fig. 3. The Matlab code for the initial value problem chm6ex.

plots. This is true, for example, of ode23 in previous versions of Matlab. However,
as pointed out by Polking [30], the previous version of the code ode45 may take steps
so large that plots are not smooth. If the method allows it, the intermediate values
needed for smooth plots can be obtained inexpensively by interpolation. Interpolation
can also be used to obtain at little cost as many answers at speci�c points as a user
desires. Event location is quite a useful capability. By this is meant integrating until
an event occurs, e.g. until a particular solution component vanishes. Although we
have not provided this functionality at this time, we intend to do so and interpolation
is key to event location. For all these reasons, we considered for the new suite only
methods for which interpolation is possible.

The question now is how to specify where answers are desired. The convenient
interface of DDRIV2 produces answers wherever the user speci�es. This possibility
is mandatory, but the design is not convenient for graphical output because the user
generally does not know where to ask for answers. It may seem natural to specify
that answers be obtained at equally spaced points in [t0,tfinal], but with the wide
range of values typical of sti� problems, this often fails to provide an acceptable plot of
the solution. In our design the default is for the codes to report answers at the natural
steps. This design is made convenient by the language because it is not necessary to
specify in advance the sizes of output arrays. We also provide an option of re�nement,
meaning that the code is told to produce a speci�ed number of answers at equally
spaced points in the span of each natural step. The default value of refine is 1 for
all the codes in the suite, i.e. answers at natural steps only, except for the new ode45,
for which it is 4, reecting the fact that solution components can change signi�cantly
in the course of a typical step of the method implemented in this code.

To deal with output at speci�c points, we overload the de�nition of tspan and
use the length of this vector to dictate how its values are to be interpreted. An input
tspan with two entries means that output at the natural steps is desired, the default.
If tspan contains more than two entries, the code is to produce output at these
points, and only at these points, so that tout=tspan. Because output is obtained by
interpolation, the number and placement of speci�ed output points has little e�ect on
the cost of the integration. Occasionally users want an answer only at tfinal. This
is somewhat awkward in our design, but we have provided for it by using a value 0
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for refine to specify no intermediate output.
Another part of the computational problem is speci�cation of the error control. A

discussion of this di�cult matter is to be found in [37]. There it is explained how the
simplifying assumptions made in the earlier versions of ode23 and ode45 can lead to
unsatisfactory results. Polking [30] makes the same point. There seems to be no way
to provide automatically a default control of the error that is completely satisfactory,
another reason why we must provide for optional input.

We have now seen several examples of important optional input. Control of the
error applies to all the codes and information about Jacobians applies only to some.
There are instances in the suite of important, but optional, input that applies to a
single code. It is di�cult to accomodate all the possibilities without complicating the
interface to the point that users despair. A traditional approach is to use an options
vector. We do this too, but with some innovations that make the design unobtrusive
and powerful. The �rst point is that the options vector is optional. When it is
employed, the syntax of a call to the solver is

[tout,yout] = ode15s('yprime',tspan,y0,options);

The vector options is built by means of the function odeset. Like others, we rec-
ognize the virtues of specifying options by means of keywords. However, in Matlab

we can specify values for the options that are of di�erent data types. This makes
possible a very powerful and convenient interface. Some examples will illustrate the
possibilities.

The most common options are those associated with the error control. ode15s

uses a mixed relative-absolute error test and a maximumnorm. Accordingly the local
error ei in yi is estimated at each step and it is required that

jeij � r jyij+ ai

for each i. The scalar relative error tolerance r has a default value of 10�3. The vector
of absolute error tolerances a has by default all its values equal to 10�6. Whether these
values are appropriate depends on the scaling of the problem. Numerical examples
are taken up later that cannot be solved properly without providing more suitable
absolute error tolerances. Quite often one wants to provide a scalar value for the
absolute tolerance a that is to be assigned to all elements of the array used internally,
and a number of popular codes provide for this. This is done elegantly in a language
which makes it possible for a code to recognize whether the value input is a scalar or
an array. Naturally an unobtrusive design requires that options be set in any order
and default values be used for any quantity not explicitly set by the user. A number
of things are done to make the interface even more convenient. The odeset function
recognizes some synonyms, allowing, e.g., the string 'abstol' to substitute for 'atol'
when specifying the absolute error tolerance. It is not necessary to provide values for
Boolean variables; the presence of the name alone instructs odeset to assign the value
\true" to the variable. It is not necessary to provide all the name to odeset, just
su�ciently many of its leading characters to identify the option. If what is provided is
not su�cient, the function reports this along with possible completions of the name.

