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Wavelet analysis on the circle 
Matthias Holschneider 
Centre de Physique Theorique, a> Centre National de Ia Recherche Scientifique, Luminy, Case 907, 13288 
Marseille Cedex 9, France 

The construction of a wavelet analysis over the circle is presented. The spaces of infinitely 
times differentiable functions, tempered distributions, and square integrable functions over the 
circle are analyzed by means of the wavelet transform. 

I. INTRODUCTION 

In this paper we want to show how to analyze fairly 
arbitrary functions over the circle 'f 1 with the help of a two­
parameter family gtf>,a of functions called wavelets. They are 
labeled by a position parameter t,6eT 1 and a scale parameter 
a, a> 0. In standard wavelet analysis of functions over the 
real line lR, the family of analyzing wavelets is obtained from 
a single function by means of dilations and translations (e.g., 
Ref. 1 ) . On the circle it is difficult to define a good dilation 
operator, and therefore the wavelets over the circle cannot be 
obtained by an irreducible representation of the affine group, 
as was the case in Refs. 1-4. 

As proposed before5 in the case of orthogonal wavelet 
analysis the wavelets that we will use are obtained from the 
standard ones (1/a)g((x- 1,6}/a) by means of periodiza­
tion: 

( ) ""1 (x-t,6+n) .k: 1 + Ktf>,a X = ~ -g ' 'f""'T' aeR . 
nEZ Q a 

( 1.1) 

This series converges whenever g decays sufficiently fast at 
infinity. The wavelet transform of a complex-valued func­
tion over T 1 is a function over the position-scale space, 
which is an open, infinite, cylinder Y = T 1 X lR +. It is given 
by the following scalar products: 

(Tgs)(t,6,a) = (g.p,a•s), (t,6,a)eY. (1.2) 

The wavelet transform is a sort of mathematical microscope 
where the position is fixed by the parameter b, the enlarge­
ment is 1/a, and the optic is given by the wavelet itself. We 
now shall give a precise meaning to all these expressions, and 
we shall show how to characterize various functional spaces 
over T 1 with the help of this transform. 

II. SOME DEFINITIONS AND EASY PROPERTIES 

The space C"" (T 1
) is made of complex-valued func­

tions s overT 1 that are arbitrarily many times differentiable. 
We identify the circle T 1 with the interval [0, 21T). A topol­
ogy on C"" ( T 1) is given by the following directed family of 
norms: 

(2.1) 

In this topology C"" (T1
) is a Frechet space, that is, a com­

plete, locally convex, metrizable, linear space. For any func-
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tion s in C"" (T1
), we can define its Fourier coefficients 

(Fs)(n), neZ: 

(Fs)(n) = - 1- ( s(x)e- inx dx. 
21T JT' 

(2.2) 

The sequences (Fs) (n) that can appear as the Fourier coeffi­
cients of some functions in C"" (T1

) are exactly the se­
quences that decrease as In I goes to infinity faster than any 
power of n. And conversely every such sequence defines a 
function in C"" ( T 1 

) • This sequence space will be called 
S(Z). A topology on S(Z) is given by the following directed 
family of norms: 

llrlls<Z>;n = L supjkPr(k) j, n = 0,1,.... (2.3) 
O<.p<n kEZ 

For any sequence r in S(Z) we define the inverse Fourier 
transform F- 1

: 

(F- 1r)(x) = L r(n)einx. 
nEZ 

(2.4) 

The following well known theorem shows that C"" (T 1
) and 

S(Z) are topologically the same spaces, and that any func­
tion inC"" (T 1

) can be decomposed into a Fourier series. 
Theorem 2.1: 
(i) F: C"" (T 1

) -.S(Z) is continuous~ 
(ii) p- 1

: S(Z) ..... C""(T1
) iscontinuous, 

( ... ) p-1 F -1 
ll1 : =lc~<T'>'FF =lscz>· 

Proof: [We only shall prove (i) and (ii).] With the help 
of a partial integration we can write 

I L. kPs(x)e- ikx dx I 
=I r aPs(x)e-ikxdxl "21TIIsll JT. X "' coc(T');p' 

which proves (i). On the other hand, since any reS(Z) is 
rapidly decreasing, we may exchange the differentiation and 
the summation: 

Ia~ ~ r(n)einxl 

= I L nPr(n) 1 + n2 inx' 
nEZ 1 + n2 

1 
<(l!rlls<ZJ;p + llrlls<Z>;p+2) ~ 

1 
+ n2 <CIIrlls<ZJ;p+2' 

Q.E.D. 



