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Abstract The research summarized in this paper is part of
a multi-year effort focused on evaluating the viability of
wavelet bases for the solution of partial differential equa-
tions. The primary objective for this work has been to
establish a foundation for hierarchical/wavelet simulation
methods based upon numerical performance, computa-
tional efficiency, and the ability to exploit the hierarchical
adaptive nature of wavelets. This work has demonstrated
that hierarchical bases can be effective for problems with a
dominant elliptic character. However, the strict enforce-
ment of orthogonality in the usual L* sense is less desirable
than orthogonality in the energy norm. This conclusion
has led to the development of a multi-scale linear finite
element based on a hierarchical change-of-basis. This
work considers the numerical and computational perfor-
mance of the hierarchical Schauder basis in a Galerkin
context. A unique row-column lumping procedure is
developed with multi-scale solution strategies for 1-D and
2-D elliptic partial differential equations.

1
Introduction
Wavelets are a relatively new mathematical tool that dis-
sect data, functions, and differential operators into com-
ponents with an associated resolution that is matched to
the scale of each component. The name “wavelet” or
“ondelette” was coined in the early 1980s by French re-
searchers Morlet, Arens, Fourgeua, Giard and Grossman
[9, 8, 5]. However, functions with the attributes of wavelets
have been known for almost 100 years. Meyer [7] points
out that there are seven primary origins for wavelets that
date from around 1930 with the Haar wavelet dating back
to 1909. However, the literature from this era does not
explicitly use the term “wavelet”.

In recent years, the application of wavelet bases to the
solution of partial differential equations (PDEs) has
evolved to the point where there are a number of com-
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peting formulations that include, but are not limited to
wavelet-Galerkin, wavelet-collocation, and reproducing
kernel methods. Despite the growing number of wavelet-
based formulations and solution algorithms for PDEs, the
field is still very new, and many technical issues remain.
That is to say, there is promise in the approach, but there
is a clear need for fundamental research that charac-
terizes the numerical and computational performance of
wavelets for the solution of partial differential equations.

A complete historical perspective of wavelet based ap-
proaches to solving PDEs is beyond the scope of this pa-
per. However, a survey of the literature on wavelet based
methods for solving PDEs may be found in Christon et al.
[2]. Over the past 8 years, there has been a great deal of
attention paid to the wavelet-Galerkin method because
of the generality that the Galerkin method provides, and
the ease with which alternative bases may be implemented
and tested. In addition, the trend in recent years has been
away from traditional Daubachies wavelets with L? or-
thogonality and towards wavelets that are constructed with
weaker orthogonality properties yielding biorthogonal and
semi-orthogonal wavelets (see for example Dahmen and
Micchelli [4]). This approach has led to the idea that
wavelets may be most useful for solving PDE:s if they are
used to simply “complete” a subspace with the concomi-
tant relationship between grid scales. A related approach
that combines a spectral method with biorthogonal
wavelet bases adapted to non-square domains and higher
spatial dimensions may be found in Canuto et al. [1].

In this work, orthogonality with respect to the energy
norm is used with a nodal change-of-basis to develop
multi-scale finite elements that make use of a hierarchical
Schauder basis. In 1-D, the uniform stability of the
Schauder basis in #" yields uniformly bounded condition
numbers, i.e., independent of refinement level (grid reso-
lution), for elliptic operators in a Galerkin form. This
property was previously described by Zienkiewicz [12] as
the “diagonality” feature for one dimensional hierarchical
shape functions. However, the relationship between uni-
form stability, a nodal change-of-basis and the wavelet
transform was not considered. In the ensuing discussion,
the theoretical issues surrounding the hierarchical
Schauder basis are presented, and the details of a uni-
formly stable basis are made concrete. The use of the
wavelet transform in conjunction with the assembly of the
mass and stiffness operators for a hierarchical basis is
presented in the framework of 1-D and 2-D multi-scale
finite elements. In addition, a comparison between the
hierarchical Schauder basis and the linear finite element



basis is presented. The application of an ad-hoc row-
column lumping procedure for the hierarchical basis is
outlined, and its effectiveness for solving elliptic boundary
value problems in one and two-dimensions is demon-
strated.

2

The hierarchical Schauder basis

In this section, the formulation issues associated with the
hierarchical Schauder basis are outlined. For this develop-
ment, the boundary value problem under consideration is

—eViu+yu=fonQ , (1)
with homogeneous Dirichlet boundary conditions

u=0onlI .

(2)
The weak form of the problem, after introducing the finite
dimensional subspace, *7, is

/sVuk-Vd)de+/yukd)de:/f(I)de . (3)
Q Q I

Here, u; € %(1), and @y is a finite dimensional basis for the
subspace 77y at scale k. In matrix form, this may be
written as

[My + Ke[{ui} = {F} (4)

where My, is the mass matrix, and K is the stiffness matrix
associated with scale k. Alternatively, in a bilinear form,
a(@y, Dy )uy = F(Dy).

Now, consider an alternative basis for 77,

lPk - qu)k 5 (5)

where Wy is a nonsingular N x N matrix. From this
transformation, u; = Au"¥ may also be found by solving

a(‘l’k,‘l’k)Au = F(‘l’k) (6)

for the multi-scale representation of the field, Au. The
linear system, Ay, that derives from the change of basis
may also be viewed as the linear system obtained by pre-
conditioning AP = [My + Ki] with Wy, i.e.,

AY =WiAPW, . (7)

Note that the superscript ¥ (®) indicates that ¥y (®y) is
used as both the test and trial function in obtaining the
weak form.

The matrix Wy is a wavelet transform and provides the
mechanism for decomposing a field into multiple scales. In
order to understand the role of the wavelet transform,
consider that

VoCV1C-CYVC---

(8)
is a one-sided sequence of nested finite-dimensional sub-
spaces of #, a Hilbert space, such that | J7x = #. Now,
define the “coarse-grid” wavelet subspace, %"y = 7", and,
for k > 1, choose " so that completion of subspace ¥ x_;
may be achieved via a direct sum,

V=YV k1S Wk . 9)

Here @ denotes a direct sum, but not an orthogonal direct
sum.

