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The research summarized in this paper is part of a multi-year effort focused on evaluating the viability of wavelet bases for the solution of partial differential equations. The primary objective for this work has been to establish a foundation for hierarchical/wavelet simulation methods based upon numerical performance, computational ef®ciency, and the ability to exploit the hierarchical adaptive nature of wavelets. This work has demonstrated that hierarchical bases can be effective for problems with a dominant elliptic character. However, the strict enforcement of orthogonality in the usual L 2 sense is less desirable than orthogonality in the energy norm. This conclusion has led to the development of a multi-scale linear ®nite element based on a hierarchical change-of-basis. This work considers the numerical and computational performance of the hierarchical Schauder basis in a Galerkin context. A unique row-column lumping procedure is developed with multi-scale solution strategies for 1-D and 2-D elliptic partial differential equations.

Introduction

Wavelets are a relatively new mathematical tool that dissect data, functions, and differential operators into components with an associated resolution that is matched to the scale of each component. The name ``wavelet'' or ``ondelette'' was coined in the early 1980s by French researchers Morlet, Arens, Fourgeua, Giard and Grossman [START_REF] Morlet | Wave propagation and sampling theory[END_REF][START_REF] Morlet | NATO ASI Series[END_REF][START_REF] Grossmann | Decomposition of hardy functions into square integrable wavelets of constant shape[END_REF]. However, functions with the attributes of wavelets have been known for almost 100 years. Meyer [START_REF] Meyer | Wavelets Algorithms and Applications[END_REF] points out that there are seven primary origins for wavelets that date from around 1930 with the Haar wavelet dating back to 1909. However, the literature from this era does not explicitly use the term ``wavelet''.

In recent years, the application of wavelet bases to the solution of partial differential equations (PDEs) has evolved to the point where there are a number of com-peting formulations that include, but are not limited to wavelet-Galerkin, wavelet-collocation, and reproducing kernel methods. Despite the growing number of waveletbased formulations and solution algorithms for PDEs, the ®eld is still very new, and many technical issues remain. That is to say, there is promise in the approach, but there is a clear need for fundamental research that characterizes the numerical and computational performance of wavelets for the solution of partial differential equations.

A complete historical perspective of wavelet based approaches to solving PDEs is beyond the scope of this paper. However, a survey of the literature on wavelet based methods for solving PDEs may be found in Christon et al. [START_REF] Christon | An investigation of wavelet bases for grid-based multi-scale simulations ± Final Report[END_REF]. Over the past 8 years, there has been a great deal of attention paid to the wavelet-Galerkin method because of the generality that the Galerkin method provides, and the ease with which alternative bases may be implemented and tested. In addition, the trend in recent years has been away from traditional Daubachies wavelets with L 2 orthogonality and towards wavelets that are constructed with weaker orthogonality properties yielding biorthogonal and semi-orthogonal wavelets (see for example Dahmen and Micchelli [START_REF] Dahman | Biorthogonal wavelet expansions[END_REF]). This approach has led to the idea that wavelets may be most useful for solving PDEs if they are used to simply ``complete'' a subspace with the concomitant relationship between grid scales. A related approach that combines a spectral method with biorthogonal wavelet bases adapted to non-square domains and higher spatial dimensions may be found in Canuto et al. [START_REF] Canuto | The wavelet element method part ii: Realization and additional features in 2d and 3d[END_REF].

In this work, orthogonality with respect to the energy norm is used with a nodal change-of-basis to develop multi-scale ®nite elements that make use of a hierarchical Schauder basis. In 1-D, the uniform stability of the Schauder basis in H 1 yields uniformly bounded condition numbers, i.e., independent of re®nement level (grid resolution), for elliptic operators in a Galerkin form. This property was previously described by Zienkiewicz [START_REF] Zienkiewicz | The Finite Element Method[END_REF] as the ``diagonality'' feature for one dimensional hierarchical shape functions. However, the relationship between uniform stability, a nodal change-of-basis and the wavelet transform was not considered. In the ensuing discussion, the theoretical issues surrounding the hierarchical Schauder basis are presented, and the details of a uniformly stable basis are made concrete. The use of the wavelet transform in conjunction with the assembly of the mass and stiffness operators for a hierarchical basis is presented in the framework of 1-D and 2-D multi-scale ®nite elements. In addition, a comparison between the hierarchical Schauder basis and the linear ®nite element basis is presented. The application of an ad-hoc rowcolumn lumping procedure for the hierarchical basis is outlined, and its effectiveness for solving elliptic boundary value problems in one and two-dimensions is demonstrated.

The hierarchical Schauder basis

In this section, the formulation issues associated with the hierarchical Schauder basis are outlined. For this development, the boundary value problem under consideration is Àer 2 u cu f on X ; 1 with homogeneous Dirichlet boundary conditions u 0 on C : 2

The weak form of the problem, after introducing the ®nite dimensional subspace, V k , is

X eru k Á rU k dC X cu k U k dC C f U k dC : 3
Here, u k P H 1 0 , and U k is a ®nite dimensional basis for the subspace V k at scale k. In matrix form, this may be written as

M k K k fu k g fF k g 4
where M k is the mass matrix, and K k is the stiffness matrix associated with scale k. Alternatively, in a bilinear form, aU k ; U k u k FU k . Now, consider an alternative basis for V k ,

W k W T k U k ; 5 
where W k is a nonsingular N Â N matrix. From this transformation, u k Du T W may also be found by solving

aW k ; W k Du FW k 6
for the multi-scale representation of the ®eld, Du. The linear system, A W k , that derives from the change of basis may also be viewed as the linear system obtained by preconditioning

A U k M k K k with W k , i.e., A W k W T k A U k W k : 7 
Note that the superscript W (U) indicates that W k (U k ) is used as both the test and trial function in obtaining the weak form.

