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Wavelet analysis on the circle

The construction of a wavelet analysis over the circle is presented. The spaces of infinitely times differentiable functions, tempered distributions, and square integrable functions over the circle are analyzed by means of the wavelet transform.

I. INTRODUCTION

In this paper we want to show how to analyze fairly arbitrary functions over the circle 'f 1 with the help of a twoparameter family gtf>,a of functions called wavelets. They are labeled by a position parameter t,6eT 1 and a scale parameter a, a> 0. In standard wavelet analysis of functions over the real line lR, the family of analyzing wavelets is obtained from a single function by means of dilations and translations (e.g., Ref. 1 ) . On the circle it is difficult to define a good dilation operator, and therefore the wavelets over the circle cannot be obtained by an irreducible representation of the affine group, as was the case in Refs. 1-4.

As proposed before 5 in the case of orthogonal wavelet analysis the wavelets that we will use are obtained from the standard ones (1/a)g((x-1,6}/a) by means of periodization:

( ) ""1 (x-t,6+n)

.k: 1 + Ktf>,a X = ~ -g ' 'f""'T' aeR . nEZ Q a ( 1.1)
This series converges whenever g decays sufficiently fast at infinity. The wavelet transform of a complex-valued function over T 1 is a function over the position-scale space, which is an open, infinite, cylinder Y = T 1 X lR +. It is given by the following scalar products:

(Tgs) (t,6,a) = (g.p,a•s), (t,6,a)eY.

(1.2)

The wavelet transform is a sort of mathematical microscope where the position is fixed by the parameter b, the enlargement is 1/a, and the optic is given by the wavelet itself. We now shall give a precise meaning to all these expressions, and we shall show how to characterize various functional spaces over T 1 with the help of this transform.

II. SOME DEFINITIONS AND EASY PROPERTIES

The space C"" (T 1 ) is made of complex-valued functions s overT 1 that are arbitrarily many times differentiable. We identify the circle T 1 with the interval [0, 21T). A topology on C"" ( T 1 ) is given by the following directed family of norms:

(2.1)

In this topology C"" (T 1

) is a Frechet space, that is, a complete, locally convex, metrizable, linear space. For any func- tion s in C"" (T 1 ), we can define its Fourier coefficients (Fs)(n), neZ:

(Fs)(n) = -1 -( s(x)e-inx dx.
21T JT'

(2.2)

The sequences (Fs) (n) that can appear as the Fourier coefficients of some functions in C"" (T 1 ) are exactly the sequences that decrease as In I goes to infinity faster than any power of n. And conversely every such sequence defines a function in C"" ( T 1 ) • This sequence space will be called S(Z). A topology on S(Z) is given by the following directed family of norms:

llrlls<Z>;n = L supjkPr(k) j, n = 0,1,.... (2.3) O<.p<n kEZ
For any sequence r in S(Z) we define the inverse Fourier transform F-1 :

(F-1 r)(x) = L r(n)einx. nEZ (2.4)
The following well known theorem shows that C"" (T 1 ) and S(Z) are topologically the same spaces, and that any function inC"" (T 1 ) can be decomposed into a Fourier series. Theorem 2.1:

(i) F: C"" (T 1 ) -.S(Z) is continuous~ (ii) p-1 : S(Z) ..... C""(T 1 ) iscontinuous, ( ... ) p-1 F -1 ll1 : =lc~<T'>'FF =lscz>•
Proof: [We only shall prove (i) and (ii).] With the help of a partial integration we can write

I L. kPs(x)e-ikx dx I =I r aPs(x)e-ikxdxl "21TIIsll JT. X " '
coc(T');p' which proves (i). On the other hand, since any reS(Z) is rapidly decreasing, we may exchange the differentiation and the summation:

Ia~ ~ r(n)einxl = I L nPr(n) 1 + n2 inx' nEZ 1 + n 2 1 <(l!rlls<ZJ;p + llrlls<Z>;p+2) ~ 1 + n 2 <CIIrlls<ZJ;p+2' Q.E.D.
This proves (ii).