This proves (ii). Q.E.D. 
The functions g that define via ( 1.1 ) the wavelets shall 

all be in the class S(R) of Schwarz, that is, the set of func­
tions decaying at infinity together with all their derivatives 
faster than any polynomial. A topology on S(R) is given by 
the following directed family of norms: 

llslls(R);n.a = L supixP a !s(x) I. n, a= 0,1, .... 
O<;p<;n R 
O<;l<;a 

(2.5) 

With this topology S(R) is a Frechet space. On S(R) we 
define translations and dilations in the usual manner: 

Tb: S(R) -+S(R), 

D a: S(R) --+S(R), 

(Ths)(x)=s(x-b), hER, (2.6) 

(D as)(x) = ( 1/a)s(x/a), a> 0. 
(2.7) 

Obviously these operators are continuous. On S(R) we de­
fine the Fourier transform Y and the inverse Fourier trans­
formY-1as 

(Ys)(m) = 1 s(x)e-ic"xdx, 

(Y- 1r)(x) = (21T) -I i r(m)eiwx dx. 

(2.8) 

(2.9) 

We will use the notation s for Y s. The Fourier trans-
form is a bijective, bicontinuous map. 

Theorem 2.2: 
(i) Y: S(R) ---S(R) is continuous, 
(ii) y- 1: S(R) ---S(R) is continuous, 
(iii) y-ly = Y y-l = ls<R>. 

For a proof, see any textbook about functional analysis. 
The passage from a functions in S(R) to a function in 

C"' ( 'f I) will be done by the periodization operator n: 

(lls) (x) = L s(x + 21Tn), xE'f1. (2.10) 
neZ 

Theorem 2.3: ll: S(R) __. C'"' {1'1) is continuous. 
We shall prove this theorem in a moment. To any func­

tion in S(R) we can associate a sequence in S(l) with the 
help of the sampling operator: 

~: S(R) --+S(l), (~s)(n) = s(n), n = ... ,- 1,0,1, .... 
(2.11) 

It obviously is a continuous operator. A natural question is 
to ask what the Fourier coefficients of periodized function 
are. The answer is given by the Poisson summation formula, 
which reads 

Fll=~Y. (2.12) 

or, more explicitly (s = Ys), 

I s<x + 21rn> =I s<n>einx. (2.13> 
nEZ neZ 

For a proof of this equation, see, e.g., Ref. 6. 
Proof of Theorem 2.3: We have ll = F -I ~Y. All map-

pings are continuous. Q.E.D. 
The space L 2 ('f) is made of functions s with finite norm 

(2.14) 

2 

It is a Hilbert space if it is given the following scalar product: 

(r, s) = f r(fjJ)s(fjJ)d¢. (2.15) 
JT' 

Clearly L 2 (1'1) :JC"' (1'1). The Fourier transform extends 
to a map from L 2 (1') to L 2 (l), the Hilbert space of square 
summable sequences. We may split L 2 (1') into the direct 
sum ofH 2

_ (1'1 ), the space of functions that have only nega­
tive frequencies; H 2+ ( 'f 1), the space of functions that con­
tain only positive frequencies; and K ( 'f 1 ) , the constant func­
tions: 

(2.16) 

The corresponding subspaces of C"' (1'1) shall be denoted 
by c~ (1' 1) and c~ (1'1). 

Ill. THE WAVELET TRANSFORM OF C"'('f1) 

In this section we analyze the space functions with the 
highest possible regularity. It will turn out that this is mir­
rored in the wavelet transform by a fast decay of the wavelet 
coefficients as the scale a goes to 0. The regularity of the 
analyzing wavelet, or, what is the same, the fast decay of the 
Fourier transform at infinity, in turn gives rise to a fast decay 
of the wavelet coefficients, as the scale a goes to infinity. 
Therefore we will be able to characterize this space as the set 
of functions that are well localized in the scales; that is, every 
such function has a minimal effective length scale. We shall 
characterize the range of the transform, and further give an 
inversion formula. 