The matrix W k is a wavelet transform and provides the mechanism for decomposing a ®eld into multiple scales. In order to understand the role of the wavelet transform, consider that is a one-sided sequence of nested ®nite-dimensional subspaces of H, a Hilbert space, such that V k H. Now, de®ne the ``coarse-grid'' wavelet subspace, W 0 V 0 and, for k ! 1, choose W k so that completion of subspace V kÀ1 may be achieved via a direct sum,

V k V kÀ1 È W k : 9 
Here È denotes a direct sum, but not an orthogonal direct sum.

Beginning with Eq. ( 5), the wavelet transform may be written recursively in terms of a two-scale transform as

W k T k T kÀ1 0 0 I kÀ1 ! Á Á Á T 1 0 0 I 1 ! 10 
where I k is the N W Â N W identity matrix with N W dimW k .
Here, T k is a two-scale transform such that

U kÀ1 W k & ' T T k U k : 11 
As an aside, one very important aspect of this formulation is that it does not require the decomposition matrix W À1 k . This is signi®cant because it permits the relaxation of strict orthogonality in the selection of the wavelet bases.

One choice for W k that satis®es Eq. ( 9) is the hierarchical Schauder basis [3, 10±13]. This basis consists of the elements of the linear ®nite element basis at multiple scales where the relationship between W k and U k is simply

w j k / 2jÀ1 k ; j 1; . . . ; Nnp k ; 12
where U k is the linear ®nite element basis. Here the superscript j indicates the node number, k indicates the scale, and Nnp k is the number of node points at scale k.

The Schauder basis is illustrated in Fig. 1.

With the relationship between basis elements in the Schauder basis given by Eq. ( 12), the construction of the two-scale transformation may be written in terms of the grid spacing. In order to de®ne the wavelet transform, let H k be the Nnp k À 1ÂNnp kÀ1 À1 matrix H k h j;j H k j H ;j and let G k be the Nnp k À 1 Â Nnp kÀ1 matrix 

h j;j H k D j H k D j kÀ1 ; j H 2j À 1 1; j H 2j D j H 1 k D j kÀ1 ; j H 2j 1 0; otherwise V b b b b b b b b b b X 14 g j;j H k d j H ;2jÀ1 : 15 
In one dimension, the element length from

x jÀ1 k to x j k is de®ned as D j k x j k À x jÀ1 k .
The action of h j;j H k applied at scale k is to average, while g j;j H k acts to inject at scale k. This can be seen in Fig. 1 where the relationship between basis elements is given by

/ j kÀ1 j H h j;j H k / j H k 16 w j k j H g j;j H k / j H k :
17

With the Schauder basis de®ned, attention is turned to the question of stability. To begin the discussion on stability, several de®nitions are required.

De®nition 1 Given a basis U / 1 ; / 

V 0 & V 1 & Á Á Á & V k Á Á Á & H ; 20 such that U k is a basis for V k .
De®nition 3 Given a nested sequence of subspaces of a Hilbert space, H, and their respective bases fU k g kPZ (normalized in H), then fU k g kPZ is uniformly stable in H if there exists constants a; b > 0 independent of k such that

aku k k 2 `2 ku T k U k k 2 H bku k k 2 `2 k 0; 1; . . . 21 
With these de®nitions, the relationship between the stability of a basis and the condition number of an oper-ator discretized in the basis is outlined. In speci®c, it will be demonstrated that a uniformly stable set of bases yields uniformly bounded condition numbers for the discrete operators independent of the re®nement level.

Lemma 1 Let U k be a basis for a subspace, V k , of a Hilbert space H such that

A U k is positive de®nite. Let a kA U À1 k k À1 2 and b kA U k k 2 . Then aku k k 2 `2 ku T k U k k 2 H bku k k 2 `2 ; 22 and condA U k b a : 23 
Proof The condition number of a symmetric matrix is given by condA

U k kA U k k 2 kA U k À1 k 2 .
For the stability condition, note that

ku T k U k k 2 H ku k k 2 `2 u T k U k ; u T k U k À Á H u T k u k u T k A U k u k u T k u k : 24 Moreover, for symmetric matrices b kA U k k 2 qA U k max u k u T k A U k u k u T k u k

25

which gives us the upper bound. For the lower bound, observe that for symmetric positive de®nite matrices

a kA U À1 k k À1 2 max u k u T k A U À1 k u k u T k u k 3 À1 min u k u T k A U k u k u T k u k : 26 
The proof of Lemma 1 states that the best stability bounds are provided by the smallest and largest eigenvalues of the discretized matrix ± a well known result. Now consider the stability of a linear ®nite element basis, shown in Fig. 1a for k 2, where H L 2 0; 2 and V k spanf/ j k ; j 1; . . . ; 2 k1 À 1g; k 0; 1; . . . ; 27

U k / 1 k ; / 2 k ; . . . ; / 2 k1 À1 k T : 28 Lemma 2
The sequence of bases U k for the linear ®nite element basis is uniformly stable in L 2 0; 2.

Proof Let the discretized matrix A U k be a diagonally scaled ®nite element mass matrix. In 1-D this is a symmetric tridiagonal matrix consisting of 1 on the diagonal and 1=4 on the non-zero off diagonals. Note that for the ensuing proof, U k has been normalized in a manner that is equivalent to diagonal preconditioning applied to the ®nite element mass matrix. Using Gershgorin's theorem, the eigenvalues for A U k lie in the interval 1=2; 3=2 giving

1 2 ku k k 2 `2 ku T k U k k 2 L 2 3
2 ku k k 2 `2 ; 29 and condA U k 3. Therefore, the sequence of bases, U k , is uniformly stable in L 2 .

