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A method is proposed for analyzing the steady-state response of nonlinear dynamic 
systems. The method iterates to obtain the discrete Fourier transform of the system 
response, returning to the time domain at each iteration to take advantage of the 
ease in evaluating nonlinearities there- rather than analytically describing the 
nonlinear terms in the frequency domain. The updated estimates of the nonlinear 
terms are transformed back into the frequency domain in order to continue iterating 
on the frequency spectrum of the steady-state response. The method is demonstrated 
by solving a problem with friction damping in which the excitation has multiple 
discrete frequencies. 

1 Introduction 

A variety of methods are presently available for calculating 
the response of nonlinear dynamic systems, (see, for example, 
Iwan (1974) for analytical approaches, and Press et al. (1986) 
for numerical approaches). The method introduced in this 
paper offers advantages over most other methods in its 
generality, efficiency, accuracy, and ease-of-use for 
calculating the steady-state response of forced nonlinear 
systems. The method involves an iterative scheme that alter­
nates from the frequency to the time domain in order to take 
advantage of the convenience in performing certain tasks in 
each domain. Consequently, this Alternating Frequency /Time 
(AFT) method easily provides either time trajectory or fre­
quency spectrum solutions. 

The purpose of this paper is to introduce the AFT method 
and illustrate its utility with a friction damping problem: the 
response of a single degree-of-freedom (sdf) system with an 
elastic/perfectly-plastic friction damper subject to three 
discrete frequencies of excitation is calculated. 

2 Alternative Spectral Methods 

One of the most popular methods for approximating the 
frequency response of nonlinear systems is known as the Har­
monic Balance (HB) method in the vibration literature (e.g., 
Nayfeh and Mook, 1979), and as the Describing Function 
(DF) approach in the control literature (e.g., Gelb and Vander 
Velde, 1968). This is essentially a spectral method in which the 

solution is assumed to have one dominant frequency compo­
nent- or at most two. 1 In situations where it can be applied, 
and trusted to give accurate solutions (where a single harmonic 
description of the nonlinearity is adequate), the HB method is 
by far the most computationally efficient method for obtain­
ing steady-state solutions to nonlinear dynamics problems. It 
has been used extensively to study friction damping (e.g., 
Griffin, 1980; Sinha and Griffin, 1983 and 1984; Dowell, 
1983; and Jezequel, 1983). Generally, however, this method is 
limited to harmonically excited systems and it becomes in­
creasingly inaccurate as higher harmonics in the expansion of 
the nonlinear force become significant. A fair amount of work 
is also required to expand the nonlinear force, although DF's 
for a large number of nonlinearities have been tabulated (Gelb 
and VanderVelde, 1968, Appendix B). 

An Incremental Harmonic Balance (IHB) method which ac­
commodates multiple harmonic components in the description 
of the nonlinear force was introduced by Lau et al. in 1982. 
The method was originally applied to continuous (cubic) 
nonlinearities (Lau et al., 1982, 1983), but Pierre et al. (1985) 
extended the method to analyze the rigid/perfectly-plastic fric­
tion damper problem in which the nonlinear force is discon­
tinuous. The IHB method appears to handle strong 
nonlinearities well, and provides accurate solutions over a 
much broader range than the HB method since it accom­
modates multiple harmonics. The method is ideally suited to 
parametric studies since it can step from a known state of 
vibration to a neighboring state which corresponds to an in­
cremental change in one of the governing parameters of the 

----r:rhe DF approach has been extended to allow two input frequencies in the 
case of odd, memoryless (nonhysteretic) nonlinearities (Gelb and VanderVelde, 
1968, Chapter 5 and Appendix D), but the nonlinear force and the system 
response are described only in terms of the two input frequencies. 



system. However, there are also significant disadvantages to 
the IHB method. 