Q.E.D. The functions g that define via ( 1.1 ) the wavelets shall all be in the class S(R) of Schwarz, that is, the set of functions decaying at infinity together with all their derivatives faster than any polynomial. A topology on S(R) is given by the following directed family of norms: llslls(R);n.a = L supixP a !s(x) I. n, a= 0,1, .... O<;p<;n R O<;l<;a (2.5) With this topology S(R) is a Frechet space. On S(R) we define translations and dilations in the usual manner:

Tb: S(R) -+S(R), D a: S(R) --+S(R), (Ths)(x)=s(x-b), hER,
(2.6)

(D as)(x) = ( 1/a)s(x/a), a> 0.
(2.7)

Obviously these operators are continuous. On S(R) we define the Fourier transform Y and the inverse Fourier trans-formY-1as

(Ys)(m) = 1 s(x)e-ic"xdx, (Y-1 r)(x) = (21T) -I i r(m)eiwx dx.
(2.8)

(2.9)

We will use the notation s for Y s. The Fourier transform is a bijective, bicontinuous map. Theorem 2.2:

(i) Y: S(R) ---S(R) is continuous, (ii) y-1 : S(R) ---S(R) is continuous, (iii) y-ly = Y y-l = ls<R>.
For a proof, see any textbook about functional analysis.

The passage from a functions in S(R) to a function in C"' ( 'f I) will be done by the periodization operator n:

(lls) (x) = L s(x + 21Tn), xE'f 1 .
(2.10) neZ Theorem 2.3: ll: S(R) __. C'"' {1' 1 ) is continuous. We shall prove this theorem in a moment. To any function in S(R) we can associate a sequence in S(l) with the help of the sampling operator:

~: S(R) --+S(l), (~s)(n) = s(n), n = ... , -1,0,1, .... (2.11)
It obviously is a continuous operator. A natural question is to ask what the Fourier coefficients of periodized function are. The answer is given by the Poisson summation formula, which reads Fll=~Y.

(2.12) or, more explicitly (s = Ys),

I s<x + 21rn> =I s<n>einx. (2.13> nEZ neZ
For a proof of this equation, see, e.g., Ref. 6.

Proof of Theorem 2.3: We have ll = F -I ~Y. All mappings are continuous.

Q.E.D.

The space L 2 ('f) is made of functions s with finite norm

(2.14) 2
It is a Hilbert space if it is given the following scalar product:

(r, s) = f r(fjJ)s(fjJ)d¢.

(2.15)

JT'

Clearly L 2 (1' 1 ) :JC"' (1' 1 ). The Fourier transform extends to a map from L 2 (1') to L 2 (l), the Hilbert space of square summable sequences. We may split L 2 (1') into the direct sum ofH 2 _ (1' 1 ), the space of functions that have only negative frequencies; H 2 + ( 'f 1 ), the space of functions that contain only positive frequencies; and K ( 'f 1 ) , the constant functions:

(2.16)

The corresponding subspaces of C"' (1' 1 ) shall be denoted by c~ (1' 1 ) andc~ (1' 1 ).

Ill. THE WAVELET TRANSFORM OF C"'('f1)

In this section we analyze the space functions with the highest possible regularity. It will turn out that this is mirrored in the wavelet transform by a fast decay of the wavelet coefficients as the scale a goes to 0. The regularity of the analyzing wavelet, or, what is the same, the fast decay of the Fourier transform at infinity, in turn gives rise to a fast decay of the wavelet coefficients, as the scale a goes to infinity. Therefore we will be able to characterize this space as the set of functions that are well localized in the scales; that is, every such function has a minimal effective length scale. We shall characterize the range of the transform, and further give an inversion formula.

First we introduce some notations. For any /ES(R) and any a > 0, we define Ia EC"' ( 'f 1 ) as

Ia (x) = (llDaf)(x) = L .]_ 1(x + 2 1Tn), (3.1)
nEZ a a and/,p,aEC"' (1' 1 ) with fjJE'f 1 will stand for /.p,a (x) = (llT"'D})(x) =fa (x-¢).

(3.2)

For reasons that will become clear later on we shall require that all the moments of the wavelet, g, vanish:

i xng(x)dx=O, n=0,1,....

(3.3)
An equivalent condition is that the Fourier transform g = Y g vanishes at the origin in infinite order:

g(m) = O(mn), n = 0,1,... (m--+0).
(3.4)

The subset of S(R) of functions that satisfy one (and therefore both) of these conditions will be called S 0 (R).

