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Application of Special Nonsmooth Temporal Transformations 
to Linear and Nonlinear Systems under Discontinuous and 
Impulsive Excitation

VALERY N. PILIPCHUK
Department of Applied Mathematics, State Chemical and Technological University of Ukraine, 
Dnepropetrovsk, 320005 Ukraine

Abstract. Linear and nonlinear mechanical systems under periodic impulsive excitation are considered. Solutions
of the differential equations of motion are represented in a special form which contains a standard pair of non-
smooth periodic functions and possesses a convenient structure. This form is also suitable in the case of excitation
with a periodic series of discontinuities of the first kind (a stepwise excitation). The transformations are illustrated
in a series of examples. An explicit form of analytical solutions has been obtained for periodic regimes. In the case
of parametric impulsive excitation, it is shown that a nonequidistant distribution of the impulses with dipole-like
temporal shifts may significantly effect the qualitative characteristics of the response. For example, the sequence
of instability zones loses its different subsequences depending on the parameter of the shifts. It is shown that the
method’s applicability can be extended for nonperiodic regimes by involving the idea of averaging.

Keywords: Pulsed excitation, parametric loading, nonsmooth transformations, nonsmooth dynamics.

1. Introduction

Instantaneous impulses acting on a mechanical system can be taken into account either by
imposing the special conditions of matching for the velocities and coordinates of the system
at points of the impulses’ location or by introducing Dirac’s functions into the equations of
motion. The first approach, in principal, deals with the differential equations for an unforced
system [1]. However, these equations are treated separately in each of the intervals between
impulses and, hence, instead of a single system, a whole sequence of systems must be consid-
ered. The second method gives a single set of equations over the whole time interval without
any conditions of matching imposed on the variables. However, in this case, analysis can be
carried out correctly within the framework of the theory of generalized functions (distribu-
tions) [2], which requires additional mathematical proofs in nonlinear cases [3, 4] (see this
book also for a more complete list of publications regarding systems with impulses). Both of
the above-mentioned ways of modeling are fruitfully employed for different quantitative and
qualitative considerations of mechanical systems under pulsed excitations [1, 5–9]. A method
is described below which enables one, on the one hand, to eliminate the singular terms in the
equations and, on the other hand, to obtain solutions in the form of a single analytic expression
over the whole time interval. Originally this method was proposed for a class of smooth



vibrating systems. Here, the term ‘smooth’ means that the motion is described by means of
smooth (differentiable) functions of time. However, a special feature of the technique is that
the smooth solutions to be defined are expressed through a pair of nonsmooth functions such as
a saw-tooth sine and rectangular cosine. Mathematical properties of the related transformation
can be briefly listed as follows [10]:
• an introduction of the nonsmooth (saw-tooth) time transforms the coordinates into ele-

ments of two-components hyperbolic numbers algebra1;
• under certain conditions, the result of the differentiation of the elements remains in the

algebra, and the result of integration remains in the algebra;
• a slow timescale can be introduced into the transformation to describe the nonperiodic

processes.
Based on these points, the introduction of a nonsmooth independent variable into differen-
tial equations of motion can be justified. Different physical and mechanical applications and
treatments of saw-tooth temporal transformation were discussed in [11, 12]. It should be noted
that the transformation itself has to be viewed as a preliminary step of investigation. It reduces
an original system to a boundary-value problem with respect to a new independent variable,
i.e., the saw-tooth bounded argument. Then, one can invoke the appropriate method to solve
the boundary-value problem accordingly to the physical contents of the model. For example,
special successive iterations processes and asymptotic techniques were used for different sys-
tems performing weakly and strongly nonlinear periodic motions, and modulated regimes as
well [11, 12]. The shooting method was applied to study a complicated set of periodic orbits
close to the separatrix [13]. The transformation can also be realized with respect to a spatial
independent variable when dealing with different spatially periodic structures [14–16]. As was
mentioned above, this paper focuses on a class of dynamical systems under periodic impulsive
and discontinuous excitations. A generalized version of the transformation based on the saw-
tooth function with an asymmetric slope [17] will also be considered. This enables us to take
into account the dipole-like shifts of singularities of the external force and, hence, to involve
a more general class of dynamical systems.