Computationally the IHB method is no more efficient than 
numerical integration, at least for the discontinuous friction 
damping problem (cf., Pierre et a!., 1985, "Conclusions"), 
and the computational effort grows geometrically with the 
number of harmonics considered. As currently implemented, 
the frequencies are integer multiples of the excitation frequen­
cy, which will hide the subharmonic resonances that may oc­
cur in nonlinear systems. Another disadvantage of the IHB 
method is the amount of analytical work required. Functions 
in the equation are expanded in a first order Taylor series 
(which may be difficult to obtain for discontinuous functions) 
and substituted into the original equation to obtain a linear 
"incrementalized" equation. The incrementalized equation is 
solved by the Galerkin method, which requires further expan­
sions and integrations. Finally, although the approach is 
general, the expansions are specialized, so each new dynamic 
system requires its own formulation and implementation. 

Other numerical methods, using techniques similar to those 
in the AFT method, describe functions in both the frequency 
and time domains. In computational fluid dynamics, "Spec­
tral'' and "Pseudo-Spectral" methods (cf., Zang and Hus­
saini, 1985) use Fourier transform techniques to expand func­
tions into (trigonometric or Chebyshev) polynomials. This 
permits derivatives and other operations on those functions to 
be performed with higher order accuracy than finite difference 
methods achieve for similar effort. Cesari (1963) appears to be 
the first to obtain steady-state solutions to nonlinear dynamic 
equations by using a trigonometric polynomial expansion, 
which is equivalent to a truncated Fourier series or a discrete 
Fourier transform. Urabe (1965) expands Cesari's results and 
(Urabe and Reiter, 1966) shows how the Fourier coefficients 
may be computed at each iteration with a discrete Fourier 
transform, once the nonlinear functions have been evaluated 
in the time domain. Urabe identifies this approach as an ap­
plication of the Galerkin method. Ling and Wu (1987) use a 
fast Fourier transform (FFT) to implement Urabe's approach, 
calling it the "Fast Galerkin" (FG) method. Although there 
are fundamental similarities in the concepts underlying the FG 
and AFT methods, there are differences in how the methods 
are formulated and implemented. These differences are 
discussed later. 

3 An Alternating Frequency /Time (AFT) Method 

3.1 Fundamental Concepts. Frequency domain methods 
have long been used to analyze linear systems because the fre­
quency content of a signal is often of greater interest than the 
time history and because convolution- a convenient solution 
method- is more efficiently accomplished in the frequency 
domain . In general, nonlinear forces are nonlinear functions 
of the past and present states of the system. Since they are not 
linear functions of the states or explicit functions of time, they 
cannot be transformed directly into the frequency domain. 
This makes nonlinear systems difficult to analyze in the fre­
quency domain, as evidenced by the complicated expansions 
required in the frequency domain methods discussed previous­
ly. Nonlinear forces are easy to evaluate in the time domain, 
however, since the state history of the system is readily 
available. This is evidenced by the ease of implementation and 
greater complexity allowed by numerical integration. Th.e 
AFT method employs the advantages of both domains by per­
forming convolution (as well as filtering and convergence 
testing) in the frequency domain and by switching to the time 
domain to evaluate the nonlinear forces as functions of the 
state trajectory. The cost involved in this technique is the time 
required to switch back and forth between the frequency arid 

time domains. A fast Fourier transform2 algorithm makes this 
cost reasonable, especially in obtaining steady-state solutions 
to periodically excited systems. 

Consider a nonlinear dynamic system in which the terms 
containing nonlinearities are grouped on the right hand side of 
the equation with the external forcing term. The equation of 
motion for this system may be represented by: 

L(x(t)J =f(t) +Nj(X,X) (1) 

where L is the differential operator representing the linear 
terms, f(t) is the external forcing term, Nj( •) represents the 
nonlinear force terms, and x(t) is the desired system response. 
These are vector functions for multi-degree-of-freedom (mdf) 
systems, or scalar functions for sdf systems. Taking the 
Fourier transform (FT) of both sides yields: 

A(w)•X(w)=F(w)+1j(w,X(w)) (2) 

where A(w), the transform of L, is a (matrix) function of the 
frequency, w, F(w) is the transform of f(t), 1j(w,X(w)) is the 
transform of Nj(•), and X(w) is the transform of x(t). In the 
transform domain the nonlinear forces depend only on w and 
X(w) because derivatives of x(t) transform into linearly scaled 
forms of X(w): 3 

x(t) #X(w) 

x(t)#-jwX(w) 

x(t) # -w2X(w) 

(" #" denotes a Fourier Transform pair). 