As a concrete example of setting options, suppose that we wish to solve a sti�
problem with a constant Jacobian, the scaling is such that absolute error tolerances
of 10�20 are appropriate for all components, and we wish to impose a maximum step
size of 3500 to assure that the code will recognize phenomena occurring on this time
scale. This can be done with
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options = odeset('constantJ','atol',1e-20,'hmax',3500);

Here constantJ is a Boolean option that is set \true" by this call and the other entries
are obvious. When performing a number of integrations, the function odeset can be
used to reset and/or set additional options in a previously speci�ed options vector.
For example, changing the maximum step size to 5000 and specifying a relative error
tolerance of 10�2 is accomplished by

options = odeset(oldoptions,'hmax',5000,'rtol',1e-2);

An illuminating example is provided by the chm6ex problem shown earlier. The
equations for this problem are

K = exp (20:7� 1500=y1)
y01 = 1:3 (y3 � y1) + 10400Ky2; y1(0) = 761
y02 = 1880 (y4 � y2 (1 +K)) ; y2(0) = 0
y03 = 1752� 269y3 + 267y1; y3(0) = 600
y04 = 0:1 + 320y2 � 321y4; y4(0) = 0:1

(8)

The problem is posed on the interval [0; 1000]. Its solution is discussed in [27] and a
log-log plot of y2 is shown in Section 9 as Figure 5.

A fundamental di�culty with this problem is that with an initial value of 0, there
is no natural measure of scale for y2(t). As it happens, this component never gets
bigger than about 7 � 10�10. Clearly an absolute error tolerance like the default
of 10�6 in the suite assures no accuracy at all in this component. Some accuracy
may be achieved as the code tries to achieve a speci�ed accuracy in components that
are inuenced by this one, but it is found that numerical results can be unreliable
unless some accuracy is required directly of the component. With the default relative
tolerance of 10�3 and an optional absolute error tolerance of 10�13 on all components,
this problem is solved routinely by ode15s in only 139 steps. However, the step sizes
range from 5 � 10�14 to 102! This is mainly due to y2(t) changing rapidly on a very
short time scale. It rises from the initial value of 0 to an approximately constant
maximum value by t = 10�11 and returns to a value of about 0 by t = 10�2. This
behavior is not likely to be visible if output is taken at equally spaced points in an
interval of length 103. A design that returns output at points chosen by the code
does reveal the behavior of this component. On plotting the output it is seen that a
logarithmic scale in t would be more appropriate. Because all the solution values are
provided to users in our design and they are retained by the language, they can be
displayed in a more satisfactory way without having to recompute them.

In order that all codes in the suite have the same appearance to the user, the
codes intended for sti� problems by default compute internally the necessary partial
derivatives by di�erences. How this somewhat delicate task is accomplished e�ciently
and reliably is detailed in another section. Users are given the option of providing a
function for the analytical evaluation of the Jacobian. (The value of the analyticJ
option is a string for the name of the function.) They are also given the option
of specifying that the Jacobian is constant, a special case that leads to signi�cant
savings in ode23s. (The value of the constantJ option is Boolean.) The default is
to treat the Jacobian as being a full matrix. If the Jacobian is su�ciently sparse that
it is worth taking sparsity into account, the codes must be informed of the sparsity
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pattern. The distinction between banded Jacobians and the much more complicated
case of general sparse Jacobians that is important in other codes is absent in the new
suite. All that a user must do is provide a matrix S of zeros and ones that represents
the sparsity pattern of the Jacobian. It is not necessary to know anything about how
the language deals with sparse matrices [19]. Some details will make the point. The
matrix S might be de�ned at the command line or in an M-�le. There are a number of
ways this might be done, but the most general and most straightforward is as follows.
If there are neq equations, an neq � neq sparse matrix of zeros is �rst created by

S = sparse(neq,neq);

Then for each equation i in F (t; y), if yj appears in the equation, the (i; j) entry of S
is to be set to 1 by

S(i,j) = 1;

These quantities can be set in any order. If the Jacobian has a regular structure, it may
be possible to de�ne S more compactly by means of one of the powerful commands for
sparse matrices. For example, when the Jacobian is banded with bandwidth 2m+ 1,
S can be de�ned in a single line by

S = spdiags(ones(neq,2m+1),-m:m,neq,neq);

It is remarkably easy to take advantage of sparse Jacobians. In a call to odeset the
option sparseJ is assigned the value S (a sparse matrix).

The two codes for sti� problems permit a more general form of the di�erential
equation, namely

M (t) y0 = f(t; y)

with a mass matrix M (t) that is non-singular and (usually) sparse. ode23s is re-
stricted to a constant mass matrix. The more general form raises some issues that
are awkward in other computing environments. One is the speci�cation of the mass
matrix and its structure. Another is the relationship between the structure of M (t)
and that of the Jacobian. In our interface, the codes are informed of the presence of
a mass matrix by means of the mass option. The value of this option is the name of a
function that returns M (t). No special attention need be devoted to the structure of
the mass matrix because the language recognizes whether a matrix is sparse and does
linear algebra in an appropriate and e�cient manner. A convenience made possible
by the language is that if the mass matrix is constant, M itself can be passed to the
codes as the value of the option. However, if it should prove convenient to evaluate a
constant mass matrix by means of a function when using ode15s, the integration is
performed more e�ciently if the Boolean option constantM is set true. (This option
is set true automatically in ode23s.)