2. Some Reasons for Nonsmooth Transformations

This section presents some remarks concerning nonsmooth temporal transformations. Some
of the basic relations will be reproduced for future references as well. A theoretical reason
for the nonsmooth transformations follows from a simple general observation. Indeed, lin-
ear transformation of coordinates may significantly simplify a problem of linear dynamics.
Weakly nonlinear transformations of coordinates can be viewed as a basic step in most of
the analytical techniques in the theory of quasilinear systems. The theory of solitons gives a
great example of a strongly nonlinear theory based on strongly nonlinear transformations of
variables. Now one can conclude that dynamical systems with discontinuities can be simplified
by means of the appropriate nonsmooth transformations of variables. For instance, in the
case of systems with absolutely rigid constraints, special nonsmooth transformations have
been proposed in [18]. This realization deals with the positional variables (coordinates) of
a vibro-impact2 system and enables one to eliminate the constraints that the vibro-impact

1 Complex numbers X + Ye, where e2 = 1 (see the next section).
2 In terms of the related field of the applied mechanics, see V. I. Babitsky, Theory of Vibroimpact Systems,

Moscow, Nauka, 1978 [in Russian].



Figure 1. Geometrical treatment of the nonsmooth transformation of a positional variable on the simplest vi-
bro-impact oscillator. In this case, x ∈ [−1, 1] is the original coordinate of the system, while s ∈ (−∞, ∞) is the
distance passed by the system. The figure illustrates reflection from the right barrier.

systems must include by definition. The transformations instantaneously change the direction
of the coordinate axes at the instance of impact (a geometrical treatment is given in Figure 1).
As a result, the transformed system becomes free from its absolutely rigid barriers and the
corresponding differential equations do not contain any ‘impact terms’.

Unfortunately, there is no direct way to use nonsmooth transformations of coordinates in
the case of the external impacts, due to external force. Another question is how to apply the
nonsmooth transformation of coordinates to a broad class of systems which, within a certain
meaning, are close to vibro-impact, but do not include any absolutely rigid constrains. A
related attempt was made in [19] when considering the localized vibro-impact modes in a
linear string with concentrated masses between the two rigid walls. To deal with differential
equations of motion over all time domains and under no constraint conditions, the rigid walls
were replaced by a special potential field with a power function of a higher odd exponent, xm.
In this case, the classical vibro-impact situation appears when m −→ ∞, as the rigid walls
limit. Is it possible to construct a transformation of the coordinate x(t) −→ s(t) depending
on m as x = f (s,m) and, giving nonsmooth transformation by [18], when m −→ ∞? This
question has not yet been answered. Probably, it is hardly possible before the solution of
the original differential equation is known. However, starting from a study of the asymptotic
m −→ ∞, it was preliminarily shown in [20] that for certain kind of systems, a nonsmooth
transformation of time can be introduced as

τ = τ(t) : (−∞,∞) � t −→ τ ∈ [−1, 1], (1)

x(t) = x(τ(t)) ≡ X(τ), (2)

where x(t) is a periodic function, the period of which is normalized to be equal to four, and τ

is a saw-tooth periodic function defined as

τ(t) =
{

t, −1 ≤ t ≤ 1
−t + 2, 1 ≤ t ≤ 3

; τ(t)
∀t= τ(t + 4). (3)

This function can also be expressed as τ(t) = (2/π) arcsin sin(πt/2). A possible geometrical
treatment of Equation (1) is given in Figure 2. It is important to note that transformation (1)



Figure 2. Geometrical treatment of the nonsmooth transformation of time. The new time oscillates in the bounded
domain τ ∈ [−1, 1] with the constant velocity reflecting at points τ = ±1, while the original time is unbounded,
t ∈ (−∞,∞).

Figure 3. The saw-tooth sine and its first two generalized derivatives.

is not invertible over all periods of motion T = 4 and, hence, representation (2) is not always
correct. For any periodic motion, a representation has been obtained in a two-component form.
It is written in terms of both nonsmooth oscillating time, τ , and its first generalized derivative,
e = dτ(t)/dt = τ̇ (t) (Figure 3), as [10]

x(t) = X(τ) + Y (τ)e, (4)

where the functions X and Y are either known (if the original function, x(t), is known), or
supposed to be defined as a solution of the transformed equations.