First we introduce some notations. For any /ES(R) and 
any a > 0, we define Ia EC"' ( 'f 1 ) as 

Ia (x) = (llDaf)(x) = L .]_ 1(x + 21Tn), (3.1) 
nEZ a a 

and/,p,aEC"' (1'1) with fjJE'f 1 will stand for 

/.p,a (x) = (llT"'D})(x) =fa (x- ¢). (3.2) 

For reasons that will become clear later on we shall require 
that all the moments of the wavelet, g, vanish: 

i xng(x)dx=O, n=0,1,.... (3.3) 

An equivalent condition is that the Fourier transform 
g = Y g vanishes at the origin in infinite order: 

g(m) = O(mn), n = 0,1,... (m--+0). (3.4) 

The subset of S(R) of functions that satisfy one (and there­
fore both) of these conditions will be called S0 (R). 

Definition 3.1: The wavelet transform T8 of any func­
tion sEC"' ( 'f 1 ) with respect to a function gES0 ( R) (called 
the wavelet) is given by the following scalar products: 

(T8 s)(f/J,a) = (g.p,a•s), ¢E'f 1
, a>O. (3.5a) 

The same expression in Fourier space reads (using the 
Poisson summation formula) 

(T
8
s)(f/J,a) = L ( Yg)(ak)eiki/>(Fs)(k). ( 3.5b) 

kEZ 

The wavelet transform is a function over the position scale 
space, which inourcaseisacylinderY = 1'1 XR+. Obvious-



ly it is a function that is infinitely differentiable. It turns out 
that T8 is a continuous map from C"" (T 1

) into the space of 
functions y( </J,a) over Y that are infinitely differentiable, and 
that decay for a ...... 0 and a ...... oo faster than any fractional 
polynomial in a. We call this space S(Y). The topology of 
this space is given by a directed family of norms: 

IIYIIs(Y);n,a,p = L sup laP a ~a ;y(p, a) I. 
- n<.p<n Y 

O<.l<.a 

O<.k<P 

n,a,f3=0,1, .... (3.6) 

Then S(Y) is a Frechet space. We have the following 
theorem. 

Theorem 3.2: For gES0 (R), we have T8 : 

C"" (T 1
) ...... s(Y) is continuous. 

We first shall prove two lemmas. 
Lemma 3. 3: Let sES0 ( R.), and let sa be given by ( 3.1). 

Then 

(ii) Vn = 0,1, ... : llsallc~<T'l;n = 0(1/am) 

(a-+ oo ), for m = 0,1, .... 

Proof' Assertion ( i) follows from the fact that for small 
a essentially only the term (n = 0) in the sum (3.1) remains 
because of the localization off To prove (ii) we expand sa 
into a Fourier series using the Poisson summation formula: 

sa <x> =I s(an>ei"x. 
nEZ 

Since s( 0) = 0 and s( w) = 0( wP + m + 2 
) as w goes to infin­

ity, we can estimate, for a large enough, 

lama~sa(x>l< L amlnfPis(a·n>I<I c . 
n#O n#oaPinlm+Z 

Since the sum remains finite if a goes to infinity we have 
finished the proof. Q.E.D. 

Lemma 3.4: For any sES0 (R), there are functions u, v, 
WES0 (R.) such that 

(i) a<Ps<f>,a (x) = axu<f>,a (x), 

(ii) aas<f>,a (x) = axv<f>,a (x), 

(iii) ( 1/a)s<f>,a (x) = axw<f>,a (x). 

Proof· We use again the Poisson summation formula to 
decompose s<f>,a into a Fourier series (s = Ys): 

s<f>,a(X) = Is(an)ein<x-o,l>. 
neZ 

The following functions are in S0 (R.): 

(i) u = - s, 

(ii) u(w) = - i a,)(w), 

(iii) w(w) = (i/ {t) )s(w). 

A direct computation using the Fourier expansion of s<f>,a 
shows that they satisfy the identities of the lemma. 