The stability associated with the ®nite element basis in L 2 is consistent with the empirical observation that the consistent mass matrix is well behaved in terms of its condition number. In practice, this is re¯ected in the ability to easily solve mass matrix dominated problems with simple iterative techniques.

Theorem 1 (Poincare Â-Friedrich) For bounded domains, the H m norm and semi-norm are equivalent in the sense that there exists constants a; b > 0 such that ajuj H m kuk H m bjuj H m for u P H m 0 : 30

Recall that the norm and semi-norm for the Sobolev space H 1 for one space dimension are

kuk H 1 ku H k L 2 kuk L 2 juj H 1 ku H k L 2 :
Lemma 3 After re-normalization with respect to the H 1 semi-norm, the sequence of bases U k is not uniformly stable in H 1 0 0; 2.

Proof Using the equivalence of the norm and semi-norm, a sequence of vectors u k is constructed for which uniform bounds are not possible. If

u k 1; 1; 1; . . . ; 1; 1 z}|{ 2 k1 À1
for k 0; 1; 2; . . . ; 31

then ku k k 2 `2 2 k1 À 1 and ju T k U k j 2
H 1 1 for k 0; 1; 2; . . . ; 32

and stability for the basis can not be demonstrated. Therefore, using the equivalence of the H 1 norm and semi-norm, there are no uniform bounds for the sequence of bases U k in H 1 0 . Next, the hierarchical Schauder Basis is considered where U 0 corresponds to the linear ®nite element basis described above. Let W k span / j k ; j 0; 2; 4; . . . ;

2 k1 À 2 n o 33 V k V 0 a k j1 W j 34 W k / 0 0 ; / 0 1 ; / 2 1 ; . . . ; / 0 k ; / 2 k ; . . . ; / 2 k1 À2 k T : 35 
The hierarchical basis for k 2 is shown in Fig. 1.

Lemma 4 After re-normalization with respect to the H 1 semi-norm, the sequence of bases W k for the Schauder basis is uniformly stable in H 1 0 0; 2.

Proof The H 1 semi-norm of W k is equivalent to the L 2 norm of the orthogonal Haar wavelet basis. The Haar basis is an orthogonal basis for L 2 0; 2 and thus A W k is the identity with respect to the semi-norm for k 0; 1; 2; . . . ; I.

Lemma 5 After re-normalization with respect to the L 2 norm, the sequence of bases W k for the Schauder basis is not uniformly stable in L 2 0; 2.

Proof De®ne the sequence u k which gives the hat function centered at one with support 1 À 2 k ; 1 2 k as u k 1; À1=2; À1=2; 0; À1=4; À1=4; 0; 0; 0; 0; À1=8; À1=8; 0; 0; 0; . . . : 36

Thus,

ku k k 2 `2 ! 1 ; 37 and ku T k W k k 2 L 2 2 3 1 2 k : 38 Because ku T k W k k 2 L 2 3 
0 as k 3 I the stability condition in Eq. ( 3) can not be met.

The multi-scale finite element

This section outlines the 1-D and 2-D multi-scale ®nite elements. The multi-scale elements are based upon the hierarchical Schauder basis with a change-of-basis incorporated at the element-level in order to make use of the well-known ®nite element assembly procedure [START_REF] Hughes | The Finite Element Method[END_REF].

Before embarking on a description of the 1-D multiscale ®nite element, a brief review and interpretation of the multi-scale transformation is presented. Recall from Eq. ( 5) that W k W T k U k where W k is the multi-scale transformation matrix. In order to make this transformation concrete, consider the following example. Beginning with a 1-D grid consisting of 5 grid points and 4 linear ®nite elements, the nodal basis will be decomposed into a coarse-grid consisting of two elements and the associated ``psuedo-wavelets''. This decomposition is shown schematically in Fig. 2.

Remark 1

The term pseudo-wavelet is used here to indicate that the elements of W k in the hierarchical Schauder basis do not possess the property that their zeroth moment is zero. However, the elements of W k used to complete the subspace V kÀ1 are uniformly stable in H 1 . Thus, the term pseudo-wavelet seems appropriate. In this example, the wavelet transform,

W 1 W T 1 U 1 , is / 3 0 w 2 1 w 4 1 V X W a Y 1=2 1 1=2 1 0 0 0 0 1 P R Q S / 2 1 / 3 1 / 4 1 V X W a Y ; 39 
where the subscript indicates the scale, and the superscript indicates the node number. From this, it is clear that the wavelet transform performs an averaging procedure to obtain the coarse-grid basis elements, U 0 , and an injection to obtain the coarse-grid pseudo-wavelets, W 1 .

The decomposition of nodal variables, u, may be accomplished with the wavelet transform, but its inverse is required to obtain the coarse-grid coef®cients, i.e., Du W À1 u, where Du is the multi-scale component of the ®eld. Relying on the inverse wavelet transform is impractical because the orthogonality constraint between the wavelets and scaling functions has been relaxed in the hierarchical Schauder basis. However, incorporating the hierarchical Schauder basis at the element level yields solution algorithms that compute the multi-scale solution directly and rely only on the reconstruction algorithm, i.e., u WDu. Thus, given a multi-scale representation of the ®eld that corresponds to the multi-scale basis elements in Fig. 2, the reconstruction algorithm is simply

u 2 1 u 3 1 u 4 1 V X W a Y 1=2 1 0 1 0 0 1=2 0 1 P R Q S u 3 0 Du 2 1 Du 4 1 V X W a Y : 40 
As an aside, the wavelet transform is comprised of two components and both may be viewed in terms of a discrete convolution. Using the nomenclature introduced above for the wavelet transform, T 1 H 1 jG 1 , where

H 1 1=2 1 1=2 V X W a Y ; G 1 1 0 0 0 0 1 P R Q S : 41 
In this simple example of a two-scale decomposition, W 1 T 1 , but in general, the wavelet transform is computed recursively according to Eq. ( 10).