Beginning with Eq. (5), the wavelet transform may be
written recursively in terms of a two-scale transform as

Trr O T, 0
. 1
0 Ik1:| |: 0 L ( O)
where I is the Ny X Ny identity matrix with
Ny = dim(# k). Here, T is a two-scale transform such
that

O
{ \Pkl } =T ® . (11)

As an aside, one very important aspect of this formulation
is that it does not require the decomposition matrix W} '.
This is significant because it permits the relaxation of strict
orthogonality in the selection of the wavelet bases.

One choice for # that satisfies Eq. (9) is the hierar-
chical Schauder basis [3, 10-13]. This basis consists of the
elements of the linear finite element basis at multiple
scales where the relationship between ¥y and ®y is simply
Ve=d (12)
where @y is the linear finite element basis. Here the su-
perscript j indicates the node number, k indicates the
scale, and Nnp, is the number of node points at scale k.
The Schauder basis is illustrated in Fig. 1.

With the relationship between basis elements in the
Schauder basis given by Eq. (12), the construction of the
two-scale transformation may be written in terms of the
grid spacing. In order to define the wavelet transform, let
Hy be the (Nnp; — 1) x (Nnp,_, —1) matrix Hy = (K)
and let G be the (Nnp, — 1) x (Nnp,_,) matrix

Wk—Tk{

j=1,...,Nnp, ,

7

a) Finite Element Basis
1 2 3 5 6 7 8 9

RS

Schauder Basis

C) d—o . ° ° Schauder Scale-2
d) ¢ " Schauder Scale-1
€) ¢ ° Schauder Scale-0

Fig. 1. The hierarchical Schauder basis for scale k = 2

with 8 elements and 9 nodes showing a the equivalent finite
element basis, b the composite basis, ¢ the basis functions
for Scale-2, d the basis functions for Scale-1, and e the basis
functions for Scale-0



gfc . Then, the two-scale transformation for the
Schauder ba31s is given by

Ty = [Hk|Gy] . (13)

The function values / J and gfc for ¢}, and /), respec-
tively at the node pomts x’ are given by

A Y .
ko =2i—1
R
i )1, =2
h]k ) A J./ ] (14)
Ai s J =2+l
~1
0, otherwise
g]z]] = 5'/ 2j—1 - (15)

In one dlmenswn, the element length from xk 'to x’ is
defined as A, =

The actlon of h’}ﬁ(; apphed at scale k is to average, while
gk acts to inject at scale k. This can be seen in Fig. 1 where

the relationship between basis elements is given by

_ i 4

=D ¢

j/
— i 1
V=2 &9 -
j/

With the Schauder basis defined, attention is turned to the

question of stability. To begin the discussion on stability,
several definitions are required.

(16)
(17)

Definition 1 Given a basis ® = (¢', p*, ¢>,...)" for a
subspace, V", of a Hilbert Space, #, with norm

|-y = /(") > define the associated discretized matrix
as

=a(®, @), (18)

Definition 2 Suppose the vector ® is a normalized basis
for a Hilbert space, # . Then ® is said to be stable in J if
there exists constants o, § > 0 such that

2 2 2
aullp < u' @5 < Bllulls
where |ul|p = 3, u?.

This definition of stability is equivalent to the definition of
a Riesz basis with respect to the || - || , norm.

Now consider the following set of nested subspaces of
H,

Vol V1 C- - CAV g CH
such that @y is a basis for *7.

(19)

(20)

Definition 3 Given a nested sequence of subspaces of a
Hilbert space, A, and their respective bases { @y}
(normalized in ), then {®y},_,+ is uniformly stable in
A if there exists constants o, § > 0 independent of k such
that

ol ugllf: < lug@illly < Blluwlle k=0,1,...

(21)
With these definitions, the relationship between the
stability of a basis and the condition number of an oper-

ator discretized in the basis is outlined. In specific, it will
be demonstrated that a uniformly stable set of bases yields
uniformly bounded condition numbers for the discrete
operators independent of the refinement level.

Lemma 1 Let ®; be a baszsfor a subspace, V'x, of a Hzllbert
space # such that AL is positive definite. Let o = || AP |,
and f = | AL, Then

g2, < [f @l < Bl . (22)
and

o, _B
cond(A;’) =7 - (23)

Proof The condition number of a synllmetric matrix
is given by cond(AY) = || AP [, [[AY]"|1,-
For the stability condition, note that

|72 Uy U U U
Moreover, for symmetric matrices
TAD®
u, A ug
= ||[A?|], = p(AP) = max—*E = 25
p= APl = p(A2) = max ™2t (25)

which gives us the upper bound. For the lower bound,
observe that for symmetric positive definite matrices

ulA u ) . ufARuy
———— | =min——% —
uk U Uy U, Uk
(26)
The proof of Lemma 1 states that the best stability bounds
are provided by the smallest and largest eigenvalues of the
discretized matrix - a well known result.

Now consider the stability of a linear finite element
basis, shown in Fig. 1a for k = 2, where # = L*(0,2) and

¥ p = span{¢}, j=1,...,25"' =1}, k=0,1,...,(27)

= () 47, ¢2k“ Y

-1, _
w=|AY I, =

(28)

Lemma 2 The sequence of bases ®y for the linear finite
element basis is uniformly stable in L*(0,2).

Proof Let the discretized matrix AL be a diagonally scaled
finite element mass matrix. In 1-D this is a symmetric
tridiagonal matrix consisting of 1 on the diagonal and 1/4
on the non-zero off diagonals. Note that for the ensuing
proof, @ has been normalized in a manner that is
equivalent to diagonal preconditioning applied to the fi-
nite element mass matrix. Using Gershgorin’s theorem, the
eigenvalues for AP lie in the interval [1/2,3/2] giving

2 2
Ml < lug®ellz: < (29)

and cond(Ag’) < 3. Therefore, the sequence of bases, ®,
is uniformly stable in L2

The stability associated with the finite element basis in
L? is consistent with the empirical observation that the
consistent mass matrix is well behaved in terms of its

2
el



condition number. In practice, this is reflected in the
ability to easily solve mass matrix dominated problems
with simple iterative techniques.

