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COMMENTS ON THE METHOD OF HARMONIC BALANCE 

Scientists and engineers are often confronted with a non-linear ordinary differential 
equation for which physical considerations suggest that one or more types of oscillatory 
motions are possible [1-7]. In general, except under very special conditions, exact solutions 
in closed form do not exist. Therefore, if analytic results on the differential equation are 
to be obtained, then approximation schemes must be constructed. For the case where 
the non-linearities are small a number of perturbation methods can be applied and 
approximate analytic solutions obtained [8]. However, one is often interested in looking 
at situations where the system is operating in a regime where the non-linear interactions 
are very large; consequently, perturbation techniques will not work. To my knowledge, 
the only technique of general applicability for obtaining approximate analytic solutions 
under these conditions is the method of harmonic balance [1-5]. (It should be pointed 
out that in the literature dealing with electrical engineering, the method goes under the 
name of the "describing function method"; see references [1, 2, 4].) In general, when 
the method works it provides an excellent approximation to the required solution. 

In spite of the fact that the method of harmonic balance has been in use for nearly 60 
years, it is difficult to find in the literature a good and straightforward discussion of the 
advantages and limitations of the technique. The main purpose of this letter is to provide 
this information. 

To begin; one can list the major advantages of the method of harmonic balance when 
it can be applied to a non-linear, ordinary differential equation to obtain an approximate 
analytic solution: (i) the differential equation can be of any order; the order is not 
restricted to be two; in general, the method is applicable to ordinary differential equations 
having the form 

L x = F ,  (1) 

where L is a linear differential operator of order N and F is a non-linear function of x 
and its various derivatives; (ii) the non-linearity, represented by the function F, need not 
be "small"; (iii) limit cycle behavior and the related parameters can be easily determined; 
(iv) the stability of a given limit cycle can be decided in a straightforward manner; (v) 
most importantly, when the method works, it provides a quick and efficient procedure 
for obtaining good approximate analytic solutions to the non-linear differential equation 
of interest. 

My experience in applying the method of harmonic balance to the investigation of the 
nature of oscillatory solutions for problems in the areas of non-linear vibrations, circuit 
theory, plasma physics, etc., has led me to formulate the following conditions which must 
be imposed on the method if it is to work [9]: (a) the non-linear function F in equation 
(1) is assumed to be a finite sum of terms each of which has the form 

(x(n,))k,(x(~)) ~ . . .  x t, (2a) 

where 

x (",)=d",x/dt", ,  etc., (2b) 

and ki and I are non-negative integers; (b) the integers ki and I should satisfy the relation 

ki + l = odd integer; (3) 
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(c) for conservative systems, where F depends only on x, the function F ( x )  should have 
only one minimum: i.e., F ( x )  should be concave; (d) the higher harmonic terms should 
have small amplitudes relative to the fundamental expression. 

Before proceeding, several comments are needed on (a), (b), (c) and (d) given above. 
First, the assumption given by (a) is merely a statement that F is a polynomial function 
of its arguments. For almost all the non-linear differential equations which arise in practical 
applications, this assumption is satisfied. The condition given by (b) is a reflection of the 
fact that, in general, problems occur in using the method of harmonic balance when the 
solution to the differential equation contains a constant term [10]. The assumption (b) 
eliminates this difficulty. For conservative systems which have more than one stable 
equilibrium state, the method of harmonic balance should be applied in the neighborhood 
of each stable equilibrium state separately. In general, one does not expect the method 
to give a global description in this situation except for large values of the amplitude. The 
assumption given under (c) removes this problem. Finally, the method of harmonic 
balance is based on the assumption that the fundamental frequency term is dominant in 
a Fourier representation of the solution. This assumption must be checked a posteriori; 
(d) is merely a statement of this fact. 

One is now in a position to state the required steps for obtaining an approximate 
analytic solution to the non-linear ordinary differential equation (1) by the method of 
harmonic balance. The main reason for waiting this long to give the procedure is that 
the discussion of the issues and assumptions under items (a)-(d) above make clear the 
reasons for the individual steps that are now to be presented. 

(I) Check equation (1) to see whether conditions (a), (b) and (c) are satisfied. 
(II) Assume a solution of the form 

x(  t) = A cos cot, (4) 

substitute it into equation (1) and set the coefficient of the lowest harmonics (i.e., cos cot 
and sin wt) equal to zero. 

(Ill-A) For a conservative system, the result of performing step (II) will be a single 
expression 

h(~o, A, a)  =0 ,  (5) 

where a denotes the fixed parameters which appear in the differential equation. This 
equation can then be solved to give the frequency as a function of the amplitude 

co = h i (A ,  a) .  (6) 

(Ill-B) For a non-conservative system, for which limit cycle behavior is possible, 
carrying out step (II) will give two expressions, 

h(co, A, a) = 0, g(oJ, A, or) = 0, (7) 

which can be solved to give the parameters of the possible limit cycles: i.e., 

~o, = f l ( a ) ,  A, = f2(a),  (8) 

where m is the number of limit cycles �9 and i = 1 ,2 , .  �9 �9 m. 
(IV) For a non-conservative system, determine the stability properties of all the limit 

cycles [1, 2]. 
(V) Check to see if the higher harmonic terms are small. In practice, this means letting 

x ( t )  be represented as 

x( t )  = A cos a,t+ B cos 3oJt, (9) 
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carrying out steps (I), (II) and (III), and showing that 

IB/AI<< 1. ( i0) 

(A moment's reflection should convince the reader that under conditions (a) and (b) the 
first harmonic to appear will be 3to. In general, even harmonics will not occur.) 