Many libraries have been formed by collecting codes in wide use that were written
by di�erent people in di�erent circumstances and modifying them so that they present
a similar appearance to the user. All the codes of the new suite were written at
the same time by the same people. Because of this and a decision to make the
codes as much alike as possible, there is a remarkable homogeneity. In only one
instance did we start with an existing code and the experience is illuminating. The
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ODE/STEP, INTRP suite [39] formed the basis for ode113. Because the codes are
organized in rather di�erent ways, ode113 is not a simple translation. Even the
translation of key portions of STEP was not straightforward because it is written
in FORTRAN 66, a language that lacks features considered necessary nowadays for
readability. For example, the arithmetic IF is used in STEP to handle compactly three
way decisions common in this code. (The cover of [39] shows two instances.) For a
person intimately familiar with FORTRAN 66, the coding is clear enough, but the
arithmetic IF has fallen into disuse as FORTRAN has evolved and the coding would
no longer be regarded as clear. There is an important point here. The powerful
commands in Matlab for dealing with arrays permit very compact and e�cient code
that can be obscure to the person not intimately familiar with the language. As a rule
users do not care about the coding, but they do care about how quickly their problems
are solved. For this reason we have tried to program all the solvers in a clear way, but
have given more weight to e�ciency than to clarity. For instance, some computations
that are naturally coded in terms of for loops are coded instead with fancy indexing
and vectorized, built-in functions because this makes them signi�cantly faster.

8. Numerical Partial Derivatives. Methods for the solution of sti� problems
involve partial derivatives of the function de�ning the di�erential equation. Many
codes (including those of the MATLAB ODE suite) allow users to provide a routine
for evaluating these derivatives. This routine might be constructed by automatic
di�erentiation of the code for evaluating the function. Another possibility is to use
a computer algebra system to derive and code expressions for the derivatives. These
tools are becoming more powerful and more widely available, but it is still typical
that some portion of a routine for partial derivatives be derived and/or coded by
hand. This is so much trouble for users and so prone to error that the default in
all the popular codes is to approximate partial derivatives internally by numerical
di�erentiation.

In the MATLAB ODE suite, the program numjac is used to compute numerically
the Jacobian @F=@y of the function F (t; y). The algorithms used in numjac were
determined by the needs of the sti� solvers ode15s and ode23s. It is important to
appreciate that the roles of the partial derivatives di�er in the two codes. G.D. Byrne
has often pointed out to one of us that a modern BDF code like VODE [7] can cope
with remarkably poor approximate Jacobians and the same is true of ode15s. How-
ever, as discussed in Section 4, a modi�ed Rosenbrock code like ode23s requires the
best Jacobian that can be obtained at \reasonable" cost. This a�ected considerably
the algorithms used in numjac.

The scaling di�culties that are possible when approximating partial derivatives
by di�erences are well-known [37]. numjac is an implementation of an exceptionally
robust scheme due to D. E. Salane [32] for the approximation of partial derivatives
in the context of integrating ordinary di�erential equations. A key idea is to use
experience gained at one step to select good increments for di�erence quotients at the
next step. This responds to scaling di�culties by recognizing that when a problem
is sti�, the solution changes slowly so that scale information gathered when forming
partial derivatives at one step is relevant when the next set of partial derivatives is
formed.

At present very few solvers exploit this idea. One is the DDRIV2 code [24] of
D. Kahaner and C. D. Sutherland which implements much of Salane's algorithm.
Another is the METAN1 code [2] of G. Bader and P. Deulfhard, a code based on
the extrapolated semi-implicit midpoint rule. Because this linearly implicit method
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is related to modi�ed Rosenbrock methods, we share the interest these authors had in
obtaining high-quality partial derivatives. Like Salane, they are willing to recompute
a column of the Jacobian matrix if they are in doubt as to whether the values might
consist only of roundo�. This should not often be necessary, but it seems to us to be
worth the expense in the present context, so we have also implemented this aspect of
Salane's algorithm. Brenan, Campbell, and Petzold [6] apparently share our views.
Starting on p. 132 they write

It is a di�cult problem to devise an algorithm for calculating the

increments for the di�erencing which is both cheap and robust. ...

It is likely that in future versions of DASSL a more robust �nite

di�erence Jacobian algorithm such as the one proposed by Salane

will be considered.