Expression (4) can be viewed as a special ‘complex’ value with real X and ‘imaginary’
Y components, where the basis ‘imaginary’ element e generates a circling group: e2 = 1,



e3 = e, e4 = 1, . . . . These complex numbers are elements of algebra without division by
the basis elements {1, e}. This remark significantly simplifies all mathematical manipulations
with the representation when transforming the differential equations of motion. For example,

(X + Ye)2 = X2 + Y 2 + 2XYe,

(X + Ye)3 = X3 + 3XY 2 + (Y 3 + 3YX2)e.

Here, the right-hand sides are of the structure {· · ·} + {· · ·}e, as the element X + Ye itself
is. A less trivial equality

exp(X + Ye) = exp(X)[cosh(Y ) + sinh(Y )e] (5)

will be taken into account below.
Taking into account that e2 = 1, one obtains

1
X + Ye

= X

X2 − Y 2 − Y

X2 − Y 2 e if X 
= ±Y.

The last example explains why division is not always possible.
In this paper, we also use a generalized version of representation (4) based on the saw-tooth

function with an asymmetric slope:

τ(t; γ ) =
{

t/(1 − γ ), −1 + γ ≤ t ≤ 1 − γ,

(−t + 2)/(1 + γ ), 1 − γ ≤ t ≤ 3 + γ,

e(t; γ ) = ∂τ(t; γ )

∂t

(
τ(t; γ )

∀t= τ(t + 4; γ )
)
, (6)

where γ ∈ (−1, 1) is a parameter characterizing the inclination of the ‘saw’s teeth’ as Figure 4
shows. The parameter of inclination γ is introduced in such a manner that the period T = 4
of the function and its amplitude value (= 1) do not depend on the inclination.

In this case, the algebraic structure becomes more complicated. The above multiplication
rule, e2 = 1, should be replaced with a more complicated one:

e2 = α(γ ) + β(γ )e; α = 1
1 − γ 2 , β = 2γ α. (7)

In the symmetric case, one has α(0) = 1, β(0) = 0, and (7) is reduced to the old multiplication
rule.

Properties of representation (4) based on the asymmetric saw-tooth function (6) were con-
sidered in previous work [17]. Note that the result of differentiation of Equation (4) formally
contains a periodic series of singularities at points � = {t : τ(t; γ ) = ±1}. The singularities
are discarded by imposing the condition

Y |t∈� = Y |τ=±1 = 0 (8)

that can be viewed as a necessary condition for the continuity for x(t). Indeed, the step-
wise function e(t; γ ) has discontinuities at points �. It means that the ‘imaginary part’ of
representation (4), Y (τ)e, would be discontinuous at �, if condition (8) was false.

Now, let us assume that condition (8) is false and one has

Y |τ=±1 = p 
= 0. (9)



Figure 4. The saw-tooth function with asymmetric slope and its first two generalized derivatives. Parameter γ

defines the teeth’s inclination; it has been taken as γ = 0.7.

In this case, function x(t) represented by equality (4) has a periodic series of steps of ampli-
tude 2p/(1 − γ 2) at points �. An idea of this work is to employ these discontinuities in order
to describe nonsmooth dynamical processes.

Note that nonsmooth temporal transformation does not necessarily imply any absolutely
rigid barriers. Instead of the coordinates, the parameter of time is transformed by means of
the nonsmooth function. As a result, the coordinates acquire a special algebraic structure with
a series of mathematically suitable properties. In the next sections, this kind of transformation
will be applied to systems subjected to impulsive and discontinuous excitations. Transforma-
tion (1–4) instantaneously changes the direction and scale of time when the external impulses
act.