Definition 3.1: The wavelet transform T 8 of any function sEC"' ( 'f 1 ) with respect to a function gES 0 ( R) (called the wavelet) is given by the following scalar products:

(T 8 s)(f/J,a) = (g.p,a•s), ¢E'f 1 , a>O.
(3.5a)

The same expression in Fourier space reads (using the Poisson summation formula)

(T 8 s)(f/J,a) = L ( Yg)(ak)eiki/>(Fs)(k). ( 3.5b) kEZ
The wavelet transform is a function over the position scale space, which inourcaseisacylinderY = 1' 1 XR+. Obvious-ly it is a function that is infinitely differentiable. It turns out that T 8 is a continuous map from C"" (T 1 ) into the space of functions y( </J,a) over Y that are infinitely differentiable, and that decay for a ...... 0 and a ...... oo faster than any fractional polynomial in a. We call this space S(Y). The topology of this space is given by a directed family of norms: IIYIIs(Y);n,a,p = L sup laP a ~a ;y(p, a) I.

-n<.p<n Y O<.l<.a O<.k<P n,a,f3=0,1, ....

(3.6)
Then S(Y) is a Frechet space. We have the following theorem.

Theorem 3.2: For gES 0 (R), we have T 8 :

C"" (T 1 ) ...... s(Y) is continuous.

We first shall prove two lemmas. Lemma 3. 3: Let sES 0 ( R.), and let sa be given by ( 3.1).

Then 

n#O n#oaPinlm+Z

Since the sum remains finite if a goes to infinity we have finished the proof. Q.E.D. Lemma 3.4: For any sES 0 (R), there are functions u, v, WES 0 (R.) such that The following functions are in S 0 (R.):

(i) a<Ps<f>,a (x) = axu<f>,a (x), (ii) aas<f>,a (x) = axv<f>,a (x), (iii) ( 1/a)s<f>,a (x) = axw<f>,a (x).
(i) u = -s, (ii) u(w) = -i a,)(w), (iii) w(w) = (i/ {t) )s(w).
A direct computation using the Fourier expansion of s<f>,a shows that they satisfy the identities of the lemma. Again Lemma 3.3 can be used to conclude. Q.E.D. Definition 3.5: For any function h in S(Y) the inverse wavelet transform T 8 -1 h is defined as

(Tg-lh)(x) = f g<f>,a(x)h(</J,a) dad</J.
JY a (We shall see in a moment in which sense T 8 -1 is the inverse of T 8 .) This integral is well defined since h is rapidly decreasing as a tends to 0 or infinity. It again turns out to be a continuous map.

Theorem 3.6: For gES 0 (R), we have T 8 -1 :

S(Y)--+C""(T 1 ) is continuous.

Proof' Since his rapidly decreasing we may exchange the integration and the differentiation and we may write la~(r 8 -1 h><x>l = li a~g"'•a<x>h<<P.a> daad<Pi = 1 L g<{>.a (x) ! a ~h(</J.a)da d</J 1 <i"" llga IlL '<T'l da•llh lls(Yl;l,n,o• Lemma 3.3 assures that the integral is finite. Q.E.D.

We want to establish the relation between T 8 and T 8 -1

• From Definition 3.1 it follows that the positive (negative) frequencies of the wavelet do only interact with the positive (negative) frequencies of the functions. Therefore we will use the splitting ( 2.16) to separate positive and negative frequencies. Clearly the image of the constant functions is equal to zero and therefore we can only hope to find an inversion formula that holds on the other two parts. Theorem 3.7: For all SEC~<_, (T 1 ) we have

T 8 - 1 T 8 s = c 8 + <-'s.
The constants c 8 + and c 8 -are determined by g:

cg+ = f"" da fg(a) 12, cg-= f"" da lg( -a) 12• Jo a 1 a
Proof' Let sEC ~ < _ , ( T 1 ) be given. Since all negative (positive) frequencies of s vanish, we may suppose that the Fourier transform of g is symmetric. We call~ the function that is obtained when using the inverse transformation with a cutoff at the small scales: For fixed E > 0, Lemma 3.3 guarantees the absolute convergence of all integrals, and therefore we could exchange the integration. Integrating first over 4> and a yields

.r(x) = r KE(x-y)s(y)dy = (KE•s)(x),

JT'

and the kernel Ke is given by KE(u)=rooda r d<f>ga(u-<f>)ga(</>).

JE a JT 1

Expanding these expressions into a Fourier series we obtain the following equations for the Fourier coefficients (denoted by a tilde):

KE(n) =roo da lg(an)l2= roo da lk<a>I2=K(En),

Je a

J1n1e a where we have posed

;-... loo da K((J))= -lg(a)l2• 1"' 1 a
Here we have used the fact that g was chosen symmetric. The Fourier coefficients depend only on en. Applying the Poisson summation formula (2.12), we obtain ;-... KE=fiDeK=Ke, with K=Y-1 K.