Theorem 1 (Poincaré-Friedrich) For bounded domains,
the ™ norm and semi-norm are equivalent in the sense
that there exists constants o, § > 0 such that

olul o < [l ypm < Blul ypm for u € A (30)
Recall that the norm and semi-norm for the Sobolev

space #! for one space dimension are

ull = N1l + Nullpe

ulpr = Mlw'lle -

Lemma 3 After re-normalization with respect to the #'
semi-norm, the sequence of bases ®y is not uniformly
stable in #(0,2).

Proof Using the equivalence of the norm and semi-norm,
a sequence of vectors uy is constructed for which uniform
bounds are not possible. If

2k
ue=(1,1,1,...,1,1) fork=0,1,2,..., (31)
then
lugllfe = 2571 — 1
and

luf®; % =1 for k=0,1,2,..., (32)

and stability for the basis can not be demonstrated.
Therefore, using the equivalence of the #”' norm and
semi-norm, there are no uniform bounds for the sequence
of bases @y in 7.

Next, the hierarchical Schauder Basis is considered
where @, corresponds to the linear finite element basis
described above. Let

Wk:span{dﬂ(, j=0,2,4,... 2" —2} (33)
k
Ve = Vo@jzle (34)
kel o\ T
‘Pk:(d)& (1)7¢%7"'7d)27¢i7"'7 i 2) . (35)

The hierarchical basis for k = 2 is shown in Fig. 1.

Lemma 4 After re-normalization with respect to the #'
semi-norm, the sequence of bases P for the Schauder basis
is uniformly stable in A (0,2).

Proof The #' semi-norm of ¥y is equivalent to the L?
norm of the orthogonal Haar wavelet basis. The Haar basis
is an orthogonal basis for L2[0,2] and thus A} is the
identity with respect to the semi-norm for
k=0,1,2,...,00.

Lemma 5 After re-normalization with respect to the L*
norm, the sequence of bases Wy for the Schauder basis is
not uniformly stable in L*(0,2).

Proof Define the sequence u; which gives the hat function
centered at one with support [1 — 2%, 1 + 2¥] as

ue = (1,-1/2,~1/2,0,~1/4,-1/4,

0,0,0,0,—1/8,—1/8,0,0,0,...) . (36)
Thus,
el > 1, (37)
and
21
T 2
[y Pllz2 =35 - (38)

Because ||u] W||;. — 0as k — oo the stability condition in
Eq. (3) can not be met.

3
The multi-scale finite element
This section outlines the 1-D and 2-D multi-scale finite
elements. The multi-scale elements are based upon the
hierarchical Schauder basis with a change-of-basis incor-
porated at the element-level in order to make use of the
well-known finite element assembly procedure [6].
Before embarking on a description of the 1-D multi-
scale finite element, a brief review and interpretation of the
multi-scale transformation is presented. Recall from Eq.
(5) that ¥ = W}f@k where Wy is the multi-scale trans-
formation matrix. In order to make this transformation
concrete, consider the following example. Beginning with a
1-D grid consisting of 5 grid points and 4 linear finite
elements, the nodal basis will be decomposed into a
coarse-grid consisting of two elements and the associated
“psuedo-wavelets”. This decomposition is shown sche-
matically in Fig. 2.

Remark 1 The term pseudo-wavelet is used here to indi-
cate that the elements of W'y in the hierarchical Schauder
basis do not possess the property that their zeroth moment
is zero. However, the elements of W'y used to complete
the subspace /"y, are uniformly stable in #"'. Thus, the
term pseudo-wavelet seems appropriate.

Scale - 0

Py
L d a4

Fig. 2. One-dimensional two-scale decomposition of a finite
element nodal basis at scale-1



In this example, the wavelet transform, ¥; = WIT(I)l, is

¢§ 1/2 1 1/2 ¢>§
yip=|1 0 0 o ¢ (39)
4 0 0 1 4

1 1

where the subscript indicates the scale, and the superscript
indicates the node number. From this, it is clear that the
wavelet transform performs an averaging procedure to
obtain the coarse-grid basis elements, ®, and an injection
to obtain the coarse-grid pseudo-wavelets, ¥;.

The decomposition of nodal variables, u, may be ac-
complished with the wavelet transform, but its inverse is
required to obtain the coarse-grid coefficients, i.e.,

Au = W™y, where Au is the multi-scale component of the
field. Relying on the inverse wavelet transform is im-
practical because the orthogonality constraint between the
wavelets and scaling functions has been relaxed in the
hierarchical Schauder basis. However, incorporating the
hierarchical Schauder basis at the element level yields
solution algorithms that compute the multi-scale solution
directly and rely only on the reconstruction algorithm,
i.e., u = WAu. Thus, given a multi-scale representation
of the field that corresponds to the multi-scale basis ele-
ments in Fig. 2, the reconstruction algorithm is simply

ul 1/2 1 0 up
wp=11 0 0[< Au? (40)
uf 1/2 0 1] | Auf

As an aside, the wavelet transform is comprised of two
components and both may be viewed in terms of a discrete
convolution. Using the nomenclature introduced above for
the wavelet transform, T; = [H;|G,], where

1/2 1 0
H={ 1 3 G=1[0 0. (41)
1/2 0 1

In this simple example of a two-scale decomposition,
W, = Ty, but in general, the wavelet transform is com-
puted recursively according to Eq. (10).

The 1-D multi-scale element
The description of the multi-scale element begins with the
linear finite element for which the shape functions are

N;=3(1-¢&¢) . (42)

Here, ¢ is the natural coordinate, ¢&; is the nodal value of
the natural coordinate, i = 1,2, and —1 < ¢ < 1.