Note that the imaginary basic element e of representation (4) is a periodic piece-wise
constant step function of time t . In this connection, we note the paper by Liu [21] where the
solutions of quasilinear systems under the action of an impulsive or discontinuous force (with
a singularity at the point t = a) were presented in the form x(t) = x1(t) + x2(t)H(t − a),
where H(t) is Heaviside’s step function. An analogous form of the solution is used to de-
scribe moving discontinuities in the wave theory in [22]. It is known [4, p. 18] that the
representation x(t) = y(t) + νH(t − a) (ν = const.) transforms the nonlinear system
ẋ = f (t, x) + νδ(t − a) into a so-called Carathéodory equation with respect to y(t) (see
Appendix 1). The Carathéodory form of equation admits a series of existence theorems. A
principal difference is that components x1(t), x2(t) of the above representation depend on the
original time parameter, whereas equality (4) provides the introduction of the oscillating time
bounded as τ ∈ [−1, 1].

To this end, note that representations (1), (4) and the representation based on functions (6)
as well, stay to transform a system on the manifold of periodic solutions. This may bring
doubt regarding the practical meaning of the representations. That is why Sections 5 and 6
show how to extend the applicability of the representation. For example, the idea of averaging
can be involved, if inserting slow varying parameters into the transformation. Let t◦ = εt be a



slow time scale, where 0 < ε � 1. In the case of damped or modulated vibrations, solutions
can be sought in the form [10]

x = X(τ, t◦) + Y (τ, t◦)e,

where τ = τ(ωt), e = e(ωt) and the constant ω is assumed to be of order 1.
Of course, this representation does not lead to ‘another method’ of the two variables expan-

sion. However, replacing the fast timescale by oscillating argument τ , one brings some special
features into the two-variables expansion method. For instance, a system’s fast time oscillation
will be described with the boundary-value problem on the standard domain τ ∈ [−1, 1] and
the slow time (averaged) equations follow from the boundary conditions at points τ = ±1 but
are not a result of the elimination of the secular terms.

3. Systems with Periodic Pulsed Excitation

We will start from the simple case of a linear system to illustrate an application of the non-
smooth temporal transformation with no additional complications which may be brought
about by technical details related to a concrete practical problem. Also, the example itself
has a definite practical meaning.

3.1. PERIODIC SERIES OF IMPULSES

We will seek periodic solutions of the first-order differential equation

v̇ + λv = μ

∞∑
k=−∞

[δ(t + 1 − 4k) − δ(t − 1 − 4k)]; λ,μ = const. (10)

For positive λ, the function to be determined, v(t), can be treated as a velocity of a point
moving under periodic impulsive force and viscous damping. This equation has a simple form
involving the generalized functions. However, the common ways of solving, generally speak-
ing, require first the determination of a class of functions among which the solution should
be sought. Then, one can apply either the generalized Fourier series/transforms procedure,
or consider the equation between impulses matching pieces of the solution at the points of
impulse. The saw-tooth temporal transformation gives us another way to get a closed-form
analytical solution.

First, the right-hand side of Equation (10) can be expressed in terms of a generalized
derivative of rectangular cosine (see Figure 3). As a result, Equation (10) is rewritten as

v̇ + λv = μ

2
ė(t). (11)

Representing periodic solutions in the form of (4), v(t) = X(τ(t)) + Y (τ(t))e(t), and substi-
tuting this into Equation (11), gives

(Y ′ + λX) + (X′ + λY )e +
(
Y − μ

2

)
ė(t) = 0.

The first two terms in this expression present an element of structure (4). Both components
must be separately equal to zero to provide a complete zero element.3 This will give us a set

3 Note that elements 1 and e are linearly independent on the time domain considered.



Figure 5. Family of periodic solutions of Equation (11) for μ = 0.2 and λ = 0.4, 0.7, 1.0, 1.3, 1.6, 1.9.

of two first-order differential equations. The elimination of the last (underlined) term leads to
the boundary conditions. As a result, one obtains the boundary-value problem as

Y ′ + λX = 0, X′ + λY = 0

Y |τ=±1 = μ

2
. (12)

So the original differential equation (10) has been transformed into boundary-value prob-
lem (12) for two first-order differential equations. The basic advantages, however, is that the
transformed system does not include δ-functions any more, and the new independent variable
is bounded, |τ | ≤ 1.

Solving boundary-value problem (12), one obtains the periodic solution of the original
equation as

v = X + Ye = μ

2 cosh λ
(− sinh λτ + e cosh λτ).