The numjac code can generate full or sparse Jacobian matrices. A full Jacobian
matrix dFdy is obtained by the invocation

[dFdy,fac] = numjac('F',t,y,Fty,thresh,fac,vectorized);

The argument 'F' is a string naming the function M-�le that de�nes the di�erential
equation, the current point in the integration is (t,y), and Fty is the vector given by
'F' evaluated at (t,y). The vector thresh provides a threshold of signi�cance for
y, i.e. the exact value of a component y(i) with magnitude less than thresh(i) is
not important. The vector fac is working storage for scale information from previous
calls to numjac. Because of the syntax of Matlab the array must appear on both
sides of the assignment. The �rst time that the solver calls the program, it does so
with fac=[]. numjac interprets this as an instruction to initialize the fac array.

The Boolean option vectorized allows numjac to exploit the array nature of
Matlab. In the Matlab language it is generally an easy matter to code the function
'F' so that it can return an array of function values. For example, the vectorized
code for the van der Pol equation in relaxation oscillation is shown in Figure 4. Here
.^ and .* are Matlab notations for element-by-element operations.

function dy = vdpex(t,y)

dy = zeros(size(y)); % preallocate column vector dy

dy(1,:) = y(2,:);

dy(2,:) = 1000*(1 - y(1,:).^2).*y(2,:) - y(1,:);

Fig. 4. The vectorized Matlab code for the vdpex problem.

If function 'F' has been coded so that F(t,[y1 y2 ...]) returns [F(t,y1) F(t,y2)

...], then vectorized should be set true. When the function evaluation has been
vectorized, numjac approximates all columns of the Jacobian with a single call to 'F'.
This avoids the cost of repeatedly calling the function and it may reduce the cost of
the evaluations themselves.

When the Jacobian is structured, the user speci�es its sparsity pattern to the
solver by means of the options vector and a non-empty sparse matrix S of zeros and
ones. The solver then makes a call of the form

[dFdy,fac,g] = numjac('F',t,y,Fty,thresh,fac,vectorized,S,g);
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When numjac is invoked with a sparsity pattern S, it returns a sparse matrix dFdy.
The �rst time that the solver calls numjac, it does so with g=[]. numjac interprets
this as an instruction to call colgroup(S) to �nd groups of columns of dFdy that can
be approximated with a single call to 'F'. This is done only once and the grouping
is saved in g. colgroup tries two schemes (�rst-�t and �rst-�t after reverse column
minimum-degree ordering [19]) and returns the better grouping. The result may not
be optimal because �nding the smallest packing is an NP-complete problem equivalent
to K-coloring a graph [9].

The partial derivative dFdt plays a di�erent role. The modi�ed Rosenbrock code
ode23s requires this derivative every time it requires dFdy. In contrast, the NDF code
ode15s requires it only at the initial point where it is used for selecting automatically
the initial step size. On reaching t, the step size h provides a measure of scale for the
approximation of dFdt by a forward di�erence. The computation is so simple when
coded in Matlab that it is done in line. The situation at the initial point is a little
tricky because the value of dFdt is to be used to select the step size h. The codes use
the rule of thumb discussed in [37], p. 377 �., to obtain a �rst approximation to h.
This value is then used to compute dFdt and a better approximation to h.

9. Examples. In this section, we present some experiments with the MATLAB
ODE suite applied to sti� and non-sti� test problems taken from classic collections [15,
14, 35, 39]. All sti� problems were coded to take advantage of the vectorized option
when computing numerical Jacobians. When solving the four sti� problems with
constant Jacobians (a2ex, a3ex, b5ex, hb3ex), the constantJ option was used.

9.1. Sti� Examples. We begin by examining the advantages of using NDF's
instead of BDF's in the ode15s code. As mentioned in Section 3, the ode15s program
allows users to integrate with the classic BDF's rather than the default choice of the
NDF's. Table 2 shows the number of steps and the real time required for the two
choices when applied to a set of 13 sti� problems. For all but one problem (hb2ex),
ode15s using the default NDF's takes fewer steps than when using the BDF's (an
average of 10.9% fewer), and for all problems, the code is faster when using the
NDF's (an average of 8.2% faster).

Next we compare ode15s using the NDF's to the popular code DDRIV2 [24]
on some relatively di�cult problems. For reasons that we take up shortly, it is not
possible to compare the codes in detail. However, our goal is merely to verify that the
performance of ode15s is comparable to that of a modern BDF code, and the codes are
similar enough for this purpose. DDRIV2 is an easy-to-use driver for a more complex
code with an appearance not too di�erent from ode15s. It is a quasi-constant step
size implementation of the BDF's of orders 1-5 that computes answers at speci�ed
points by interpolation. It approximates Jacobians internally by di�erences with an
algorithm related to that of ode15s.