The concept of scale is introduced at the element level
by injecting degrees-of-freedom (DOF) that are support-
ed by the pseudo-wavelets of the hierarchical Schauder
basis. The 1-D multi-scale element is shown in Fig. 3
where a single “internal” degree-of-freedom located at
¢ = 0 in the element is introduced at Scale-1, two DOF are
introduced at Scale-2, and four DOF at Scale-3.

At Scale-1, the pseudo-wavelet is

if —1<¢&E<0

no={115 &2 (43)

More generally, the psuedo-wavelets for the multi-scale
DOF may be written in terms of the translates and dilates

of (&) as

V(&) = (9 , (44)
where

E=211+¢-2-1, (45)
and

2271(]' 1 S é S 2271{]' + 217]( 1 (46)

27Ktk 1< e <R R

Here k indicates the scale, and j indicates the translates in
the element parametric space (—1 < & < 1).

The derivatives of the shape functions yield constant
functions that are orthogonal to the derivatives of the
pseudo-wavelets at all scales. The derivatives of the pseu-
do-wavelets yield Haar wavelets as illustrated in Fig. 3,
and at any given scale they are orthogonal with the de-
rivatives at all other scales in the 1-D multi-scale element.

The reconstruction algorithm may be viewed as an el-
ement-by-element procedure that relies only on the multi-
scale information in each element. The reconstruction is
shown schematically in Fig. 3 where the DOF located at
¢ = —3/4 is computed as a linear combination of the
detail, Au, at scales 0—3. Here, a canonical node-num-
bering scheme is used where the node numbers are n;, n,
at Scale-0, n; at Scale-1, ny, n5 at Scale-2, etc. as shown in
Fig. 3.

With this numbering scheme, the reconstruction for the
DOF located at ns may be written as
ug = Nyugy + Noug + i Aus + WyAus + yY5AuS . (47)
where each of the basis elements is evaluated at ¢ = —3/4.
Thus, the reconstruction algorithm begins with the
interpolant of the coarse-grid solution and injects refine-
ments, or detail, up to the desired scale. The reconstruc-
tion may be written more generally as

2okl Nope Nscale 2aok-lyi okl

254 oy +20 4 +25 4

u, = E Niug + E /n Auy (48)
i=1 k=1

where the basis elements (N;, and ;) are evaluated at
locations corresponding to the DOF location in the parent
element.

The 1-D multi-scale operators
The computation of the stiffness for the model problem,
Eq. (1), is a straight-forward procedure that begins with
the coarse-grid stiffness.

At the element level, i.e., Scale-0, this is simply

e_ & 1 -1
Ky = h [—1 1]’
where h is the node-spacing for the coarse-grid. Making

use of orthogonality, the diagonal stiffness entries for the
scale DOF, i.e., for k > 0, are

(49)
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Fig. 3. Basis elements and their piecewise derivatives for the
one-dimensional multi-scale element with three refinement scales.
The derivatives have been scaled by 1/k for scales k = 1,2,3

242k 1
k

K=~

1
-1

2k+18

h

The resulting multi-scale element-level stiffness matrix is

-1
1

2k+1

(50)

(51)

With this form of the element stiffness, only the coarse-

scale terms contribute to the element assembly procedure

since all internal DOF simply require a point evaluation
and do not rely on information outside the element. Here,

a uniform mesh refinement was applied to inject the scale

DOF, but this is not a necessity for the multi-scale element.
The mass matrix computation is somewhat more in-

volved because it requires the calculation of inner-prod-

ucts that involve the basis elements across scale. The
computation of the multi-scale mass matrix consists of the

following

.__.__._...__..___

MSZ/ PNiN;dQ, My, :/ YNy, dQ,

o Q

Mo= [ wNde, Mu= [ e 62
Q° o

M12—/ '))lpllpde,
Qe

This series of element-level integrals leads to the finger-
diagonal matrix structure shown in Fig. 4 with the inset
coarse-grid element mass matrix.

A row-column lumping procedure is shown schemati-
cally in Fig. 4 for the multi-scale DOF at n; in the element.
Note that the traditional row-sum lumping for the coarse-
grid mass matrix can be used for the entries corresponding
to the coarse-grid, but this type of mass lumping can not
be used for the multi-scale DOF in the element. This
concept is discussed further in the comparison between
the multi-scale and linear finite elements.

A multi-scale algorithm

As an example of a multi-scale algorithm, consider the
model problem, Eq. (2), with e =1,y =0, f(x) =1, and
essential boundary conditions, u(0) =0, u(1) = 0. In



123 45 67 89
Coarse Grid 1[Xx X|x X X X(X)X X
Mass Matrix 2 X XX X X X|X[|X X
3/X X X X X X|X[X X
4X X X X x| x
51X X X X X X
6/|X XX X X
7 (6 ) x
8 X x x X X
9| X X X X X

Fig. 4. Finger diagonal structure of multi-scale element mass
matrix

this example, three scale solutions are computed. Scale-0
corresponds to the coarse-grid solution using two ele-
ments. Scale-1 corresponds to the injection of one multi-
scale DOF per element, while Scale-2 corresponds to the
injection of two multi-scale DOF per element. This may be
seen in Fig. 5 where the multi-scale DOF are shown rela-
tive to the elements (e, e;) of the one-dimensional grid. At
the finest resolution, the multi-scale solution corresponds
to the solution associated with 8 linear finite elements. The
multi-scale algorithm proceeds as follows.

Algorithm 1 Multi-scale solution algorithm

1. Form the coarse-grid operator Ky, and solve the coarse-
grid problem, K Uy = F,.

2. For each element, inject one scale DOF and solve for the
wavelet coefficient, Au.

{Auy = K] {Fe} (53)
3. Compute the termination measure for the scale DOF
injection. One possibility for the termination measure

0.150 I . : |
0.125 -
0.100 | _
= 0.075 F _
0.050 I/ _
i Scale -2 -%--
0.025 Exact Solution -
0.000 ! 1
0.0 0.2 0.4 0.6 0.8 1.0
Cl X eZ

Fig. 5. Exact solution and scale solutions for k = 0,1,2 (Node
numbers 4—8 correspond to the insertion of multi-scale DOF)

relies on stopping when the scale DOF are small relative
to the overall solution. (Other stopping criteria have not
been investigated.)