But [ cg+ < ->] -t Ke is a summability kernel (e.g., Ref. 6). Therefore we can apply the theorem of the approximation of the identity 6 to conclude.

Q.E.D. We now want to characterize the range of the wavelet transform.

Theorem 3.8: For any geS 0 (R), the image of coo (T 1 ) under Tg is a closed subspace of S(Y). The range of Tg restricted to C ~ < _ > ( T 1 ) consists of exactly those functions y in S(Y) that satisfy the following "reproducing kernel" equation:

( "' ) _ i ("' • "-' ' ) ( "-' ' ) da' d¢>' y .,,a -pg .,,a,.,,a y .,,a ---, Y a where the reproducing kernel pg is given by

Pg (<f>,a;<f>',a') = (1/ct <-> )(gt/>,a,gt/>',a' ),
or, in Fourier space,

p g ( <f>,a;¢>' ,a') --1 - L ( Yg)(ak)(Yg)(a'k)e;k<t/>-4>'>. Cg+ (-) k£Z,k> ( < )0
Proof: As continuous preimage of a closed space under the inverse wavelet transform, the image of the wavelet transform is closed. Now for any yeS(Y) in the range of Tg on C~ < _ > (T 1 ) there is a functions inC~<_> (T 1 ) such that. Tgs = y.

From Theorem 3. 7 we have T g-1 Tgs = ct <->s, and therefore we can write T r -1 y= T r-'Ts=c+<->rs=c+<->y gg gg g g g g .

On the other hand, if yeS(Y) satisfies Tg T g-1 y = cg+ <->y, then, for x = cg+ < -> T g-1 y, we have Tgx = y, which proves that y is in the range of Tg. We now rewrite the above identity more explicitly (we can exchange all integrations, since the integrals are absolutely convergent):

r da' ~4>' y (</>',a') r gt/>,a (x)gt/>',a' (x)dx
Jv a JT'

= cg+ <->y(<f>,a),
which proves the theorem.

IV. THE WAVELET TRANSFORM OF 9 '(T1)

Q.E.D .

In this section we will be interested in the wavelet transform of the "functions" over the circle, with very low regularity, that is, the space of distributions .!W(T 1 ). The lack of local smoothness is reflected in the wavelet transform by a polynomial growth of the coefficients at small scale. However, the wavelet transformation allows us to represent any distribution by a coo function over the position scale space.

The elements of 9' (T 1 ) are continuous linear functionals of coo (T 1 ); that is, for any X in .@"'(T 1 ) there is an integer number n such that, for any seC"' (T 1 ), we have IX(s)I<C,.IIsllc~<T'>;n' (4.1)

The smallest such n is called the order ofthe distribution X.

A topology in ..@" ' ( T 1 ) is given by requiring that any se-quenceXn in .@"'(T 1 ) tends to zero if and only if Xn (s) goes to zero for all sEC"' ( T 1 ). We identify any function s of coo (T 1 ) with the distribution (s,-). This embedding is continuous. The space C"' ( T 1 ) is dense in ..@"' ( T 1 ), and therefore any distribution can be approximated by functions in C"' (T 1 ). We may even choose sn (sn --+X in the sense of distributions) in such a way that, for all rE.Coo (T 1 ) and n, we have ( m being the order of X) I (sn,r) I<C,.IIrllc~(T'>;m' (4.2)

In the same way we denote by .@"'(Y) the space of linear continuous functionals overS( Y). For any pair offunctions J, h over Y we define the following "scalar product" ( •, •) L ' <Y> whenever the following integral converges absolutely:

i -dad¢> (/,g)L'<Y> = J(<f>,a)g(<f>,a) --. We now define the wavelet transformation of distributions.

Definition 4.1: Tg: .@"'(T 1 ) --+.@"'(Y) is defined by XE.@"'(T 1 )=> (TgX)(y) =X(Tg-'y), forall yeS(Y).

rg-1 : .@"'(Y) --+.@"'(T 1 ) is defined by YE.@"'(Y) => ( T g-1 Y) (s) = Y( Tgs), for all sEC 00 (T 1 ).

Here, for functions in coo (T 1 ) and S(Y), the definitions of Sec. II apply. These definitions are reasonable, since Tg and T g-1 are continuous maps between C"' (T 1 ) and S(Y). In the following theorem we show that Definition 4.1 actually extends Definitions 3.1 and 3.5.