An obvious and very important obstacle to comparing DDRIV2 and ode15s is that
they are implemented in di�erent languages for di�erent computing environments. A
fundamental di�erence is that they cannot be used to solve exactly the same compu-
tational problem. For one thing, the error controls are di�erent. DDRIV2 measures
the error in a solution component relative to the larger of the magnitude of the com-
ponent and a threshold, and the error is measured in a root-mean-square norm. It is
possible to make the controls roughly equivalent by taking the threshold to be equal
to the desired absolute error and dividing the tolerances given to DDRIV2 by the
square root of the number of equations.
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Table 2

Comparison of the NDF's and BDF's in ode15s. Times are measured as seconds on a Sparc2.

BDF NDF percent BDF NDF percent
steps steps fewer time time faster

a2ex 118 101 14.4 3.60 3.14 12.8
a3ex 134 130 3.0 3.96 3.87 2.4
b5ex 1165 936 19.7 32.58 25.95 20.4
buiex 57 52 8.8 2.05 1.92 6.4
chm6ex 152 139 8.6 4.05 3.63 10.3
chm7ex 57 39 31.6 1.82 1.48 18.4
chm9ex 910 825 9.3 30.53 29.38 3.8
d1ex 67 62 7.5 2.35 2.29 2.5
gearex 20 19 5.0 1.12 1.08 3.5
hb1ex 197 179 9.1 5.57 5.09 8.5
hb2ex 555 577 -4.0 13.49 13.45 0.3
hb3ex 766 690 9.9 19.79 17.77 10.2
vdpex 708 573 19.1 20.75 19.33 6.9

Another di�culty is that the two codes handle output di�erently. DDRIV2 pro-
vides answers wherever requested, but only at those points. We asked the codes to
produce 150 answers equally spaced within the interval of integration. This is inade-
quate for some of the examples, but asking for more answers could increase the cost
signi�cantly in DDRIV2 because it has an internal maximum step size that is twice
the distance between output points. Accepting a possible reduction in e�ciency in
ode15s, we used an option to impose the same maximum step size on this code.

Table 3 compares the performance of DDRIV2 to that of ode15s using the NDF's.
We interpret these comparisons as showing that ode15s is an e�ective and e�cient
code for the solution of sti� problems. DDRIV2 does not save Jacobians and the
numerical results indicate that to some degree ode15s is trading linear algebra for a
smaller number of approximate Jacobians. Because these examples involve just a few
equations, the bene�ts of reusing Jacobians are masked. The individual experiments
are discussed below.

Table 3

Comparison of DDRIV2 to ode15s using the NDF's. The table shows the number of successful
steps, the number of failed steps, the number of function calls, the number of partial derivative
evaluations, the number of LU decompositions, and the number of linear system solutions.

time failed f @f=@y linear
example code steps steps evals evals LU's solves
chm6ex DDRIV2 218 6 404 33 33 271

ode15s 177 4 224 2 29 213
chm9ex DDRIV2 1073 217 2470 220 220 1802

ode15s 750 227 2366 83 322 2033
hb2ex DDRIV2 1370 162 2675 176 176 2316

ode15s 939 70 1321 4 165 1308
vdpex DDRIV2 871 185 1836 167 167 1497

ode15s 724 197 1965 33 261 1865

The chemical reaction problem chm6ex was described in Section 7. For this prob-
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lem, it is observed that ode15s is able to solve the problem e�ectively using a remark-
ably small number of Jacobians. Figure 5, a log-log plot of the second component of
the problem on a time interval of [0; 1000], indicates that this problem exercises the
step size control of ode15s. The step size ranged over 15 orders of magnitude. With
an absolute error tolerance of 10�13, the ode15s code traversed the interval in only
139 steps.
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Fig. 5. A log-log plot of the second component of the solution of chm6ex.

The standard test problem chm9ex, CHM9 of [14], is a scaled version of the
Belousov oscillating chemical reaction. A discussion of this problem and plots of
the solution components on various intervals are found in [1] starting on p. 49. The
limit solution is periodic and exhibits regions of very sharp change. We chose the time
interval [0; 650] so as to include two complete periods and part of another. The default
error tolerances (rtol=10�3 and atol=10�6) were used. As compared to DDRIV2,
it is seen that ode15s is trading some linear algebra for a reduction in the number
of Jacobians. Since the problem involves only three solution components, reducing
the number of Jacobians does not have a great e�ect on the number of function
evaluations.

Hindmarsh and Byrne present in Example 2 of [23] the non-autonomous prob-
lem hb2ex that arises in a diurnal kinetics model and they discuss its solution with
EPISODE. They make the point that the scaling of one component is such that an
absolute error tolerance of 10�20 is needed. The problem is also discussed at length
in [24] where it is solved with DDRIV2. We compared ode15s to DDRIV2 in the so-
lution of this problem and used plots like that of p. 312 of [24] to judge the adequacy
of the solution. As the measures of cost given in Table 3 show, ode15s performs quite
well in comparison to a good BDF code. For this problem, the reuse of Jacobians
proved to be quite advantageous. With only two equations, numerical evaluation of
a Jacobian normally costs merely two additional function evaluations. Clearly the
di�erence in cost is not entirely due to saving Jacobians.