A2
e=—k (54)
lul ,
4. Repeat 1-3 until ¢ is smaller than some user-specified
criteria.
5. Perform the element-by-element multi-scale reconstruc-
tion using Eq. (48).

For the example problem, the multi-scale solution for
k =1 corresponds to Au} = Auj = 1/32, and for k = 2,
the Au§ = Auj = 1/128, and Auj = Aud = 1/128. After
the reconstruction procedure, the scale DOF yield solution
values that interpolate the exact solution - a result that is
expected for linear problems. Similar results have been
obtained for problems with non-linear source terms, and
for problems with inhomogeneous essential and natural
boundary conditions.

The algorithm presented for the 1-D multi-scale element
possesses the property that all scale injection relies only on
element-local data and does not require a re-solve of the
coarse-grid problem to improve the solution. For prob-
lems that involve a significant mass-matrix contribution,
the correction procedure outlined in the following sections
is required when the row-column lumped mass is used.

The 2-D multi-scale element

Attention is now turned to the 2-D multi-scale element. As
in the 1-D case, the 2-D bilinear element provides the
element-level components of the global basis functions.
To begin, Fig. 6 shows a four-patch of bilinear finite ele-
ments with the injected multi-scale DOF corresponding to
k = 1. The configuration of the multi-scale DOF in the
parent element is shown in Fig. 7. Like the shape func-
tions, the components of the pseudo-wavelets at the ele-
ment level take on a value of 1 at the DOF location, and
they are zero at all other node locations.

e Scale - 0 DOF
O Scale - 1 DOF
A Scale - 2 DOF

Fig. 6. Four-patch of bilinear elements with multi-scale DOF



Fig. 7a—f. Parent element and multi-scale
DOF for k = 1. a reference element and
basis elements for multi-scale DOF with

k=1by, cyb dyl, ey, and fy]

The shape functions for the 2-D bilinear element are In a more general way, the pseudo-wavelets for the
. multi-scale DOF may be written in terms of the translates
N; = (1 + &) (1 +nm) (55)  and dilates of the basis functions at scale k = 1. The

where i = 1,2,3,4, and —1 < &1 < 1. At the first scale, pseudo-wavelets in two-dimensions are

k = 1, the psuedo-wavelets are Y ) = yrE ) . (57)
Yy = (1= €N —[n]), ¥§ =30+~ [n]), where
G= M0, =K -0, (56) E=2 4 E g1

(58)
Y1 =31 - [N —n) . =21 1+n) -2 -1,



and

0<j<k-1

2k 1< < kyah o
2K 1< <2k

(59)

Here k indicates the scale, j indicates the translates in the
element parametric space (—1 < ¢, < 1), and

m =5,6,7,8,9 for the element-local numbering of the
pseudo-wavelets. With the basis elements defined this way,
the use of recursion at the element level as indicated in
Fig. 6 can be used to automate the computation of the
mass and stiffness operators with a given scale of resolu-
tion, Nscale.

There are several key points regarding the 2-D multi-
scale element. First, the orthogonality of the derivatives of
the pseudo-wavelets is not preserved in two dimensions -
even on an orthogonal grid. The finger-diagonal matrices
that arise from this discretization can lead to excessive
storage costs if the matrices are used without threshhold-
ing, row-column lumping, or element-by-element proce-
dures. Surprisingly, the row-column lumping can be
applied to both the multi-scale mass and stiffness operators,
albeit only for the rows and columns corresponding to the
multi-scale DOF. The 2-D multi-scale element is compatible
with many h-adaptivity strategies being implemented in
finite element codes today, however, a detailed discussion
of this aspect is beyond the scope of this paper. The ability
to use this element as a change-of-basis preconditioner is
just beginning to be explored. Finally, the numerical per-
formance of the 1-D and 2-D multi-scale element in terms of
dispersive behavior, rate of convergence, etc. is identical to
the linear (bilinear) element since any multi-scale solution

Schauder

can be cast in terms of the reconstructed solution in the
finite element basis at the finest grid scale.

4

Multi-scale vs. linear elements

In this section, a comparison of the storage, matrix con-
ditioning, and computational complexity for the hierar-
chical Schauder and linear finite element bases is
presented in the context of the model elliptic problem
developed in Sect. 2. The approximations inherent in
using a lumped multi-scale mass matrix are discussed, and
an efficient row-column lumping procedure with a
lumped-mass correction algorithm is presented to illus-
trate that only the largest wavelet coefficients need be
corrected in the approximate row-column lumped-mass
solution. The row-column lumping procedure is applied to
both the multi-scale mass and stiffness matrices in 2-D,
and the lumped-mass correction algorithm is extended to
account for the approximations introduced by the row-
column lumped mass and stiffness matrices. Although a
uniform discretization is considered in the ensuing dis-
cussion, it should be noted that in 1-D the hierarchical
Schauder basis retains all of its properties for a non-uni-
form grid. However, in two-dimensions, orthogonality in
the #' sense is lost even for uniform grids.