The 1-D multi-scale element

The description of the multi-scale element begins with the linear ®nite element for which the shape functions are

N i 1 2 1 À n i n : 42 
Here, n is the natural coordinate, n i is the nodal value of the natural coordinate, i 1; 2, and À1 n 1.

The concept of scale is introduced at the element level by injecting degrees-of-freedom (DOF) that are supported by the pseudo-wavelets of the hierarchical Schauder basis. The 1-D multi-scale element is shown in Fig. 3 where a single ``internal'' degree-of-freedom located at n 0 in the element is introduced at Scale-1, two DOF are introduced at Scale-2, and four DOF at Scale-3.

At Scale-1, the pseudo-wavelet is

w 1 n 1 n if À 1 n 0 1 À n if 0 n 1 .

& 43

More generally, the psuedo-wavelets for the multi-scale DOF may be written in terms of the translates and dilates of wn as

w k n w ñ ; 44 where ñ 2 kÀ1 1 n À 2j À 1 ; 45 and 2 2Àk j À 1 n 2 2Àk j 2 1Àk À 1 2 2Àk j 2 1Àk À 1 n 2 2Àk j 2 2Àk À 1 : 46 
Here k indicates the scale, and j indicates the translates in the element parametric space (À1 n 1). The derivatives of the shape functions yield constant functions that are orthogonal to the derivatives of the pseudo-wavelets at all scales. The derivatives of the pseudo-wavelets yield Haar wavelets as illustrated in Fig. 3, and at any given scale they are orthogonal with the derivatives at all other scales in the 1-D multi-scale element.

The reconstruction algorithm may be viewed as an element-by-element procedure that relies only on the multiscale information in each element. The reconstruction is shown schematically in Fig. 3 where the DOF located at n À3=4 is computed as a linear combination of the detail, Du, at scales 0À3. Here, a canonical node-numbering scheme is used where the node numbers are n 1 ; n 2 at Scale-0, n 3 at Scale-1, n 4 ; n 5 at Scale-2, etc. as shown in Fig. 3.

With this numbering scheme, the reconstruction for the DOF located at n 6 may be written as

u 6 N 1 u 1 0 N 2 u 2 0 w 3 1 Du 3 1 w 4 2 Du 4 2 w 6 3 Du 6 3 ; 47
where each of the basis elements is evaluated at n À3=4. Thus, the reconstruction algorithm begins with the interpolant of the coarse-grid solution and injects re®nements, or detail, up to the desired scale. The reconstruction may be written more generally as

u 22 kÀ1 j k Nnpe i1 N i u i 0 Nscale k1 w 22 kÀ1 j k Du 22 kÀ1 j k 48
where the basis elements (N i , and w k ) are evaluated at locations corresponding to the DOF location in the parent element.

The 1-D multi-scale operators

The computation of the stiffness for the model problem, Eq. ( 1), is a straight-forward procedure that begins with the coarse-grid stiffness. At the element level, i.e., Scale-0, this is simply

K e 0 e h 1 À1 À1 1 ! ; 49
where h is the node-spacing for the coarse-grid. Making use of orthogonality, the diagonal stiffness entries for the scale DOF, i.e., for k > 0, are

K 22 kÀ1 j k 2 k1 e h : 50 
The resulting multi-scale element-level stiffness matrix is

K e e h 1 À1 À1 1 4 8 8 
. . .

2 k1 P T T T T T T T T R Q U U U U U U U U S : 51 
With this form of the element stiffness, only the coarsescale terms contribute to the element assembly procedure since all internal DOF simply require a point evaluation and do not rely on information outside the element. Here, a uniform mesh re®nement was applied to inject the scale DOF, but this is not a necessity for the multi-scale element.

The mass matrix computation is somewhat more involved because it requires the calculation of inner-products that involve the basis elements across scale. The computation of the multi-scale mass matrix consists of the following 

52

This series of element-level integrals leads to the ®ngerdiagonal matrix structure shown in Fig. 4 with the inset coarse-grid element mass matrix.

A row-column lumping procedure is shown schematically in Fig. 4 for the multi-scale DOF at n 7 in the element. Note that the traditional row-sum lumping for the coarsegrid mass matrix can be used for the entries corresponding to the coarse-grid, but this type of mass lumping can not be used for the multi-scale DOF in the element. This concept is discussed further in the comparison between the multi-scale and linear ®nite elements.

A multi-scale algorithm

As an example of a multi-scale algorithm, consider the model problem, Eq. ( 2), with e 1, c 0, f x 1, and essential boundary conditions, u0 0; u1 0. In Fig. 3. Basis elements and their piecewise derivatives for the one-dimensional multi-scale element with three re®nement scales. The derivatives have been scaled by 1=k for scales k 1; 2; 3 this example, three scale solutions are computed. Scale-0 corresponds to the coarse-grid solution using two elements. Scale-1 corresponds to the injection of one multiscale DOF per element, while Scale-2 corresponds to the injection of two multi-scale DOF per element. This may be seen in Fig. 5 where the multi-scale DOF are shown relative to the elements (e 1 ; e 2 ) of the one-dimensional grid. At the ®nest resolution, the multi-scale solution corresponds to the solution associated with 8 linear ®nite elements. The multi-scale algorithm proceeds as follows. 4. Repeat 1±3 until e is smaller than some user-speci®ed criteria. 5. Perform the element-by-element multi-scale reconstruction using Eq. (48).