Finally we solved vdpex, the van der Pol equation in relaxation oscillation in the
form speci�ed in [35]. The tradeo�s in the tuning of ode15s as compared to DDRIV2
are clear. Because this problem involves only two solution components, more frequent
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Jacobians would probably have been a bargain in ode15s.
Next, we compare the performance of the modi�ed Rosenbrock code ode23s to

ode15s. For two sti� problems, Table 4 shows the time required for solution, the
number of successful steps, the number of failed steps, the number of function calls,
the number of partial derivative evaluations, the number of LU decompositions, and
the number of linear system solutions. Note that Table 4 contains results for ode15s
using both the NDF's and the BDF's. The fact that the NDF's of orders 1 and 2
are more e�cient than the BDF's of these orders is particularly evident for the b5ex
experiments in which the maximum order was limited.

Table 4

Comparison of ode23s to ode15s. For vdpex, the relative accuracy was changed from the default
of 0:1% to 1%. Times are measured as seconds on a Sparc2.

time failed f @f=@y linear
example code time steps steps evals evals LU's solves
vdpex ode15s (BDF) 17.06 525 203 1594 45 266 1458

ode15s (NDF) 15.83 490 179 1514 46 249 1375
ode23s 14.21 302 96 1706 303 398 1194

b5ex ode15s (BDF) 32.37 1165 124 2586 1 319 2578
ode15s (NDF) 26.23 936 97 2074 1 263 2066
ode23s 15.38 549 17 1689 1 566 1698

As a �rst example we solved vdpex but asked only for a relative accuracy of
1:0% (i.e. rtol = 10�2). At this accuracy ode23s requires about 14 seconds for the
integration and ode15s using the NDF's requires about 16. This is true despite the
fact that ode23s forms 303 Jacobians and ode15s only 46. In Figure 6, we see that the
plot of y(t) resulting from the use of ode23s is notably better than that of ode15s at
this rough accuracy. When the relative accuracy tolerance is tightened to the default
of 0:1%, ode23s requires about 29 seconds and ode15s requires about 19. At this
more stringent tolerance, the plot of the solution resulting from the use of ode15s is
completely satisfactory, as seen in Figure 6.

Problem B5 of the test set [15] was devised speci�cally to show the unsatisfactory
behavior of variable-order BDF codes when applied to a problem for which the Ja-
cobian has eigenvalues near the imaginary axis. Ga�ney [16] investigates the matter
further with other problems and other kinds of codes. We solved b5ex with the default
error tolerances. ode15s recognizes automatically that this problem has a constant
Jacobian. The problem is an arti�cial one and the fact that the Jacobian is constant
was not considered important. However, for a fair comparison, we used the option
of telling both codes that the Jacobian is constant. In addition we restricted the
maximum order of the NDF's used by ode15s to 2, the highest order that is L-stable,
to have equivalent stability in both codes. It is evident that ode23s is to be preferred
for the solution of this problem, despite a relative accuracy of 10�3.

When it is not inconvenient to supply a function for evaluating the Jacobian, it
can be quite advantageous. Although the algorithms used by ode15s and ode23s for
numerical approximation of the Jacobian are strong, the reliability of an integration
can be enhanced by an analytical Jacobian. It is generally assumed that it is less
expensive to evaluate a Jacobian analytically than numerically. This may be true, or
it may not. As it happens, for the simple examples we present here, it is less expensive
to evaluate Jacobians analytically. Whether it is worth providing a function for the
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Fig. 6. The vdpex solution as computed by ode23s and ode15s at 1.0% accuracy. The solution
of ode15s at 0.1% accuracy is also plotted to show that the 1.0% solution of ode15s is less accurate
than that of ode23s.

Jacobian depends on how di�cult it is to write out the Jacobian, how expensive
integrations are, and which integrator is used. Certainly it is easy enough to write out
the Jacobians for our examples, and Matlab has a Symbolic Toolbox that provides
assistance working out analytical Jacobians when the equations are more complicated.
For four of the most expensive of our examples with non-constant Jacobians, Table 5
shows the e�ects of using the analyticJ option to pass in the name of a function that
evaluates the Jacobian. Note that brussjac, the analytic Jacobian function of the
brussex problem, returns a 100� 100 sparse matrix. Because ode23s evaluates the
Jacobian at every step, reducing the cost of this evaluation has an important e�ect
on the overall cost. Reducing this cost is much less signi�cant when using ode15s

because it makes comparatively few evaluations of the Jacobian.