(VI) Finally, for a more complete approximation to equation (1), the expression given 
by equation (4) can be modified to read 

x( t) = A cos tot + B sin tot. (11) 

The analysis can then be carried out as described in steps (I)-(V). 
The following is a small sample of the kinds of non-linear equations for which the 

method of harmonic balance has been applied: 

d2x/dt  2 + x 3 = 0, (12) 

d2x/dt2+ e [1 +fl / (1 -x2)]  d x / d t + x  = 0, (13) 

d4x/d/4  -I- x + d2(x3)/dt2 = 0. (14) 

These equations arise, respectively, in the areas of non-linear vibration [8], signal process- 
ing [7] and plasma physics [6]. To illustrate the procedure, results for equation (12), 
which is based on the work of Hill [11], can now be presented. 

If equation (4) is substituted into equation (12) and the coefficient of the cos tot term 
is set equal to zero, then the following relationship is found between the radian frequency 
and the amplitude: 

w(A)=x/~z A. (15) 

Thus, the first approximation to the solution of equation (12) by the method of harmonic 
balance is 

x( t )  = A  cos (x/~ A)t. (16) 

Note that the period of the motion, as determined by equation (15), is 

T = 2~-/to = ~ (2~r/A) = 7"2552/A. (17) 

For a second approximation, one assumes that the solution of equation (12) can 1:: 
written as 

x(t)  = A  cos to t+B cos 3tot. (18) 

Substitution of equation (18) into equation (12) and setting the coefficients of the cos tot 
and cos 3tot terms equal to zero gives the following two expressions: 

A l t o  2 3A 2 3 A B  3B 2] A 3 3A2B 3B 3 
4 4 =0,  - 9 B t o 2 + - - +  + =0.  (19a,b) 

4 2 4 

Solving equation (19a)for to(A, B) gives 

to=x/3zzA[l+y+2y2] t/2, y = B / A .  (20) 

If this value for to is now substituted into equation (19b), then, with a little algebraic 
manipulation, one obtains 

51ya+27y2+21y  - 1 = 0. (21) 

This equation is a cubic and therefore has three solutions. However, what is of interest 
here is seeing whether or not equation (21) has a real solution which is small: i.e., satisfies 

the  condition given by equation (10). To proceed, assume that such a solution, y,, exists: 
i.e., ly, l<< 1. Its approximate value can be determined by neglecting the first two terms 
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in equation (21); solving the resulting equation gives 

Ys = 1/21 = 0.0476. (22) 

As a check on this result, one can keep the quadratic term in equation (21) and solve 
this equation to obtain 

y~1)=0.0450 and y~2)=-0.8228. (23) 

Only the first root is of interest, since this is the one which is an improved approximation 
to the smallest root of equation (21). Thus one concludes that 

B/A~-O.045, (24) 

and, consequently, the condition of equation (10) is easily satisfied. Comparison of 
equations (15) and (20) shows that the radian frequency is changed by about 2%. 

Equation (12) has an exact solution which is [11] 

x(t) = A cn (At; l/x/2), (25) 

where cn is the Jacobi elliptic cosine function. The period of this motion is 

T = 7.4163/A. (26) 

A Fourier expansion of equation �9 (25) gives a ratio of the amplitudes of the cos 3tot and 
cos tot terms to be 0.0450778, as compared to the value given by equation (24). These 
results show clearly that the method of harmonic balance provides an excellent approxima- 
tion to the solution of equation (12). 

It cannot be overemphasized that the main value of the method of harmonic balance 
is its use in the calculation of approximate solutions for non-linear differential equations 
where the non-linearities are large. For situations where the non-linearities are small, 
various perturbation procedures should be used [8]. Furthermore, in most cases of practical 
interest, the method of harmonic balance need not be carried out beyond the first 
approximation. In general, for those non-linear differential equations for which the 

�9 applicability conditions hold, the technique provides excellent estimates of the frequency- 
amplitude relations for conservative systems and values of the parameters for the limit 
cycles of non-conservative systems. 

One can conclude that the harmonic balance method is a fast and efficient technique 
for investigating the oscillatory solutions of the class of non-linear differential equations 
defined by equation (1), provided that the applicability conditions (a)-(d) are satisfied. 

Currently, the author is examining the use of iteration techniques to obtain approximate 
solutions to equation (1) where the first approximation is given by the method of harmonic 
balance. Such a scheme provides the possibility of calculating the higher harmonics without 
getting bogged down in the mass of algebraic detail which has to be dealt with in the 
usuial application of the method of harmonic balance to this problem. Preliminary results 
are very encouraging. 
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