(3) 

Since an FFT will be used to compute and represent the fre­
quency dependent functions, (2) is required to hold at the 
discrete frequencies, wk, introduced by the FFT. Thus, (2) 
becomes a system of nonlinear algebraic equations4 : 

A(w)•X(w) =F(w) + 1j (w,X(w)) (4) 
where 

w=(wd (5) 

and 

27rk 
wk 

AT•N 

N 
k=0, ... , 1 . (6) 

Here, AT is the sampling period and N is the number of 
samples in the FFT of each time domain function. In general, 
A is a matrix whose components are functions of the indepen­
dent variable (wk), while X, F, and 7l are vector functions of 
wk. For example, at a given frequency, say w4 , there will be 
X 1(w4 ), ••• , Xm(w 4 ) if there are m degrees-of-freedom. 
Therefore, the length of X(w) is the product of the number of 
frequencies in the FFT (N/2+ 1) times the number of degrees­
of-freedom (m). To minimize the bandwidth of L, the equa­
tions should be ordered so that X(w) appears as {X1(w0), 

X2(wo), . .. 'Xm (wo), Xl(wl), . . . 'Xm (wl), ... 'Xl(wNn), 
· · · Xm(wNn )J. 

Various iterative methods are available for solving 
nonlinear algebraic equations, like (4). One problem facing 
any method is evaluation of the nonlinear term 1j(w, X (w)). To 
add it directly to F (w) this term must be known explicitly in 
terms of w, as 7l (w), but this form is difficult to determine in 

~Fast Fourier transform" refers to a class of algorithms used to calculate the 
discrete Fourier transform (OFT- cf., Jackson, 1986, Chapter 7; and Op­
penheim and Schafer, 1975, Chapter 3). The notation "FFT" will be used here 
to refer to the OFT as well as its implementation. The authors use an FFT 
subroutine from Press, et al. (1986) . 

3The Fourier Transform definition used here ~ X(w) = j: 
00 

x(t)fiwt 

dt and the inverse transform is x(t) = 1/ 2,- j_
00 

X(w)e-Jwtdw . Anal­

ogous definitions are employed in the FFT. 
4The "w" notation in (4) is for conceptual purposes. For digital implementa­

tion (4) is cast in stricter vector notation- A(k)•X(k) =F(k) +11(k)- where the 
kth component of each vector represents a sampled version of the corresponding 
continuous function at the frequency "'k (ignoring scale factors and errors). 
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Fig. 1 Direct iteration implementation of the AFT method 

the frequency domain. However, if N1 ( o) can be expressed as 
an explicit function of time, N1 ( t), then it can be transformed 
to provide 77(w). To find N1 (t), the most recent estimate of 
X(w) is inverse transformed to provide an estimate of x(t). 
Equation (3)- or the analogous FFT relationships- may be 
used to obtain other state variables so that N/ o) may be 
evaluated as N1 (t), and transformed to 77(w). For 
nonlinearities that involve products of time domain functions 
this avoids frequency domain convolution. For history­
dependent nonlinearities, this procedure allows the nonlineari­
ty to be evaluated directly from the state history as long as the 
time period used in the analysis is longer than the ''term of 
memory" of the nonlinearity. With short term memory 
nonlinearities, values of the nonlinear terms at the beginning 
of the period may be obtained from periodicity requirements. 

Another problem for nonlinear equation solvers is obtain­
ing an initial estimate of the solution. An initial estimate 
(designated .XO(w)) may be obtained from the linear system, ig­
noring 77( o ), or from a known solution corresponding to a 
closely related state. For example, consider a sdf system with 
f(t) =A cos(w.t) where a parametric study of the effect of A 
on the system response is desired. Once the solution, X(w), is 
obtained for one value of A, it may be used as the initial 
estimate for a neighboring case with a slightly different value 
of A. 