ProofofTheorem 3.2: First letp;;;.O. Using Lemma 3.4, 
for gES0 ( R.) we can find a function 1'ES0 ( R) such that 
a ~a ;g<t>.a (x) =a~+ kr<f>,a (x). With the help of a partial inte­
gration we can write 

3 

laP a ~a~ ( Tgs) (</J,a) I 

= li aPr (x)a 1+ks(x)dxl <{>,a x 
T' 

Lemma 3.3 shows that the sup is finite. Now let p < 0. Again 
Lemma 3.4 can be used to find a function 1'ES0 (R) such that 
aPa ~a ;g<f>,a (x) =a ):1 +I+ kr<f>,a (x). Therefore we can write 

laP a ~a; ( Tgs) (</J,a) I 

= li r (x)aiPI+I+ks(x)dxl <{>,a x 
T' 

<~j. lira IlL '<T'l lfsllc~<T'l;IPI +I+ k' 

Again Lemma 3.3 can be used to conclude. Q.E.D. 
Definition 3.5: For any function h in S(Y) the inverse 

wavelet transform T 
8
-

1 h is defined as 

(Tg-lh)(x) = f g<f>,a(x)h(</J,a) dad</J. 
JY a 

(We shall see in a moment in which sense T 
8
-

1 is the inverse 
of T

8
.) This integral is well defined since h is rapidly de­

creasing as a tends to 0 or infinity. It again turns out to be a 
continuous map. 

Theorem 3.6: For gES0 (R), we have T 
8
-

1
: 

S(Y)--+C""(T 1
) is continuous. 

Proof' Since his rapidly decreasing we may exchange the 
integration and the differentiation and we may write 

la~(r8- 1h><x>l = li a~g"'·a<x>h<<P.a> daad<Pi 

= 1 L g<{>.a (x) ! a ~h(</J.a)da d</J 1 

<i"" llga IlL '<T'l da·llh lls(Yl;l,n,o· 

Lemma 3.3 assures that the integral is finite. Q.E.D. 
We want to establish the relation between T8 and T 8-

1
• 

From Definition 3.1 it follows that the positive (negative) 
frequencies of the wavelet do only interact with the positive 
(negative) frequencies of the functions. Therefore we will 
use the splitting ( 2.16) to separate positive and negative fre­
quencies. Clearly the image of the constant functions is equal 
to zero and therefore we can only hope to find an inversion 
formula that holds on the other two parts. 

Theorem 3.7: For all SEC~<_, (T 1
) we have 

T 
8
- 1T

8
s = c

8
+ <- 's. 

The constants c
8
+ and c8- are determined by g: 

cg+ = f"" da fg(a) 12, cg- = f"" da lg( -a) 12· 
Jo a 1 a 

Proof' Let sEC ~ < _ , ( T 1 
) be given. Since all negative 

(positive) frequencies of s vanish, we may suppose that the 
Fourier transform of g is symmetric. We call~ the function 
that is obtained when using the inverse transformation with 
a cutoff at the small scales: 



l oo da l .r(x) = - d¢> gt/>,a (x)(Tgs)(<f>,a) 
e a T' 

loo da l = - d<f> dy gt/>,a (X)K¢>,a (y)s(y). 
E a T'xT' 

For fixed E > 0, Lemma 3.3 guarantees the absolute conver­
gence of all integrals, and therefore we could exchange the 
integration. Integrating first over 4> and a yields 

.r(x) = r KE(x- y)s(y)dy = (KE•s)(x), 
JT' 

and the kernel Ke is given by 

KE(u)=rooda r d<f>ga(u-<f>)ga(</>). 
JE a JT 1 

Expanding these expressions into a Fourier series we obtain 
the following equations for the Fourier coefficients (denoted 
by a tilde): 

KE(n) =roo da lg(an)l2= roo da lk<a>I2=K(En), 
Je a J1n1e a 

where we have posed 

;-... loo da K((J))= -lg(a)l2· 
1"'1 a 

Here we have used the fact that g was chosen symmetric. The 
Fourier coefficients depend only on en. Applying the Pois­
son summation formula (2.12), we obtain 

;-... 

KE=fiDeK=Ke, with K=Y- 1K. 