1-D comparison

The non-zero fill pattern for the mass and stiffness ma-
trices are shown in Fig. 8 for both the hierarchical
Schauder and the linear finite element bases. The formulae
for the number of non-zeros associated with the mass and
stiffness operators for both the hierarchical Schauder
and finite element bases are shown in Table 1. Because
the hierarchical Schauder basis diagonalizes the stiffness,

Linear Finite Element

Mass

Mass

Fig. 8. The non-zero entries in the mass and
stiffness matrices for the hierarchical Schauder

and linear finite element bases for a mesh with 64
nodes



Table 1. Formulae for the number of non-zeros in the 1-D mass
and stiffness matrices where Ndof is the number of degrees-of-
freedom, Ndof = 2%t! — 1, and k indicates the scale

Basis — matrix No. of non zeros

Linear finite element - Mass matrix (M) 3Ndof-2
Linear finite element - Stiffness matrix (Kz) 3Ndof-2

Schauder - Mass matrix (M) (2k-1)
(Ndof + 1) + 3
Schauder - Stiffness matrix (Kj) Ndof

only Ndof (number of DOF) words of storage are required
for the diagonal, although in practice a coarse-grid finite
element matrix is required for the multi-scale element. The
consistent mass matrix, although sparse, requires in-
creased storage relative to the tri-diagonal finite element
mass matrix due to the finger-diagonal structure. In
comparison to the linear finite element, the storage for the
multi-scale mass matrix scales with both the number of
DOF, Ndof, and the scale, k.

As demonstrated in Sect. 2, the finite element mass and
the hierarchical Schauder stiffness matrices are both well
conditioned. In fact, the hierarchical Schauder stiffness is
ideal in 1-D since the nodal change-of-basis results in a
diagonal stiffness operator when the full wavelet trans-
formation is applied as a preconditioner. In contrast, the
finite element stiffness and the Schauder mass matrices are
both poorly conditioned. To be more precise, the finite
element basis is uniformly stable in L2, but not in #°L.
However, the hierarchical Schauder basis is uniformly
stable in #!, but not in L2

In order to illustrate the differences in stability between
the finite element and the hierarchical Schauder bases,
consider the condition numbers associated with the mass
and stiffness matrices as shown in Table 2. Here, multiple
levels of mesh refinement are considered with k = 1 cor-
responding to a mesh with 3 nodes (2 elements). The
growth of the condition numbers for Kj is seen to be
proportional to O(h™2) for the linear finite element bases,
while the condition numbers for the mass matrix are
bounded asymptotically at 3. The condition number as-
sociated with the combined finite element mass and stiff-
ness (My + Kj) is dominated by the stiffness since
& =7 = 1 in this case. In contrast, the mass matrix for the
hierarchical Schauder basis yields a condition number that
grows approximately as O(h~3/2) while the condition
number for the stiffness is uniformly bounded at 1. The
combined mass and stiffness operator (My + Kj) for the
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Schauder basis is also uniformly bounded indicating the
dominance of the stiffness.

Although the multi-scale mass matrix associated with
the hierarchical Schauder basis is not as well conditioned
as the finite element mass matrix, its primary drawback is
the storage associated with the finger-diagonal fill pattern.
However, the entries in the finger diagonals decrease in
amplitude with increasing scale suggesting that the relative
importance of the matrix entries become negligible with
increasing scale. This effect is reflected in the integrals for
the multi-scale mass matrix in Eq. (52). Therefore, either a
mass lumping procedure or threshholding based on the
relative size of the entries can be used to limit the matrix
fill-in. In order to test this idea, an ad-hoc procedure for
mass lumping is considered. In a finite element setting,
mass lumping refers to the row-sum lumping procedure
used to obtain a diagonal mass matrix. However, in the
context of a multi-scale basis, the physical interpretation
of mass lumping is not simple, and the idea is perhaps less
well founded for the multi-scale element than for the linear
finite element.

Regardless of these issues, experimentation with mass
lumping strategies has suggested that a viable lumping
procedure for the multi-scale mass matrix is to sum the
values to the left and above the diagonal entry to the di-
agonal as shown in Fig. 4. The use of the row-column
lumping procedure in Algorithm 1 permits the point-wise
evaluation of the multi-scale DOF for problems where the
mass matrix is required, but the subsequent reconstruc-
tion procedure can only yield an approximate solution.
However, inspection of the resulting approximate solu-
tion, Au, obtained with the lumped multi-scale mass in-
dicates that a small correction to the largest wavelet
coefficients can dramatically improve the solution quality.
In other words, the row-column lumping procedure can-
not be used over the entire range of scales without de-
grading the solution accuracy, i.e., the influence of mass
lumping is “felt” more at the coarser grid scales. A
lumped-mass correction algorithm has been developed to
account for the approximate nature of the solution and
proceeds as follows.

Algorithm 2 Lumped-mass correction algorithm

1. Row-column sum lump the multi-scale mass matrix re-
sulting in a diagonal matrix, A= Mi + K. Here, the
superscript L indicates a lumped operator. For the multi-
scale element, only those entries in the mass matrix
associated with the multi-scale DOF are lumped.

Table 2. Condition numbers

for the 1-D mass and stiffness Mesh parameters Linear finite element Schauder
::rcl)?;[éﬁiesn?flt;rffrlafin;l} }/)ri L Scale (k) Ndof M K M + Ki M K M + K
(Ndof =241 —1) 1 3 2.09 6 4 7 1 1.23

2 7 2.71 25 18 18 1 1.27

3 15 2.92 103 74 49 1 1.29

4 31 2.98 414 295 121 1 1.29

5 63 3.00 1659 1181 288 1 1.29

6 127 3.00 6640 4724 667 1 1.29

7 255 3.00 26560 18900 1517 1 1.29
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2. Calculate the approximate wavelet coefficients, Au, by
dividing the right-hand-side by the diagonal entries of
A

3. Permute the components of Au so that the N largest
coefficients are at the top. Let AuM be the largest N
lumped-approximate wavelet coefficients and Au® be the
remaining coefficients such that

AN
AuR
4. Permute the rows and columns of A to match the per-
mutation of Au using a consistent multi-scale mass only
for the AuY unknowns. Here, the permuted matrix,
A = My + Ky is formed with the consistent mass matrix,
M.
5. Solve the smaller system using the consistent mass ma-
trix for AuV, i.e., the coarse-grid correction,

ANAUY = N — ARAGR (61)