Theorem 4.2: Tg and T g-1 are the only possible continuous extensions of Tg restricted to C"' ( T 1 ) and T g-1 restricted to S(Y).

Proof: Let Xne..@'(T 1 ), Xn -+0 (n-+ «J) in the sense of distributions. For allyeS(Y), we have

( T 8 Xn )(y) = Xn ( T 8 -1 y) ..... o (n-+ «J ),
which shows that T 8 is a continuous map from ..@'(T 1 ) to ..@' (Y). In exactly the same way we can show that T 8 -1 is continuous, too. LetseCoo (T 1 ). Takings as a distribution in ..@'(1' 1 ), we write, for any yeS(Y), ( T 8 s)(y) = ( da dr/J ( dx gtf>,a (x)s(x)y(r/J,a)

JY a JT' = ( T 8 s,yh'<Y>.

We could exchange the integrations since all integrals converge absolutely. Since y was arbitrary, we have proved that Definition 4.1 coincides with Definition 3.1 in the case where a distribution is a function in coo ( T 1 ). But coo ( T 1 ) is dense in ..@' ( 1' 1 ) and therefore by continuity there is exactly one continuous extension. The proof forT 8 -1 is the same. Q.E.D.

The next theorem shows that the wavelet transform of any distribution in ..@' ( T 1 ) can be identified with a function in coo (Y), that is, the space of functions over Y that are infinitely differentiable.

Theorem 4.3: LetXe..@'(T 1 ). For allyeS(Y), we have (T 8 X)(y) = (2",y)L'<Yl'

where the function 2" is in coo (Y) and is given by I 2"(r/J,a) = X(gt/>,a ).

Proof: We can find a sequence sn of functions in coo ( 1' 1 ) that converges to X in the sense of distributions and that satisifies ( 4.2). Therefore we may write ( T 8 ,X)(y) = lim (sn,T 8 -1 Yh'cT'> We could exchange the integration for fixed n because of the absolute convergence of all the integrals. Clearly (g 9 ,a,sn) tends to X(gtf>,a) pointwise, that is, for each (r/J,a)eY. But from ( 4.2) it follows that I (gtf>,a•Sn) I <CIIga llc~(T');m'

where m is the order of X. Therefore Lemma 3.3 shows that the integrand in ( 4.4) is uniformly bounded by a function absolutely integrable over Y. We can apply the theorem of dominated convergence to conclude. Again it is useful to split the whole space into ..@ '+ < _ > ( T 1 ) , the space of distributions that are acting on the positive (negative) frequencies only, and X ( T 1 ) , the distributions that are multiples of the integral over the circle. Again every distribution can be written in a unique way as the superposition of three distributions, each one belonging to one of these three classes:

..@'(1' 1 ) = ..@'+ (T 1 ) E9%(T 1 ) E99'_ (T 1 ).

We now will write a distribution in ..@' ( T 1 ) as a well defined "scalar product" offunctions in coo (Y) obtained by an absolutely convergent integral over Y.

Theorem 4.4: Let seC ~ < _ > ( T 1 ) and let X be a distribution in..@'+<_> (1' 1

). Then

(

  ii) Vn = 0,1, ... : llsallc~<T'l;n = 0(1/am) (a-+ oo ), for m = 0,1, .... Proof' Assertion ( i) follows from the fact that for small a essentially only the term (n = 0) in the sum (3.1) remains because of the localization off To prove (ii) we expand sa into a Fourier series using the Poisson summation formula:sa <x> =I s(an>ei"x.nEZ Since s( 0) = 0 and s( w) = 0( wP + m + 2 ) as w goes to infinity, we can estimate, for a large enough, lama~sa(x>l< L amlnfPis(a•n>I<I c .

Proof•

  We use again the Poisson summation formula to decompose s<f>,a into a Fourier series (s = Ys): s<f>,a(X) = Is(an)ein<x-o,l>.

  neZ

  ProofofTheorem 3.2: First letp;;;.O. Using Lemma 3.4, for gES 0 ( R.) we can find a function 1'ES 0 ( R) such that a ~a ;g<t>.a (x) =a~+ kr<f>,a (x). With the help of a partial integration we can write 3 laP a ~a~ ( Tgs) (</J,a) I = li aPr (x)a 1 +ks(xthat the sup is finite. Now let p < 0. Again Lemma 3.4 can be used to find a function 1'ES 0 (R) such that aPa ~a ;g<f>,a (x) =a ):1 +I+ kr<f>,a (x). Therefore we can write laP a ~a; ( Tgs) (</J,a) I = li r (x)aiPI+I+ks(x)dxl <{>,a x T' <~j. lira IlL '<T'l lfsllc~<T'l;IPI +I+ k'

  />,a (X)K¢>,a (y)s(y).E a T'xT'

X(s) = (l/c 8 +<->)(~.T 8 sh,cY>• and ~ = T 8 X as given by Theorem 4.3.