Table 5

The solutions of four problems by ode23s and ode15s showing the e�ect of using the analyticJ

option to supply a function for evaluation of the Jacobian (time2). The brussex problem is 100�100
and its Jacobian function returns a sparse matrix. Times are measured as seconds on a Sparc2.

ode23s ode15s

problem time time2 time time2
brussex 80.00 13.82 23.48 9.70
chm9ex 47.12 27.32 29.60 25.86
hb2ex 140.78 87.29 13.65 13.50
vdpex 28.61 16.36 19.51 19.35

Next, we examine the solution of large systems of equations when information
about the sparse structure of the Jacobian is passed to the code with the sparseJ

option. As a large sti� test example, we use brussex, the classic \Brusselator" system
of 2N equations modelling di�usion in a chemical reaction [21],

u0i = 1 + u2ivi � 4ui + �(N + 1)2(ui�1 � 2ui + ui+1)

v0i = 3ui � u2ivi + �(N + 1)2(vi�1 � 2vi + vi+1)
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where � = 1=50 and

ui(0) = 1 + sin(2�xi)
vi(0) = 3

�
with xi = i=(N + 1) for i = 1; : : : ; N

on the time interval [0; 10]. There are 2N equations in this system. When the equa-
tions are ordered as u1; v1; u2; v2; : : :, the Jacobian of this system is banded with width
5.

For progressively larger values of N , Table 6 shows the number of steps taken and
compares the number of seconds required to solve the brussex problem by ode45,
ode23s and ode15s. The ode45 results indicate that the system becomes quite sti�
for the larger N . The �rst columns of ode23s and ode15s results were produced using
the default numerical approximation of Jacobians. As the second columns show, the
sparseJ option makes a tremendous di�erence. For the brussex problem, numjac
requires only 4 additional function evaluations to approximate the sparse Jacobian
matrix for anyN . UntilN becomes large, ode15s is e�cient even without the sparseJ
option because it generates relatively few Jacobians.

Table 6

The solutions of various size brussex problems by ode45, ode23s, ode23s using the sparseJ

option (time2), ode15s, and ode15s using the sparseJ option (time2). Times are measured as
seconds on a Sparc2.

ode45 ode23s ode15s

size steps time steps time time2 steps time time2
100 629 143.95 59 80.10 15.04 82 23.37 10.36
200 2458 4052.99 59 499.44 24.50 82 104.49 17.78
400 NA NA 59 3398.47 43.00 85 574.42 32.19
600 NA NA 59 NA 62.84 85 1703.68 49.21
800 NA NA 59 NA 83.91 85 NA 63.51
1000 NA NA 59 NA 105.93 85 NA 80.74

To illustrate the solution of problems involving a mass matrixM , we use Example
4 of Chapter 6 in [41]. The system of ordinary di�erential equations comes from a
method of lines solution of the partial di�erential equation

e�t
@u

@t
=
@2u

@x2

with initial condition u(0; x) = sin(x) and boundary conditions u(t; 0) = u(t; �) = 0.
The analytical solution of this problem is

u(t; x) = exp
�
1� et� sin(x)

An integer N is chosen, h is de�ned as 1=(N + 1), and the solution of the partial
di�erential equation is approximated at xk = k�h for k = 0; 1; : : : ; N + 1 by

u(t; xk) �
NX
k=1

ck(t)�k(x)

Here �k(x) is a piecewise linear function that is 1 at xk and 0 at all the other xj . The
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Galerkin discretization leads to the system of ordinary di�erential equations

A(t) c0 = Rc where c(t) =

2
64

c1(t)
...

cN (t)

3
75

and the tridiagonal matrices A(t) and R are given by

Aij =

8<
:

exp(�t)2h=3 if i = j
exp(�t)h=6 if i = j � 1
0 otherwise

and Rij =

8<
:
�2=h if i = j
1=h if i = j � 1
0 otherwise

The initial values c(0) are taken from the initial condition for the partial di�erential
equation.

Because the mass matrixA depends on t, this equation can be solved with ode15s

but not ode23s. However, scaling the equation by exp(t) results in an equivalent
system with a constant mass matrix that can be solved with both codes. As is typical
of the method of lines, the mass matrix of this example is sparse and generally it is
very advantageous to account for this in the solvers. But in this instance, we have
followed [41] by taking N = 9, which is too small for sparsity to be important. As the
analytical solution of the partial di�erential equation makes clear, the solution decays
very rapidly, so the problem is set on the time interval [0; �]. The solution of fem2ex
is shown in Figure 7 and statistics are presented in Table 7.