3.2 Implementation Considerations. The authors 
presently use two methods to solve (4). The first method, 
direct iteration, is an iterative implementation of (4): 

A(w)o_x{O(w) =F(w) + 17(w,XU- 1(w)). (7) 

A(w)5 and F(w) are fixed by the system and the external forcing 
function, respectively, once the w/s are selected. New genera­
tions of XUl (w) may be found by evaluating 77( • ), as described 
previously, adding it to F(w), and multiplying by A - 1• Since A 
is a constant matrix representing the linear part of the system, 
it may be inverted once and saved. A flow chart of the direct 
iteration approach is shown in Fig. 1. 

The second approach used by the authors for solving (4) is 
the Newton-Raphson method (cf., Stoer and Bulirsch, 1980), 
with a difference quotient approximation of the Jacobian. For 
the example problem in this paper, Newton-Raphson is more 
robust than direct ithation (it converges at times that direct 
iteration fails) and it converges in fewer iterations. However, 
when both methods converge, computation time is greater for 
Newton-Raphson than for direct iteration because of the ef­
fort required to recompute the Jacobian at each iteration. 
Newton-Raphson is also more difficult to implement. In some 
cases Newton-Raphson fails to converge, so more robust 
methods (cf., Wolfe, 1959; Broyden, 1969; Stoer and 
Bulirsch, 1980; Shacham, 1986) may be required if a solution 
is desired for all regions of the parameter space. 

---sp;ofessor Alok Sinha of Pennsylvania State University has pointed out that 
in the absence of damping A may be singular. This may be remedied by adding a 
linear damping term to both sides of any equation at fault. The damping term 
may be lumped with the nonlinear term(s) on the right-hand side of an equation. 

Equation (4) represents m(1 + N/2) equations (for m 
degrees-of-freedom) which for most methods is unwieldy, ex­
cept for small values of N. The computational effort of the 
direct iteration method, O[mN(m + log(N)] multiplications 
per iteration, is much less affected by "N' than Newton­
Raphson, which has O[(mN)2 •log(N)] multiplications per 
iteration. In the approach used here, rather than limiting N, 
which would greatly reduce the number of frequencies con­
sidered in the solution, the direct iteration approach is used 
first to estimate which frequency components are significant. 
Then, if Newton-Raphson is employed, equation (4) is im­
plemented only for those values of k for which X(') (wk) is a 
significant component in the last estimate of the solution 
vector obtained from the direct iteration method, 
(_x{O (w0 ), ••• , _x(l) (wN12)). This is discussed further in Sec­
tion 5. This approach, by solving only the significant frequen­
cy components, keeps the number of equations and unknowns 
at a minimum while still allowing a full spectrum of frequen­
cies to be considered in the solution. 

There are two types of error that may corrupt FFT values. 
Aliasing error arises when the FT is nonzero for frequencies 
above the maximum frequency considered by the FFT 
(wmax = 1r I !J.T). Power at the higher frequencies is aliased or 
folded back and added to the FFT values for w < 1r/!J.T. 
Leakage error occurs when the frequency values of the FFT 
(k•!J.w, or wk) do not coincide precisely with each frequency in 
the FT that has nonzero power. Power at a frequency not 
represented in the FFT is leaked to frequencies that are 
represented. Leakage can only be eliminated if the sampled 
time signal is periodic. 

For the following sample problem aliasing is insignificant 
(as verified by taking smaller time steps), and both the excita­
tion on the system and the system response are periodic, so no 
leakage will occur. Most nonlinear forces are periodic when 
subject to a periodic input, so the assumption of a periodic 
response to a periodic excitation is typically valid. Discussions 
of the DFT, FFT algorithms, aliasing, and leakage may be 
found in Jackson (1986), Oppenheim and Schafer (1975), and 
Press et a!. ( 1986). 

4 Sample Problem 

In many mechanical applications the most significant source 
of vibrational damping is provided by friction. For example, 
friction damping occurs naturally at joints in fabricated struc­
tures, friction damping is used to control the earthquake 
response of buildings, and friction dampers are used in high 
speed turbomachinery to reduce resonant stresses in blades. 
An elastic/perfectly-plastic friction model may also be used to 
analyze the elasto-plastic behavior of materials. Interest in 
these applications has motivated considerable research into 
how friction affects the dynamic response of structures (cf., 
Plunkett's review of friction damping research, 1980). 