For the example problem, the multi-scale solution for k 1 corresponds to Du 4 1 Du 5 1 1=32, and for k 2, the Du 6 2 Du 9 2 1=128, and Du 7 2 Du 8 2 1=128. After the reconstruction procedure, the scale DOF yield solution values that interpolate the exact solution ± a result that is expected for linear problems. Similar results have been obtained for problems with non-linear source terms, and for problems with inhomogeneous essential and natural boundary conditions.

The algorithm presented for the 1-D multi-scale element possesses the property that all scale injection relies only on element-local data and does not require a re-solve of the coarse-grid problem to improve the solution. For problems that involve a signi®cant mass-matrix contribution, the correction procedure outlined in the following sections is required when the row-column lumped mass is used.

The 2-D multi-scale element

Attention is now turned to the 2-D multi-scale element. As in the 1-D case, the 2-D bilinear element provides the element-level components of the global basis functions. To begin, Fig. 6 shows a four-patch of bilinear ®nite elements with the injected multi-scale DOF corresponding to k 1. The con®guration of the multi-scale DOF in the parent element is shown in Fig. 7. Like the shape functions, the components of the pseudo-wavelets at the element level take on a value of 1 at the DOF location, and they are zero at all other node locations. where i 1; 2; 3; 4, and À1 n; g 1. At the ®rst scale, k 1, the psuedo-wavelets are w 5 1 1 À jnj1 À jgj; w 6 1 1 2 1 n1 À jgj; w 7 1 1 2 1 À jnj1 g; w 8 1 1 2 1 À n1 À jgj; 56 w 9 1 1 2 1 À jnj1 À g :

In a more general way, the pseudo-wavelets for the multi-scale DOF may be written in terms of the translates and dilates of the basis functions at scale k 1. The pseudo-wavelets in two-dimensions are w m k n; g w m 1 ñ; g ; 57 where ñ 2 kÀ1 1 n À 2j À 1 g 2 kÀ1 1 g À 2j À 1 ; 58 

j k À 1 2 2Àk j À 1 ñ 2 2Àk j 2 2Àk À 1 2 2Àk j À 1 g 2 2Àk j 2 2Àk À 1 :

59

Here k indicates the scale, j indicates the translates in the element parametric space (À1 n; g 1), and m 5; 6; 7; 8; 9 for the element-local numbering of the pseudo-wavelets. With the basis elements de®ned this way, the use of recursion at the element level as indicated in Fig. 6 can be used to automate the computation of the mass and stiffness operators with a given scale of resolution, Nscale.

There are several key points regarding the 2-D multiscale element. First, the orthogonality of the derivatives of the pseudo-wavelets is not preserved in two dimensions ± even on an orthogonal grid. The ®nger-diagonal matrices that arise from this discretization can lead to excessive storage costs if the matrices are used without threshholding, row-column lumping, or element-by-element procedures. Surprisingly, the row-column lumping can be applied to both the multi-scale mass and stiffness operators, albeit only for the rows and columns corresponding to the multi-scale DOF. The 2-D multi-scale element is compatible with many h-adaptivity strategies being implemented in ®nite element codes today, however, a detailed discussion of this aspect is beyond the scope of this paper. The ability to use this element as a change-of-basis preconditioner is just beginning to be explored. Finally, the numerical performance of the 1-D and 2-D multi-scale element in terms of dispersive behavior, rate of convergence, etc. is identical to the linear (bilinear) element since any multi-scale solution can be cast in terms of the reconstructed solution in the ®nite element basis at the ®nest grid scale.

Multi-scale vs. linear elements

In this section, a comparison of the storage, matrix conditioning, and computational complexity for the hierarchical Schauder and linear ®nite element bases is presented in the context of the model elliptic problem developed in Sect. 2. The approximations inherent in using a lumped multi-scale mass matrix are discussed, and an ef®cient row-column lumping procedure with a lumped-mass correction algorithm is presented to illustrate that only the largest wavelet coef®cients need be corrected in the approximate row-column lumped-mass solution. The row-column lumping procedure is applied to both the multi-scale mass and stiffness matrices in 2-D, and the lumped-mass correction algorithm is extended to account for the approximations introduced by the rowcolumn lumped mass and stiffness matrices. Although a uniform discretization is considered in the ensuing discussion, it should be noted that in 1-D the hierarchical Schauder basis retains all of its properties for a non-uniform grid. However, in two-dimensions, orthogonality in the H 1 sense is lost even for uniform grids.

1-D comparison

The non-zero ®ll pattern for the mass and stiffness matrices are shown in Fig. 8 for both the hierarchical Schauder and the linear ®nite element bases. The formulae for the number of non-zeros associated with the mass and stiffness operators for both the hierarchical Schauder and ®nite element bases are shown in Table 1. Because the hierarchical Schauder basis diagonalizes the stiffness, Fig. 8. The non-zero entries in the mass and stiffness matrices for the hierarchical Schauder and linear ®nite element bases for a mesh with 64 nodes only Ndof (number of DOF) words of storage are required for the diagonal, although in practice a coarse-grid ®nite element matrix is required for the multi-scale element. The consistent mass matrix, although sparse, requires increased storage relative to the tri-diagonal ®nite element mass matrix due to the ®nger-diagonal structure. In comparison to the linear ®nite element, the storage for the multi-scale mass matrix scales with both the number of DOF, Ndof, and the scale, k.