But [ cg+ < - >] -t Ke is a summability kernel (e.g., Ref. 6). 
Therefore we can apply the theorem of the approximation of 
the identity6 to conclude. Q.E.D. 

We now want to characterize the range of the wavelet 
transform. 

Theorem 3.8: For any geS0 (R), the image of coo (T 1
) 

under Tg is a closed subspace of S(Y). The range of Tg 
restricted to C ~ < _ > ( T 1 

) consists of exactly those functions 
y in S(Y) that satisfy the following "reproducing kernel" 
equation: 

("' ) _ i ("' ·"-' ') ("-' ') da' d¢>' y .,,a - pg .,,a,.,,a y .,,a ---, 
Y a 

where the reproducing kernel pg is given by 

Pg (<f>,a;<f>',a') = (1/ct <- > )(gt/>,a,gt/>',a' ), 

or, in Fourier space, 

p g ( <f>,a;¢>' ,a') 

--1- L ( Yg)(ak)(Yg)(a'k)e;k<t/>-4>'>. 
Cg+ (-) k£Z,k> ( < )0 

Proof: As continuous preimage of a closed space under 
the inverse wavelet transform, the image of the wavelet 
transform is closed. Now for any yeS(Y) in the range of Tg 
on C~ < _ > (T1

) there is a functions inC~<_> (T 1
) such 

that. Tgs = y. From Theorem 3. 7 we have 
T g- 1Tgs = ct <- >s, and therefore we can write 

T r- 1y= T r-'Ts=c+<->rs=c+<->y gg gg g g g g . 

On the other hand, if yeS(Y) satisfies Tg T g- 1y = cg+ <- >y, 

4 

then, for x = cg+ < - > T g- 1y, we have Tgx = y, which proves 
that y is in the range of Tg. We now rewrite the above identi­
ty more explicitly (we can exchange all integrations, since 
the integrals are absolutely convergent): 

r da' ~4>' y (</>',a') r gt/>,a (x)gt/>',a' (x)dx 
Jv a JT' 

= cg+ <- >y(<f>,a), 

which proves the theorem. 

IV. THE WAVELET TRANSFORM OF 9 '(T1) 

Q.E.D . 

In this section we will be interested in the wavelet trans­
form of the "functions" over the circle, with very low regu­
larity, that is, the space of distributions .!W(T1 

). The lack of 
local smoothness is reflected in the wavelet transform by a 
polynomial growth of the coefficients at small scale. How­
ever, the wavelet transformation allows us to represent any 
distribution by a coo function over the position scale space. 

The elements of 9' (T 1) are continuous linear function­
als of coo (T 1

); that is, for any X in .@"'(T1
) there is an 

integer number n such that, for any seC"' (T1 
), we have 

IX(s)I<C,.IIsllc~<T'>;n' (4.1) 

The smallest such n is called the order ofthe distribution X. 
A topology in ..@" ' ( T 1) is given by requiring that any se­
quenceXn in .@"'(T1

) tends to zero if and only if Xn (s) goes 
to zero for all sEC"' ( T 1). We identify any function s of 
coo (T 1

) with the distribution (s,- ). This embedding is con­
tinuous. The space C"' ( T 1) is dense in ..@"' ( T 1), and there­
fore any distribution can be approximated by functions in 
C"' (T 1

). We may even choose sn (sn --+X in the sense of 
distributions) in such a way that, for all rE.Coo (T 1

) and n, 
we have ( m being the order of X) 

I (sn,r) I<C,.IIrllc~(T'>;m' (4.2) 

In the same way we denote by .@"'(Y) the space of linear 
continuous functionals overS( Y). For any pair offunctions 
J, h over Y we define the following "scalar product" 
( ·, ·) L '<Y> whenever the following integral converges abso­
lutely: 

i - dad¢> 
(/,g)L'<Y> = J(<f>,a)g(<f>,a) --. 

Y a 
(4.3) 

We now define the wavelet transformation of distribu­
tions. 

Definition 4.1: Tg: .@"'(T1
) --+.@"'(Y) is defined by 

XE.@"'(T1)=> (TgX)(y) =X(Tg-'y), forall yeS(Y). 
rg- 1: .@"'(Y) --+.@"'(T1 ) is defined by YE.@"'(Y) 
=> ( T g- 1 Y) (s) = Y( Tgs), for all sEC00 (T 1 

). 