In the problem considered the nonlinear element consists of 
a spring in series with a friction constraint (Fig. 2). The fric­
tion contact is assumed to exhibit simple Coulomb-type 
behavior, i.e., when slip occurs the force is constant in 
magnitude and directed to oppose relative motion. Since the 
damper force in this model depends on the history of the 
response, it is easiest to illustrate the damper force by exam­
ple. In Fig. 2 (b), for instance, the damper force exhibits 
bilinear hysteresis, which occurs when the input to the damper 
is harmonic. For more complicated motion the damper force 
could take on any value within a similar hysteresis loop, where 
the upper and lower limits of the input, which represent the ex­
treme amplitudes of motion, need not be symmetric about 
zero. In the sample problem the equations have been nor­
malized so that the friction force, 11-C1, is unity and does not 
appear explicitly. 
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Fig. 2 Elastic/perfectly-plastic friction damper; (a) graphic representa· 
lion and (b) sample output for harmonic input 
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Fig. 3 Elastic/perfectly·plastic damper and system 

The system used to illustrate the AFT method has only one 
degree-of-freedom. From the formulation in Section 3.1 it is 
clear that the method easily extends to multiple degrees-of­
freedom (mdt). The computational savings of the AFT 
method over numerical integration should be even more 
dramatic for mdf systems since the number of frequencies to 
consider depends only on the excitation and the nonlinearities, 
not on the number of degrees-of-freedom. 

4.1 An Elastic/Perfectly-Plastic Friction Damper. The 
sample problem was previously unsolved, although it can be 
solved easily by numerical integration. It would be either dif­
ficult or impossible to solve by other methods. The accuracy 
of the solution is judged by comparison to numerical integra­
tion. The comparison is made in the time domain to show the 
accuracy of the AFT method in describing both the amplitude 
and phase of the steady-state response. 

Multiple discrete frequencies of excitation arise in high 
speed turbomachinery applications because as the turbine 
blades rotate they pass through a nonuniform, circumferen­
tially distributed pressure field. This introduces excitation fre­
quencies that are integer multiples of the rotation speed of the 
turbomachine. It is also frequently necessary to model frictio·n 
dampers as having compliance, rather than being perfectly 
rigid. These physical considerations motivate the sdf model 
with an elastic/perfectly-plastic friction damper subjected to 
three discrete frequencies of excitation (Fig. 3). The non­
dimensionalized equation of motion for this system is: 

x+2tx+(1-E)x=f(t) -Ey(x,x) (8) 
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Fig. 4 Amplitude and phase comparison between AFT method and 
fourth-order Runge·Kutta solutions lor three frequency excitation 
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Fig. 5 Discrete Fourier transform of response lor three frequency 
excitation 

where f(t) =0.75 sin (0.5 1)+0.5 sin(0.75t)+0.375 sin(t), .1. 
the fraction of critical viscous damping, is 0.01 (1 percent), 
and E, a measure of the relative spring stiffnesses, is 0.25. The 
distance the mass must displace for slip of the friction damper 
to occur is unity. The nonlinear force on the mass is equal to 
the stiffness, E, of the elastic friction damper times the 
displacement of the friction contact point, y( • ). The contact 
slips when the magnitude of the friction force equals E; the 
resulting force resists the motion. The specific excitation was 
chosen to provide an interesting response. 

One period of the steady-state response of this system is 
shown in Fig. 4. The AFT and numerical integration solutions 
compare almost perfectly in both amplitude and phase. Since 
slip occurs at an amplitude of unity, there is considerable par­
ticipation of the friction damper in this response. The frequen­
cy spectrum of the response (FFT) is shown in Fig. 5. This 
problem is used in the following section to make accuracy and 
efficiency comparisons between the AFT method and fourth­
order Runge-Kutta integration. 