As demonstrated in Sect. 2, the ®nite element mass and the hierarchical Schauder stiffness matrices are both well conditioned. In fact, the hierarchical Schauder stiffness is ideal in 1-D since the nodal change-of-basis results in a diagonal stiffness operator when the full wavelet transformation is applied as a preconditioner. In contrast, the ®nite element stiffness and the Schauder mass matrices are both poorly conditioned. To be more precise, the ®nite element basis is uniformly stable in L 2 , but not in H 1 . However, the hierarchical Schauder basis is uniformly stable in H 1 , but not in L 2 .

In order to illustrate the differences in stability between the ®nite element and the hierarchical Schauder bases, consider the condition numbers associated with the mass and stiffness matrices as shown in Table 2. Here, multiple levels of mesh re®nement are considered with k 1 corresponding to a mesh with 3 nodes (2 elements). The growth of the condition numbers for K k is seen to be proportional to Oh À2 ) for the linear ®nite element bases, while the condition numbers for the mass matrix are bounded asymptotically at 3. The condition number associated with the combined ®nite element mass and stiffness (M k K k ) is dominated by the stiffness since e c 1 in this case. In contrast, the mass matrix for the hierarchical Schauder basis yields a condition number that grows approximately as Oh À3=2 while the condition number for the stiffness is uniformly bounded at 1. The combined mass and stiffness operator (M k K k ) for the Schauder basis is also uniformly bounded indicating the dominance of the stiffness.

Although the multi-scale mass matrix associated with the hierarchical Schauder basis is not as well conditioned as the ®nite element mass matrix, its primary drawback is the storage associated with the ®nger-diagonal ®ll pattern. However, the entries in the ®nger diagonals decrease in amplitude with increasing scale suggesting that the relative importance of the matrix entries become negligible with increasing scale. This effect is re¯ected in the integrals for the multi-scale mass matrix in Eq. ( 52). Therefore, either a mass lumping procedure or threshholding based on the relative size of the entries can be used to limit the matrix ®ll-in. In order to test this idea, an ad-hoc procedure for mass lumping is considered. In a ®nite element setting, mass lumping refers to the row-sum lumping procedure used to obtain a diagonal mass matrix. However, in the context of a multi-scale basis, the physical interpretation of mass lumping is not simple, and the idea is perhaps less well founded for the multi-scale element than for the linear ®nite element.

Regardless of these issues, experimentation with mass lumping strategies has suggested that a viable lumping procedure for the multi-scale mass matrix is to sum the values to the left and above the diagonal entry to the diagonal as shown in Fig. 4. The use of the row-column lumping procedure in Algorithm 1 permits the point-wise evaluation of the multi-scale DOF for problems where the mass matrix is required, but the subsequent reconstruction procedure can only yield an approximate solution. However, inspection of the resulting approximate solution, Du, obtained with the lumped multi-scale mass indicates that a small correction to the largest wavelet coef®cients can dramatically improve the solution quality. In other words, the row-column lumping procedure cannot be used over the entire range of scales without degrading the solution accuracy, i.e., the in¯uence of mass lumping is ``felt'' more at the coarser grid scales. A lumped-mass correction algorithm has been developed to account for the approximate nature of the solution and proceeds as follows.

Algorithm 2 Lumped-mass correction algorithm 1. Row-column sum lump the multi-scale mass matrix resulting in a diagonal matrix, Ã M L k K k . Here, the superscript L indicates a lumped operator. For the multiscale element, only those entries in the mass matrix associated with the multi-scale DOF are lumped. 4. Permute the rows and columns of A to match the permutation of Dũ using a consistent multi-scale mass only for the Dũ N unknowns. Here, the permuted matrix, A M k K k is formed with the consistent mass matrix, M k . 5. Solve the smaller system using the consistent mass matrix for Du N , i.e., the coarse-grid correction,

(k) Ndof M k K k M k K k M k K k M k K k 1 3
A N Du N f N À A R Dũ R : 61 
Here, A N is the operator for the coarsest grid, and A R corresponds to the rows of A associated with Dũ R but formed with the consistent mass matrix. An ef®cient means of computing the matrix-vector product, A R Dũ R is through the use of the wavelet transform in Eq:7.

Multiplication of Du by the matrix W is equivalent to the application of the wavelet transform, i.e., the reconstruction algorithm, which can be implemented in an O(Nnp) operation algorithm. It should be noted that multiplication by W T is not equivalent to the inverse wavelet transform, i.e., W T W T I. However, the properties of W T permit implementation of a matrix-vector product using convolution techniques similar to the reconstruction algorithm.

In practice, the DOF associated with the coarse-grid tend to be the largest and are the ones that need to be corrected. Thus, the permutation step can be replaced with a solve for the coarse-grid DOF followed by the injection of the multi-scale DOF. This algorithmic approach is exactly what the multi-scale ®nite element does since the coarsegrid solution is computed with only the injection of scale relying on the hierarchical Schauder basis. Figure 9 illustrates the effectiveness of the lumped-mass correction algorithm for the model problem with e 1, c 1, and f Àx 8 x À 2 3 . In Fig. 9a, the exact solution is shown with the approximate solution computed with the lumped multi-scale mass matrix. In Fig. 9b, the approximate solution has been improved by correcting only the three largest wavelet coef®cients.

2-D comparison

In two dimensions, the behavior of the hierarchical Schauder basis changes rather signi®cantly relative to the 1-D basis. The most apparent changes are the additional ®ll-in for the multi-scale mass matrix and the structure of the stiffness matrix which has a ®nger diagonal ®ll pattern rather than being diagonal. This is shown in Fig. 10 and is due to the multi-scale interaction of the tensor product basis in 2-D. The storage for the ®nger diagonal mass matrix grows as 4k 2 Ndof while the storage for the stiffness is proportional to 4kNdof where Ndof 2 k1 À 1 2 . In comparison, the storage for the ®nite element mass and stiffness matrices scales linearly in the number of DOF as $9Ndof. As in the 1-D case, the amplitude of the entries in the ®nger-diagonals of the multi-scale mass matrix decrease with increasing scale.