Table 7

Comparison of ode23s to ode15s for a problem with a constant mass matrix, fem2exwith N = 9.
Times are measured as seconds on a Sparc2.

time failed f @f=@y linear
example code time steps steps evals evals LU's solves
fem2ex ode15s 4.71 46 14 175 5 21 124

ode23s 5.35 40 1 493 41 41 123

9.2. Non-sti� Examples. In this section we consider four non-sti� examples
drawn from classic collections of test problems [15, 39]. vdpns is the van der Pol
equation with � = 1. rigid is the Euler equations of a rigid body without external
forces as proposed by Krogh. The solution is displayed in Figure 1. twobody, D5 of
[15], is the two body problem with an elliptical orbit of eccentricity 0.9. And r3body

describes a periodic orbit for a restricted three body problem [39]. The two and
restricted three body problems are somewhat unstable in portions of the interval of
integration, so must be solved with tolerances more stringent than the default values
to represent adequately their solutions. The details are not needed for our purpose
here.

Because the problems are non-sti�, we can solve them with all the MATLAB
ODE solvers. Table 8 contains the time required for solution, the number of successful
steps, the number of failed steps, the number of function calls, the number of partial
derivative evaluations, the number of LU decompositions, and the number of linear
system solutions.

10. Conclusion. This paper reports the development of methods and a suite
of programs for the solution of initial value problems for systems of �rst order ordi-
nary di�erential equations in the context of Matlab, a widely used environment for
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Fig. 7. The fem2ex solution with N = 9 as computed by ode15s.

scienti�c computing. The environment imposes constraints on the methods and the
way they are used, but it also o�ers interesting possibilities for both algorithms and
software, some of which could be realized in languages like C and FORTRAN 90.

New methods and variations on recent ones were developed for the solution of sti�
problems. One of the programs in the suite, ode15s, is based on a family of implicit
linear multistep formulas, the numerical di�erentiation formulas, NDF's, developed
here. The NDF's are substantially more e�cient than the backward di�erentiation
formulas, BDF's, and of about the same applicability. A new way of changing the step
size when using backward di�erences was devised that is both compact and e�cient in
Matlab. Another program for sti� problems, ode23s, is based on a linearly implicit
one-step method developed here. This modi�ed Rosenbrock formula and its error
estimate remedy a serious defect in a formula of Wolfbrandt [40] and its various error
estimates found in the literature. An interpolant is derived that is free and of better
quality than one previously proposed for Wolfbrandt's formula. The design of the
interface makes it possible for users to solve sti� problems without giving any thought
to Jacobians. An exceptionally strong routine for the numerical approximation of
partial derivatives makes this possible. ode15s minimizes the number of Jacobians
formed, ordinarily only one when the Jacobian is constant and a very few when the
problem is not sti�. The design makes it convenient to solve large systems of equations
with general sparse Jacobians.

Three programs were developed for the solution of non-sti� problems. Two are
completely new versions of the explicit Runge-Kutta programs ode23 and ode45 found
in earlier versions of Matlab. They are based on new formulas that are more reli-
able and more e�cient. The formulas also have high-quality interpolants that are
free. A powerful variable-order Adams-Bashforth-Moulton program, ode113, was de-
veloped for the problem with exceptionally expensive F and/or stringent accuracy
requirements.

A primary concern of our investigation was the software interface. Exploiting the
Matlab language it is possible to devise a user interface that is unobtrusive, powerful,
and extendable. Indeed, in the course of developing the suite, the interface was �rst
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Table 8

Comparison of all �ve of the ODE solvers on a set of four non-sti� problems. Times are
measured as seconds on a Sparc2.

time failed f @f=@y linear
example code time steps steps evals evals LU's solves
rigid ode23s 2.76 58 10 373 59 68 204

ode15s 2.08 82 17 184 1 30 179
ode113 2.12 65 4 135 0 0 0
ode23 0.92 55 13 205 0 0 0
ode45 0.57 19 2 127 0 0 0

r3body ode23s 22.79 372 1 2612 373 373 1119
ode15s 8.74 321 48 575 1 87 569
ode113 10.72 237 20 495 0 0 0
ode23 6.19 301 4 916 0 0 0
ode45 3.84 73 27 601 0 0 0

twobody ode23s 44.45 871 1 6105 872 872 2616
ode15s 13.66 584 64 963 2 135 952
ode113 18.46 396 29 822 0 0 0
ode23 11.51 727 0 2182 0 0 0
ode45 4.98 133 35 1009 0 0 0

vdpns ode23s 6.65 158 21 836 159 179 537
ode15s 4.48 192 35 426 1 60 422
ode113 5.33 162 12 337 0 0 0
ode23 2.10 146 19 496 0 0 0
ode45 1.43 51 11 373 0 0 0

extended to deal with sparse Jacobians and then to deal with a more general form of
the di�erential equations.

Availability of the Codes. This paper presents mathematical and software
developments that are the basis for the Matlab suite of ODE solvers. Source code
for the solvers and examples may be obtained gratis by ftp on ftp.mathworks.com in
the pub/mathworks/toolbox/matlab/funfun directory. The solvers require Matlab

version 4.2 or later.
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