4.2 Convergence, Error, and Computational Efficiency. 
In the absence of aliasing and leakage the FFT of a function is 
equivalent to a truncated Fourier series representation. 
Therefore, the AFT method should exhibit the convergence 
and error characteristics of Fourier series. Given a periodic ex­
citation, with period II, and assuming the time sampling is 
over one period, the maximum frequency in the FFT represen­
tation is: 

7r 
Wmax=ITN. (9) 
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Fig. 6 Error convergence comparison between AFT and fourth-order 
R-K methods 

Since the highest frequency is proportional to the number of 
samples per period, N, a continuous function which exhibits 
w- 2 convergence, like A(w)- 1 for second order systems, will 
exhibit N- 2 convergence in its FFT components. For the sam­
ple problem, the nonlinear force on the system, N1(t), is con­
tinuous, but has a discontinuous derivative, so 11(w) will also 
converge O(N- 2). Therefore, X(w) is expected to converge 
O(N- 4), which is confirmed by Fig. 5. (F(w) has infinite 
order convergence so it does not affect the convergence of 
X(w).) 

In order to compare convergence of the time domain errors, 
as N increases, for the AFT and Runge-Kutta methods the er­
ror is assumed to be of the form: 

EN=XN-Xex =aNc (10) 

where xN is the value of x( t) at a specified time using N sample 
points, Xex is an extrapolated "exact" answer, EN is the 
estimated error, N is the number of sample points per period, 
"a" is a constant, and "c" is the constant that gives the order 
of convergence of the error. Using three values of N gives 
three equations that allow the parameters Xex• a, and c to be 
evaluated. The consistency of the error convergence is checked 
with two of the original three values of N, plus and an addi­
tional, fourth value. These permit another calculation of the 
parameters in (10). 

For the AFT method, the O(N- 4 ) convergence of the FFT 
should produce similar convergence in the time domain error. 
This is the case if the FFT components are known precisely. 
However, changing N affects truncation and aliasing errors, 
so for different values of N the FFT components for the same 
frequency vary slightly. Consequently, additional errors ap­
pear in the time domain. Using N = 64, 128, and 256, in single 
precision, the AFT time domain error for equation (10) was 
found to be O(N- 3·1). Since the sampling period, !::..T, is II/N, 
this is equivalent to O(!::..Tl· 1) convergence in the error. The er­
ror was consistent when estimated with N= 128, 256 and 512. 

When the functioli.s in a problem are infinitely differen­
tiable a fourth-order Runge-Kutta (R-K) integration has error 
O(!::..T'), or O(N- 4). When a function has discontinuous 
derivatives, like Ey(t) (the nonlinear force in problem 4.1), that 
error estimate is invalid. Since the R-K method steps pro­
gressively forward in time, accumulated roundoff error can 
also dominate truncation error. In fact, for this problem, no 
consistent error convergence (using (10)) was observed for R-K 
in single precision, with N = 64, 128, 256, 512, and 1024. Using 
the same values of N in double precision R-K simulations, the 
error was O(!::..TL6), or O(N-1.6). The error results for both 
R-K and AFT methods are plotted in Fig. 6. 

It is impossible to make a general comparison of computa­
tional efficiency between the AFT and R-K methods. The effi­
ciencies of both depend strongly on system parameters. 

Depending on damping, for example, the system may require 
any number of periods of oscillation before steady-state is 
reached. Another concern for R-K is that with complicated 
wave forms, like the solution to this problem (Fig. 4), it is very 
difficult to determine when steady-state has been achieved. 
The AFT method tests for convergence in the frequency do­
main where it is easy to discern. However, for a sample com­
parison, the following test was performed. This sample prob­
lem- a sdf system with three input frequencies and an 
elastic/perfectly-plastic friction damper- was analyzed 
through the 30th period of oscillation. The 30th period was 
selected as representative of an average number of cycles to 
reach steady-state. In order to achieve the same accuracy (i.e., 
similar error in Fig. 6) the AFT method was implemented in 
single precision with 256 points per period, and the R-K 
method was implemented in double precision with 512 points 
per period. In this case the AFT method took 21.7 seconds6 

and Runge-Kutta took 389 seconds on a Macintosh II, a factor 
of 18 difference. 