In addition to the change in the ®ll pattern, the O1 condition number for the 1-D Schauder stiffness becomes Ologh À2 in 2-D. Again, the condition number for the ®nite element stiffness grows as Oh À2 regardless of the dimensionality. Table 3 illustrates how the condition number varies with mesh resolution for the model problem in Eq. ( 1). Here, the L 2 stability of the ®nite element basis is re¯ected in the uniformly bounded condition number for the mass matrix and the Oh À2 ) growth of the condition number for the stiffness. In contrast, the condition number for the multi-scale mass matrix grows faster than Oh À2 although ®rm estimates have not been made. For the stiffness, the condition number for K k grows as logh À2 . Although the condition number for the multi-scale mass matrix degrades rapidly, the condition number for M k K k is dominated by the stiffness and is much better behaved than the ®nite element basis as shown in Table 3.

Following the 1-D mass lumping, the concept of rowcolumn lumping is applied in 2-D. However, here the lumping procedure is applied to both the multi-scale mass and the stiffness matrices. Although the row-sum lumping procedure is not valid for the ®nite element stiffness, the row-column lumping is possible for the multi-scale Fig. 9a,b. Solutions, u, on 0 x 2 obtained using the hierarchical Schauder basis with mass-lumping and a no corrections and b 3 wavelet coef®cient corrections representation of the stiffness ± an artifact of the nodal change-of-basis. In other words, the multi-scale representation of the stiffness does not retain the ``row-sum to zero'' property of the nodal stiffness matrix. In order to illustrate this property, consider the application of Algorithm 2 in two-dimensions to the model problem with e c 1 and f xy2 À x2 À y. However, in this case, the stiffness is replaced by the ``lumped'' stiffness, i.e., Ã M L k K L k . Figure 11b andc show the lumped-approximate solution with no wavelet correction and the associated error relative to the exact solution. The approximate solution was obtained by performing one vector divide and a multiscale reconstruction resulting in a very reasonable initial solution. In Fig. 11c, the peak in the error is associated with the largest approximate wavelet coef®cient. Figure 11d illustrates the lumped-approximation after the largest wavelet coef®cient has been corrected following Algorithm 2. Nearly an order of magnitude reduction in the error has been achieved by correcting only the largest wavelet co-ef®cient. In Fig. 11e, the peaks in the error are associated with the next 8 largest wavelet coef®cients. Although the row-column lumping procedure yields an approximate solution, it is thought that this approach may generate a good initial solution for an iterative procedure or alternatively provide a multi-scale preconditioner.

Although the hierarchical Schauder basis is promising, the question of computational complexity remains. In 2-D, the change in ®ll pattern and matrix conditioning make computational complexity a more important issue in the comparison of the Schauder and linear ®nite element bases. In order to evaluate the computational complexity associated with the Schauder basis, a brief comparison of the cost of solving the model problem using a conjugate gradient method was performed. In this comparison, complete ®ll-in of the multi-scale mass and stiffness was accounted for ignoring the advantages of row-column lumping.

In order to perform the comparison, both the number of non-zero entries in the matrix, and the number of iterations required to solve the problem are required. Table 4 shows the number of non-zero entries and associated iteration count for the Schauder and linear ®nite element bases for the model problem with 0 e 1000 and c 1. For problems where the mass matrix dominates, e 0, the uniform stability of the ®nite element basis in L 2 results in a computational cost that is bounded independent of the mesh resolution. In contrast, the hierarchical Schauder basis results in a lower-order computational cost for problems where the stiffness dominates due to the multi-scale preconditioning of the stiffness ± despite the additional ®ll-in associated with the ®nger-diagonal matrices. This result is further emphasized by the data in Table 5 for a ``purely'' elliptic problem with no mass matrix contribution. In summary, Table 6 provides order of magnitude estimates for the computational complexity for the hierarchical Schauder and linear ®nite element bases. Here, the number of ¯oating point operations required to solve the model problem grows as 9Ndof Ndof p for the ®nite element basis. In comparison, the number of ¯oating point operations required to solve M k K k using the Schauder basis scales as 48k 3 Ndof and as 48k 2 Ndof for the purely elliptic problem. From this data, the Schauder basis does eventually have a lower computational cost, but the bene®t is only apparent for relatively large problems. For the ``purely'' elliptic operator, K k , the hierarchical Schauder basis wins, i.e., has lower computational cost, for mesh resolution exceeding Ndof 10 5 . However, for M k K k , the Schauder basis does not win until the mesh resolution exceeds Ndof ! 10 8 .