Y. Meyer, "Principe d'incertitude, bases Hilbertiennes et algebres d'operateurs," Asterisque 145-145, 209 ( 1987).6 Y. Katznelson, An Introduction to Harmonic Analysis (Dover, New York).

Proof: From Theorem 3. 7 it follows that ( T 8 X) ( T 8 s) =X( T 8 -1 T 8 s) = c 8 + <-'X(s).

Since T 8 seS(Y), Theorem 4.3 shows how (T 8 X)(T 8 s) can be written as a scalar product.

Q.E.D . We now want to characterize the image of ..@'(T 1 ) under the wavelet transform.

Theorem 4.5: The image of..@'+ < _ > ( T 1 ) under T 8 are exactly those functions ~ in coo (Y) that satisfy (i) there exists meZ such that

uniformly in r/J; ( ii) for all p > 0, we have

uniformly in r/J; and (iii) ~satisfies the reproducing kernel equation (pointwise)

~(r/J,a) = (l/c 8 +<->)(p 8 (r/J,a;•,-),~)L'<Y>•

Proof: Let X e.@'+<_> (T 1 ). Then ~ (r/J,a) = T 8 X = X(g 9 ,a) satisfies (i) and (ii) as follows by direct computation from ( 4.1) and Lemma 3.3. To show (iii), note that, for any seCoo (T 1 ), we can write, with the help of Theorem 2.4,

On the other hand, a direct computation shows that

The integral on the right-hand side converges absolutely for every (r/J,a)eY due to the rapid decrease of the reproducing kernel p 8 at small scales. Now suppose that~ is a locally integrable function over Ythatsatisfies (i)-(iii). WedefineXe..@'(T 1 ) by

Clearly X is well defined since T 8 s is rapidly decreasing (Theorem 3.2), and a direct computation shows that

V. THE WAVELET TRANSFORM OF LZ(T1)

In this section we will analyze the Hilbert space of square integrable functions over the circle. As subspace of ..@' ( T 1 ) all theorems of the previous section hold for L 2 (T 1 ). In particular, the image of L 2 (T 1 ) are functions in coo (Y) that satisfy the reproducing kernel equation. It turns out that the wavelet transform is an isometry. Its range is a closed subspace of L 2 ( Y), the Hilbert space over Y with scalar product ( 4.3). So the image of L 2 ( T 1 ) under T 8 turns out to be a Hilbert space with reproducing kernel.

Theorem 5.1: The operator

is an isometry. Its adjoint is the only bounded operator

) that coincides with ( 1/~cg+ <->) T g-t when it is restricted toS(Y). Let the wavelet g have only positive (negative) frequency contributions. Then the reproducing kernel gives the orthogonal projector P g+ <->on the image of H 2 + < _ > (T 1 ) under Tg:

Proof It is enough to show the theorem on a dense subset of H 2 + < _ > ('f 1 ). Let s,uEC~ < _ > ('f 1 ). We look upon s as a distribution in ~ '+ < _ > ( 'f 1 ). From Theorem 4.4 it follows that (s,u) = (Tgs,Tgu)L'<Y>• and therefore Tg is an isometry. A direct computation shows 6 .that the adjoint is as stated in the theorem. The fact that the reproducing kernel equation is an orthogonal projection operator follows from the well known statement about partial isometries.

Q.E.D. A. Grossmann and J. Morlet, in Mathematics and Physics, Lectures on Recent Results, edited by L. Streit (World Scientific, Singapore, 1987). 2 A. Grossmann, J. Morlet, and T. Paul, "Integral transforms associated to squareintegrable representations. 1," J. Math. Phys.l6, 2473( 1985). 3 A. Grossmann, J. Morlet, and T. Paul, "Integral transforms associated to squareintegrable representations. II," Ann. Inst. H. Poincare 45, 293 (1986). 4 A. Grossmann and R. Murenzi, "Integral transforms associated to squareintegrable representations III," in preparation.