Here, AN is the operator for the coarsest grid, and AR
corresponds to the rows of A associated with Au® but
formed with the consistent mass matrix. An efficient
means of computing the matrix-vector product, ARAuR
is through the use of the wavelet transform in Eq.(7).
Multiplication of Au by the matrix W is equivalent to
the application of the wavelet transform, i.e., the re-
construction algorithm, which can be implemented in an
O(Nnp) operation algorithm. It should be noted that
multiplication by W' is not equivalent to the inverse
wavelet transform, i.e., WTW £ I. However, the prop-
erties of WY permit implementation of a matrix-vector
product using convolution techniques similar to the re-
construction algorithm.

perm(Af) — { (60)

In practice, the DOF associated with the coarse-grid
tend to be the largest and are the ones that need to be
corrected. Thus, the permutation step can be replaced with
a solve for the coarse-grid DOF followed by the injection of
the multi-scale DOF. This algorithmic approach is exactly
what the multi-scale finite element does since the coarse-
grid solution is computed with only the injection of scale
relying on the hierarchical Schauder basis. Figure 9 illus-
trates the effectiveness of the lumped-mass correction al-
gorithm for the model problem with ¢ =1, y =1, and

with the approximate solution computed with the lumped
multi-scale mass matrix. In Fig. 9b, the approximate so-
lution has been improved by correcting only the three
largest wavelet coefficients.

2-D comparison

In two dimensions, the behavior of the hierarchical
Schauder basis changes rather significantly relative to the
1-D basis. The most apparent changes are the additional
fill-in for the multi-scale mass matrix and the structure of
the stiffness matrix which has a finger diagonal fill pattern
rather than being diagonal. This is shown in Fig. 10 and is
due to the multi-scale interaction of the tensor product
basis in 2-D. The storage for the finger diagonal mass
matrix grows as 4k*Ndof while the storage for the stiffness
is proportional to 4kNdof where Ndof = (2! —1)*. In
comparison, the storage for the finite element mass and
stiffness matrices scales linearly in the number of DOF as
~9Ndof. As in the 1-D case, the amplitude of the entries in
the finger-diagonals of the multi-scale mass matrix de-
crease with increasing scale.

In addition to the change in the fill pattern, the O(1)
condition number for the 1-D Schauder stiffness becomes
O(log(h™?)) in 2-D. Again, the condition number for the
finite element stiffness grows as O(h~2) regardless of the
dimensionality. Table 3 illustrates how the condition
number varies with mesh resolution for the model problem
in Eq. (1). Here, the L? stability of the finite element basis is
reflected in the uniformly bounded condition number for
the mass matrix and the O(h2) growth of the condition
number for the stiffness. In contrast, the condition number
for the multi-scale mass matrix grows faster than O(h~?)
although firm estimates have not been made. For the
stiffness, the condition number for Ky grows as log(h2).
Although the condition number for the multi-scale mass
matrix degrades rapidly, the condition number for My + K
is dominated by the stiffness and is much better behaved
than the finite element basis as shown in Table 3.

Following the 1-D mass lumping, the concept of row-
column lumping is applied in 2-D. However, here the
lumping procedure is applied to both the multi-scale mass
and the stiffness matrices. Although the row-sum lumping
procedure is not valid for the finite element stiffness,
the row-column lumping is possible for the multi-scale

3 . .
f = —x¥(x —2)’. In Fig. 9a, the exact solution is shown
35 T 3. T
——  Solution-127 unknowns ——  Solution-127 unknowns
sl |7~ Lumped-0 corrections sb |- Lumped-3corections

051 05p

Fig. 9a, b. Solutions, u, on
0 < x < 2 obtained using the
hierarchical Schauder basis
with mass-lumping and a no
corrections and b 3 wavelet

coefficient corrections



Fig. 10. The non-zero entries in the mass and
stiffness matrices associated with the hierarchical

Schauder Linear Finite Element
Mass Mass
Stiffness Stiffness

Schauder and linear finite element bases in 2-D
for a 32 x 32 mesh

Table 3. Condition numbers

for the 2-D mass and stiffness Mesh parameters

Linear finite element

Schauder basis

matrices after diagonal scaling

fore=1,7= 1. Scale (k) Ndof My Ky M + Kx My Ky My + K
(Ndof = (2'-1)?) 1 9 4 3 3 49 7 8

2 49 7 13 11 334 18 19

3 225 9 52 43 2396 49 51

4 576 9 207 172 14621 121 123

5 1225 9 830 690 82832 288 290

representation of the stiffness - an artifact of the nodal
change-of-basis. In other words, the multi-scale repre-
sentation of the stiffness does not retain the “row-sum to
zero” property of the nodal stiffness matrix. In order to
illustrate this property, consider the application of Algo-
rithm 2 in two-dimensions to the model problem with
e=7y=1andf =xy(2 — x)(2 — y). However, in this case,
the stiffness is replaced by the “lumped” stiffness, i.e.,
A =M +KL

Figure 11b and c¢ show the lumped-approximate solu-
tion with no wavelet correction and the associated error
relative to the exact solution. The approximate solution
was obtained by performing one vector divide and a multi-
scale reconstruction resulting in a very reasonable initial
solution. In Fig. 11c, the peak in the error is associated
with the largest approximate wavelet coefficient. Figure
11d illustrates the lumped-approximation after the largest
wavelet coefficient has been corrected following Algorithm
2. Nearly an order of magnitude reduction in the error has
been achieved by correcting only the largest wavelet co-
efficient. In Fig. 11e, the peaks in the error are associated
with the next 8 largest wavelet coefficients. Although the
row-column lumping procedure yields an approximate

solution, it is thought that this approach may generate a
good initial solution for an iterative procedure or alter-
natively provide a multi-scale preconditioner.

Although the hierarchical Schauder basis is promising,
the question of computational complexity remains. In 2-D,
the change in fill pattern and matrix conditioning make
computational complexity a more important issue in the
comparison of the Schauder and linear finite element
bases. In order to evaluate the computational complexity
associated with the Schauder basis, a brief comparison of
the cost of solving the model problem using a conjugate
gradient method was performed. In this comparison,
complete fill-in of the multi-scale mass and stiffness was
accounted for ignoring the advantages of row-column
lumping.