Here, for functions in coo (T1
) and S(Y), the definitions of 

Sec. II apply. 
These definitions are reasonable, since Tg and T g- 1 are 

continuous maps between C"' (T 1
) and S(Y). In the follow­

ing theorem we show that Definition 4.1 actually extends 
Definitions 3.1 and 3.5. 

Theorem 4.2: Tg and T g- 1 are the only possible contin­
uous extensions of Tg restricted to C"' ( T 1 

) and T g- 1 re­
stricted to S(Y). 



Proof: Let Xne..@'(T 1
), Xn -+0 (n-+ «J) in the sense of 

distributions. For allyeS(Y), we have 

( T
8
Xn )(y) = Xn ( T 

8
-

1y) ..... o (n-+ «J ), 

which shows that T
8 

is a continuous map from ..@'(T1
) to 

..@' (Y). In exactly the same way we can show that T 8-
1 is 

continuous, too. LetseCoo (T1
). Takings as a distribution in 

..@'(1'1 
), we write, for any yeS(Y), 

( T
8
s)(y) = ( da dr/J ( dx gtf>,a (x)s(x)y(r/J,a) 

JY a JT' 
= ( T8 s,yh'<Y>. 

We could exchange the integrations since all integrals con­
verge absolutely. Since y was arbitrary, we have proved that 
Definition 4.1 coincides with Definition 3.1 in the case where 
a distribution is a function in coo ( T 1). But coo ( T 1) is dense 
in ..@' ( 1' 1 

) and therefore by continuity there is exactly one 
continuous extension. The proof forT 

8
-

1 is the same. Q.E.D. 
The next theorem shows that the wavelet transform of 

any distribution in ..@' ( T 1) can be identified with a function 
in coo (Y), that is, the space of functions over Y that are 
infinitely differentiable. 

Theorem 4.3: LetXe..@'(T1
). For allyeS(Y), we have 

(T8 X)(y) = (2",y)L'<Yl' 

where the function 2" is in coo (Y) and is given by 
I 

2"(r/J,a) = X(gt/>,a ). 
Proof: We can find a sequence sn of functions in 

coo ( 1' 1 
) that converges to X in the sense of distributions and 

that satisifies ( 4.2). Therefore we may write 

( T8 ,X)(y) = lim (sn,T 8-
1Yh'cT'> 

n- oo 

. i dadr/J = bm (gtf>,a•Sn) y(r/J,s) --. 
n- 00 y a 

(4.4) 

We could exchange the integration for fixed n because of the 
absolute convergence of all the integrals. Clearly (g9,a,sn) 
tends to X(gtf>,a) pointwise, that is, for each (r/J,a)eY. But 
from ( 4.2) it follows that 

I (gtf>,a•Sn) I <CIIga llc~(T');m' 
where m is the order of X. Therefore Lemma 3.3 shows that 
the integrand in ( 4.4) is uniformly bounded by a function 
absolutely integrable over Y. We can apply the theorem of 
dominated convergence to conclude. 

Again it is useful to split the whole space into 
..@ '+ < _ > ( T 1 

) , the space of distributions that are acting on 
the positive (negative) frequencies only, and X ( T 1 

) , the 
distributions that are multiples of the integral over the circle. 
Again every distribution can be written in a unique way as 
the superposition of three distributions, each one belonging 
to one of these three classes: 

..@'(1' 1
) = ..@'+ (T 1

) E9%(T 1
) E99'_ (T 1

). 

We now will write a distribution in ..@' ( T 1 ) as a well 
defined "scalar product" offunctions in coo (Y) obtained by 
an absolutely convergent integral over Y. 

Theorem 4.4: Let seC ~ < _ > ( T 1) and let X be a distribu­
tion in..@'+<_> (1'1

). Then 

5 

X(s) = (l/c8+<->)(~.T8sh,cY>• 
and ~ = T8 X as given by Theorem 4.3. 

Proof: From Theorem 3. 7 it follows that 

( T
8
X) ( T

8
s) =X( T 

8
-

1T
8
s) = c

8
+ <- 'X(s). 