(k) Ndof M k K k M k K k M k K k M k K k 1 9 4 

Summary and conclusions

In the search for a wavelet basis with good numerical and computational performance for multi-scale simulations, the following ``shopping list'' of characteristics was developed as the goal for the ideal wavelet basis. The attributes include: (1) Low order, e.g., linear, for computational ef®ciency, (2) Consistent reproduction of polynomials, e.g., reproduce f1; x; y; xyg in two-dimensions, (3) Nodal, i.e., possesses the Kronecker delta property, (4) Hierarchical: V 1 V 0 È W 1 , (5) Element based ± compatible with isoparametric ®nite elements, (6) Analytic expressions for the basis elements / and w, (7) Easy treatment of boundary conditions, (8) Good numerical performance, e.g., dispersion characteristics, truncation error, etc., (9) Appropriate for both Eulerian and Lagrangian computations, [START_REF] Yserentant | On the multi-level splitting of ®nite element spaces[END_REF] Computationally ef®cient decomposition and reconstruction of ®elds, and (11) Extensible to multiple spatial dimensions. Based on these characteristics and the results of this exploratory effort the following conclusions are drawn. The hierarchical Schauder basis, and the multi-scale elements, are prototypical of what the ideal multi-scale basis should be although this basis does not satisfy all 11 characteristics of an ideal basis. Unfortunately, the storage and computational cost associated with the ®nger-diagonal matrices from this type of basis is a signi®cant penalty. However, the use of ad-hoc lumping procedures ameliorates this problem and offers the potential for the development of fast, simple preconditioners. Currently, the real value of the multi-scale elements lies in the application to elliptic problems. A preconditioner based on the multi-scale element would be of great value in applications where a dominant elliptic component is present, e.g., in time-dependent incompressible ¯ow and quasi-static electro-magnetics.

As demonstrated in the discussion of the hierarchical Schauder basis, it is dif®cult to construct a wavelet basis that is stable in both L 2 and in H 1 , i.e., for all possible combinations of mass and stiffness operators. The design of wavelet bases that are customized for a speci®c partial differential equation remains an open topic of active research, and the use of wavelet bases for the solution of partial differential equations remains a research topic that is currently centered in the mathematics community. However, hierarchical solution procedures that use wavelets tailored to the physical problem appear to be the most viable candidates for using wavelet bases. 
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 13 Multi-scale solution algorithm 1. Form the coarse-grid operator K 0 , and solve the coarsegrid problem, K 0 U 0 F 0 . 2. For each element, inject one scale DOF and solve for the wavelet coef®cient, Du. fDu k g K k À1 fF k g 53 Compute the termination measure for the scale DOF injection. One possibility for the termination measure relies on stopping when the scale DOF are small relative to the overall solution. (Other stopping criteria have not been investigated.) e Du 22 kÀ1 j k ku k k 54
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 7a±f111119 Fig. 7a±f. Parent element and multi-scale DOF for k 1. a reference element and basis elements for multi-scale DOF with k 1, b w 5 1 , c w 6 1 , d w 7 1 , e w 8 1 , and f w 9 1

Fig. 10 .

 10 Fig. 10. The non-zero entries in the mass and stiffness matrices associated with the hierarchical Schauder and linear ®nite element bases in 2-D for a 32 Â 32 mesh
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Table 1 .

 1 Formulae for the number of non-zeros in the 1-D mass and stiffness matrices where Ndof is the number of degrees-offreedom, Ndof 2 k1 À 1, and k indicates the scale

	Basis ± matrix	No. of non zeros
	Linear ®nite element ± Mass matrix (M k )	3Ndof)2
	Linear ®nite element ± Stiffness matrix (K k ) 3Ndof)2
	Schauder ± Mass matrix (M k )	( 2 k)1)
		(Ndof + 1) + 3
	Schauder ± Stiffness matrix (K k )	Ndof

  Calculate the approximate wavelet coef®cients, Dũ, by dividing the right-hand-side by the diagonal entries of Ã.3. Permute the components of Dũ so that the N largest coef®cients are at the top. Let Dũ N be the largest N lumped-approximate wavelet coef®cients and Dũ R be the remaining coef®cients such that

	2. permDũ	&	Dũ N Dũ R	'	:		60	
							2.09	6	4	7	1	1.23
					2	7	2.71	25	18	18	1	1.27
					3	15	2.92	103	74	49	1	1.29
					4	31	2.98	414	295	121	1	1.29
					5	63	3.00	1659	1181	288	1	1.29
					6	127	3.00	6640	4724	667	1	1.29
					7	255	3.00	26560	18900	1517	1	1.29

Table 4 .

 4 Number of non-zeros and iteration count for the model problem using the a

		Mesh parameters	No. of non-zeros Iteration count		
	Schauder and b linear ®nite	Scale (k)	Ndof		e 0	e 0:1	e 1	e 10 e 1000
	element bases in 2-D. The iteration count is based on using Jacobi preconditioned conjugate gradient with 0 e 1000, c 1	a Schauder basis 1 2 3 225 9 49 4 961	4 9 729 6889 51529	3 11 50 187	3 10 27 48	3 10 25 42	3 9 22 37	3 9 22 37
		5	3969	335241	488	73	61	52	51
		6	16129	1990921	979	107	87	70	59
		b Linear ®nite element basis				
		1	9	4 9	3	3	3	3	3
		2	4 9	3 6 1	6	6	7	7	7
		3	225	1849	7	13	15	16	16
		4	961	8281	6	27	31	31	31
		5	3969	34969	5	54	62	63	63
		6	16129	143641	3	110	125	126	126

Table 5 .

 5 Storage requirements, matrix ®ll, and iteration count using Jacobi preconditioned conjugate for the Schauder basis with the ``purely'' elliptic model problem with e 1, c 0

	Mesh parameters		No. of	Iteration
			non-zeros	count
	Scale (k)	Ndof		
	1	9	33	3
	2	49	329	9
	3	225	2265	22
	4	961	13113	37
	5	3969	68985	51
	6	16129	342265	59

Table 6 .

 6 Computational complexity for the linear ®nite element and the hierarchical Schauder basis in 2-D where Ndof = (2 k+1 )1) 2 , and k indicates the scale

	Basis	No. of	Iteration	Floating point
		non-zeros	count	operations
	Linear ®nite element	9Ndof	p	Ndof	9Ndof	p	Ndof
	(M k K k ) Schauder basis (M k K k ) 4k 2 Ndof Schauder basis (K k ) 4 kNdof	12k 12k	48k 3 Ndof 48k 2 Ndof
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