5 Features of the AFT Method 

Certain fundamental concepts underlying the AFT method 
are also employed in the FG (Fast Galerkin) method intro­
duced by Ling and Wu (1987). Ling and Wu implement 
Urabe's Galerkin method with an FFT, making the method 
computationally efficient. In Urabe's approach the system of 
nonlinear equations is put into state variable form, a solution 
is asssumed in the form of a truncated Fourier series, and the 
coefficients of the Fourier series are solved for 
iteratively- with nonlinear terms evaluated in the time do­
main. Since the coefficients of the Fourier series are equivalent 
to the components of the DFT, the AFT and FG methods are 
similar in this respect. There are, however, differences in how 
the methods formulate and implement solutions of equations. 
These differences highlight some of the features of AFT 
method. 

The first difference between the AFT and Galer kin methods 
lies in the form of the equations to be solved. The AFT 
method permits the equations to be of any order, while 
Urabe's formulation, which Ling and Wu repeat, assumes the 
equations are in first order state variable form. The AFT 
method only finds the linearly independent functions, thereby 
reducing the number of equations to be solved. 

Another feature of the AFT formulation is the general man­
ner in which it handles nonlinearities. In the problems con­
sidered by Urabe, as well as Ling and Wu, the nonlinearities 
are expressed analytically. In many applications, such as the 
elastic-plastic damper problem, the nonlinearities are 
hysteretic and analytical expressions may be difficult or im­
possible to obtain. In the AFT approach the user is provided 
with the full state history in order to compute the nonlinear 
forces in a user supplied subprogram, in a manner similar to 
that used in standard time integration codes. 

Perhaps the most significant computational advantage of 
the AFT method is its technique for reducing the number of 
equations. As discussed previously, increasing the number of 
frequencies included in the solution can significantly increase 

~would also be possible to solve this problem using Runge-Kutta time in­
tegration in conjunction with a two point boundary value formulation. In this 
approach the displacement and velocity of the mass at the beginning of the 
period are unknowns whose values must be determined so that the solution 
satisfies the periodicity requirements. Such an approach requires an iterative 
method for solving the resulting nonlinear constraint equations (for a discussion 
of this approach see, for example, Press et al., 1986, Chap. 16). This procedure 
is less standard than time integration and, consequently, was not investigated 
here. However, it could be significantly more efficient than time integration and 
more competitive with the computational efficiency of the AFT method. Again, 
the outcome of such a comparison would depend on the specific physical system 
considered, as well as on the complexity of the frequency content of the 
excitation. 



the computational effort, but in many problems it may be 
necessary to consider both low and high frequencies. The AFT 
implementation permits the .user to include a relatively large 
number of frequencies and to set a "cutoff" fraction. While 
using direct iteration (which is computationally efficient), the 
algorithm scans all the frequency components to estimate 
which components lie above the cutoff fraction relative to the 
largest component. These components are considered ~'signifi­
cant.'' If it becomes necessary to employ an intensive equation 
solver, like Newton-Raphson, only the equations corre­
sponding to the significant components are included. This ap­
proach also makes it easy for the user to examine tradeoffs 
between higher accuracy (low cutoff) and lower computation 
time (high cutoff). 

6 Concluding Remarks 

In the absence of aliasing, leakage, and roundoff errors the 
AFT method converges uniformly to the exact answer as N -
oo. Even when it cannot be eliminated, means are available for 
limiting the error so that good approximate solutions may be 
obtained. For example, in many problems the power in a 
signal decays asymptotically to zero as the frequency in­
creases, so aliasing cannot be eliminated (without analog 
filtering). However, it is still possible to obtain exact solutions 
to within the precision of the computer by selecting il T so that 
power at frequencies exceeding (1r/ ilT) cannot numerically af­
fect the solution. In the sample problem the error in the AFT 
method dropped off much more quickly than the error in 
numerical integration. 

Solutions generated by the AFT method are conveniently 
presented in either the frequency or time domain, or both. The 
AFT method also lends itself to parametric and sensitivity 
studies because the solution for one set of parameters supplies 
a good estimate of the solution for a "neighboring" set of 
parameters, which aids in convergence of the iterations. 

Relative to other frequency domain methods, the AFT 
method is amenable to more general, complicated 
nonlinearities and excitations. By switching to the time do­
main to evaluate the nonlinear forces, the AFT method can 
use the same description of the nonlinear forces used for 
numerical integration. The only constraint on the excitation is 
that its Fourier transform can be approximated using the FFT 
approach. 
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