In order to perform the comparison, both the number
of non-zero entries in the matrix, and the number of it-
erations required to solve the problem are required. Table
4 shows the number of non-zero entries and associated
iteration count for the Schauder and linear finite element
bases for the model problem with 0 < ¢ < 1000 and y = 1.
For problems where the mass matrix dominates, ¢ = 0,
the uniform stability of the finite element basis in L?
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a) Exact Solution: u

h

d) Lumped Approximation (u") with 1 Correction e) Error: u® —u

Fig. 11a-e. The exact and approximate solutions using the 32 x 32 2-D mesh (u° is the interpolant of the exact solution, and
lumping procedure with and without wavelet correction for a u" is the discrete solution)

results in a computational cost that is bounded indepen- Table 5 for a “purely” elliptic problem with no mass ma-
dent of the mesh resolution. In contrast, the hierarchical trix contribution.

Schauder basis results in a lower-order computational cost ~ In summary, Table 6 provides order of magnitude

for problems where the stiffness dominates due to the estimates for the computational complexity for the hier-
multi-scale preconditioning of the stiffness — despite the archical Schauder and linear finite element bases. Here, the
additional fill-in associated with the finger-diagonal ma- number of floating point operations required to solve
trices. This result is further emphasized by the data in the model problem grows as 9Ndof+v/Ndof for the finite
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Table 4. Number of non-zeros
and iteration count for the

Mesh parameters

model problem using the a

No. of non-zeros

Iteration count

Schauder and b linear finite Scale (k) Ndof e=0 e=0.1 e=1 e=10 &=1000

element baSeS in 2-D. The a Schauder basis

iteration count is based on 1 9 49 3 3 3 3 3

using Jacobi preconditioned 2 49 729 11 10 10 9 9

conjugate gradient with 3 225 6889 50 27 25 22 22

0 <&<1000,y=1 4 961 51529 187 48 42 37 37
5 3969 335241 488 73 61 52 51
6 16129 1990921 979 107 87 70 59
b Linear finite element basis
1 9 49 3 3 3 3 3
2 49 361 6 6 7 7 7
3 225 1849 7 13 15 16 16
4 961 8281 6 27 31 31 31
5 3969 34969 5 54 62 63 63
6 16129 143641 3 110 125 126 126

Table 5. Storage requirements, matrix fill, and iteration count
using Jacobi preconditioned conjugate for the Schauder basis
with the “purely” elliptic model problem with e =1, y =0

Mesh parameters No. of Iteration
non-zeros count

Scale (k) Ndof

1 9 33 3

2 49 329 9

3 225 2265 22

4 961 13113 37

5 3969 68985 51

6 16129 342265 59

Table 6. Computational complexity for the linear finite element
and the hierarchical Schauder basis in 2-D where
Ndof = (2¥*'-1)?, and k indicates the scale

Basis No. of Iteration Floating point
non-zeros count operations
Linear finite element 9Ndof v/Ndof  9Ndofv/Ndof
(Mj + Ky)
Schauder basis (My + Ki) 4k*Ndof 12k 48k*Ndof
Schauder basis (Kj) 4kNdof 12k 48k*Ndof

element basis. In comparison, the number of floating point
operations required to solve My + Kj using the Schauder
basis scales as 48k’Ndof and as 48k?Ndof for the purely
elliptic problem. From this data, the Schauder basis does
eventually have a lower computational cost, but the benefit
is only apparent for relatively large problems. For the
“purely” elliptic operator, Ky, the hierarchical Schauder
basis wins, i.e., has lower computational cost, for mesh
resolution exceeding Ndof = 10°. However, for My + Ky,
the Schauder basis does not win until the mesh resolution
exceeds Ndof > 108.

5

Summary and conclusions

In the search for a wavelet basis with good numerical and
computational performance for multi-scale simulations,
the following “shopping list” of characteristics was

developed as the goal for the ideal wavelet basis. The at-
tributes include: (1) Low order, e.g., linear, for computa-
tional efficiency, (2) Consistent reproduction of
polynomials, e.g., reproduce {1,x,y,xy} in two-dimen-
sions, (3) Nodal, i.e., possesses the Kronecker delta
property, (4) Hierarchical: ¥} = ¥ @ #"1, (5) Element
based - compatible with isoparametric finite elements, (6)
Analytic expressions for the basis elements ¢ and v, (7)
Easy treatment of boundary conditions, (8) Good numer-
ical performance, e.g., dispersion characteristics, trunca-
tion error, etc., (9) Appropriate for both Eulerian and
Lagrangian computations, (10) Computationally efficient
decomposition and reconstruction of fields, and (11) Ex-
tensible to multiple spatial dimensions. Based on these
characteristics and the results of this exploratory effort the
following conclusions are drawn.

The hierarchical Schauder basis, and the multi-scale el-
ements, are prototypical of what the ideal multi-scale basis
should be although this basis does not satisfy all 11 char-
acteristics of an ideal basis. Unfortunately, the storage and
computational cost associated with the finger-diagonal
matrices from this type of basis is a significant penalty.
However, the use of ad-hoc lumping procedures ameliorates
this problem and offers the potential for the development of
fast, simple preconditioners. Currently, the real value of the
multi-scale elements lies in the application to elliptic
problems. A preconditioner based on the multi-scale ele-
ment would be of great value in applications where a dom-
inant elliptic component is present, e.g., in time-dependent
incompressible flow and quasi-static electro-magnetics.

As demonstrated in the discussion of the hierarchical
Schauder basis, it is difficult to construct a wavelet basis
that is stable in both L? and in #’', i.e., for all possible
combinations of mass and stiffness operators. The design
of wavelet bases that are customized for a specific partial
differential equation remains an open topic of active re-
search, and the use of wavelet bases for the solution of
partial differential equations remains a research topic that
is currently centered in the mathematics community.
However, hierarchical solution procedures that use wave-
lets tailored to the physical problem appear to be the most
viable candidates for using wavelet bases.
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