Since T8 seS(Y), Theorem 4.3 shows how (T
8
X)(T

8
s) can 

be written as a scalar product. Q.E.D . 
We now want to characterize the image of ..@'(T1

) un­
der the wavelet transform. 

Theorem 4.5: The image of..@'+ < _ > ( T 1 ) under T8 are 
exactly those functions ~ in coo (Y) that satisfy (i) there 
exists meZ such that 

~(r/J,a) = 0(1/am) (a-+0) 

uniformly in r/J; ( ii) for all p > 0, we have 

~(r/J,a) = 0(1/aP) (a-+ «J) 

uniformly in r/J; and (iii) ~satisfies the reproducing kernel 
equation (pointwise) 

~(r/J,a) = (l/c8+<->)(p8 (r/J,a;·,-),~)L'<Y>· 

Proof: Let X e.@'+<_> (T 1 
). Then ~ (r/J,a) = T8 X 

= X(g9,a) satisfies (i) and (ii) as follows by direct compu­
tation from ( 4.1) and Lemma 3.3. To show (iii), note that, 
for any seCoo (T1 

), we can write, with the help of Theorem 
2.4, 

( T 
8
-

1T
8
X) (s) =X( T 

8
-

1T
8
s) = c

8
+ <- 'X(s). 

Therefore, we can write, for ~ = T8 X, 

( T
8

T 
8
-

1 ~)(r/J,a) = c
8
+ <- '~(r/J,a). 

On the other hand, a direct computation shows that 

(T8 T 8- 1 ~)(r/J,a) = c8+ <- '(p8 (r/J,a;·,- ),~)L'<Yl · 

The integral on the right-hand side converges absolutely for 
every (r/J,a)eY due to the rapid decrease of the reproducing 
kernel p8 at small scales. 

Now suppose that~ is a locally integrable function over 
Ythatsatisfies (i)-(iii). WedefineXe..@'(T 1

) by 

X(s) = (l/c8+<->)(~,T8s)L'<Y>· 
Clearly X is well defined since T8 s is rapidly decreasing 
(Theorem 3.2), and a direct computation shows that 
T8 X = ~, thus showing that ~ is in the image of 
..@'+ < _ > (T 1

) under T8 • Q.E.D. 

V. THE WAVELET TRANSFORM OF LZ(T1) 

In this section we will analyze the Hilbert space of 
square integrable functions over the circle. As subspace of 
..@' ( T 1 

) all theorems of the previous section hold for 
L 2 (T 1

). In particular, the image of L 2 (T 1
) are functions in 

coo (Y) that satisfy the reproducing kernel equation. It 
turns out that the wavelet transform is an isometry. Its range 
is a closed subspace of L 2 

( Y), the Hilbert space over Y with 
scalar product ( 4.3). So the image of L 2 

( T 1) under T8 turns 
out to be a Hilbert space with reproducing kernel. 

Theorem 5.1: The operator 

( l!Jct 1 - >) T8 : H 2+ < _ > (T1
) ..... £ 2 (Y) 

is an isometry. Its adjoint is the only bounded operator 



form L 2 (Y) to H 2+ < _ > (T1
) that coincides with 

( 1/~cg+ <- >) T g-t when it is restricted toS(Y). Let the wa­
velet g have only positive (negative) frequency contribu­
tions. Then the reproducing kernel gives the orthogonal pro­
jector P g+ <->on the image of H 2+ < _ > (T1

) under Tg: 

P g+ <- >: L 2 (Y) -.L 2 (Y), 

(P g+ <- >y)(t/J,a) = (lfcg+ <- > )(pg (t/J,a; ·,- ),yh'<Y>. 

Proof It is enough to show the theorem on a dense sub-
set of H 2+ < _ > ('f1

). Let s,uEC~ < _ > ('f 1
). We look upon s 

as a distribution in ~ '+ < _ > ( 'f1
). From Theorem 4.4 it fol­

lows that 

(s,u) = (Tgs,Tgu)L'<Y>• 

and therefore Tg is an isometry. A direct computation shows 

6 

.that the adjoint is as stated in the theorem. The fact that the 
reproducing kernel equation is an orthogonal projection op­
erator follows from the well known statement about partial 
isometries. Q.E.D. 
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