Taking into account equality (5) and the expression e2 = 1, finally gives

v = μ

2 cosh λ
exp[−λτ(t)e(t)]e(t). (13)

Figure 5 shows dependencies v(t) for different values of λ. Note that the discontinuous solu-
tion v(t) is described by a single expression of the closed form (13) using the two standard
nonsmooth periodic functions τ(t) and e(t). These functions admit a clear mechanical treat-
ment as the coordinate and velocity of the vibro-impact oscillator (see Figure 1) under the
initial conditions x(0) = 0, ẋ(0) = 1 (see Section 7 for more details).

The boundary-value problem (12) is replaced by a more complicated one, when consider-
ing the impulsive excitation with a dipole-like shift, i.e. the right-hand side of Equation (11)
is expressed by a derivative of the asymmetric saw-tooth function with a slope γ [17]:

v̇ + λv = p
∂e(ωt; γ )

∂(ωt)



= 2p

1 − γ 2

∞∑
k=−∞

[δ(ωt + 1 − γ − 4k) − δ(ωt − 1 + γ − 4k)]. (14)

In this case, representation for a periodic solution is taken as

v = X(τ) + Y (τ)e; τ = τ(ωt; γ ), e = e(ωt; γ ). (15)

Substituting expression (15) into differential equation (14) and collecting separately the ‘real’
and the ‘imaginary’ components and singular terms, one obtains

(ωαY ′ + λX) + [ω(X′ + βY ′) + λY ]e + (ωY − p)
∂e(ωt; γ )

∂(ωt)
= 0.

The resulting boundary-value problem is

ω(X′ + βY ′) = −λY, ωαY ′ = −λX,

ωY |τ=±1 = p. (16)

Taking the boundary conditions into account, one obtains

Y = p

ω

[
cosh

(
γ

λ

ω

) cosh
(

λ
ω
τ
)

cosh λ
ω

+ sinh
(

γ
λ

ω

) sinh
(

λ
ω
τ
)

sinh λ
ω

]
exp

(
γ

λ

ω
τ

)
,

X = −ωα

λ
Y ′. (17)

The X-component is defined by differentiation according to the second equation in (16).

3.2. HARMONIC OSCILLATOR UNDER PERIODIC IMPULSIVE EXCITATION

We will seek a steady-state periodic solution of the second-order differential equation

ẍ + ω2
0x = 2p

∞∑
k=−∞

[δ(ωt + 1 − 4k) − δ(ωt − 1 − 4k)], (18)

where p,ω0 and ω are constant parameters.
In the first step, Equation (18) is rewritten as

ẍ + ω2
0x = p

de(ωt)

d(ωt)
. (19)

We seek a periodic solution of the period T = 4/ω in the form

x(t) = X(τ(ωt)) + Y (τ(ωt))e(ωt). (20)

Substituting this into Equation (19), under the condition of continuity for x(t) (Equation (8)),
gives

(ω2X′′ + ω2
0X) + (ω2Y ′′ + ω2

0Y )e + (ω2X′ − p)
de(ωt)

d(ωt)
= 0.

The first two terms in this expression present an element of the algebraic structure considered.
Both components must be separately equal to zero to provide a complete zero element. This



will give us a set of two first-order differential equations. Elimination of the last (underlined)
term leads to the boundary conditions. As a result, one obtains the boundary-value problem as

X′′ + (
ω0

ω
)2X = 0, Y ′′ + (

ω0

ω
)2Y = 0,

X′|τ=±1 = p

ω2 , Y |τ=±1 = 0. (21)

So the original differential equation (18) has been transformed into boundary-value prob-
lem (21) for two second-order differential equations. The basic advantage, however, is that
the transformed system does not include δ-functions any more. By solving boundary-value
problem (21), one obtains the periodic solution of the original equation as

x = X(τ(ωt)) = p

ωω0

sin
[

ω0
ω

τ(ωt)
]

cos ω0
ω

, Y ≡ 0. (22)

This is a continuous solution for all t , and all possible resonances are given by the roots of the
equation cos(ω0/ω) = 0 as

ω = 2
π

ω0

n
, n = 1, 3, 5, . . . , (23)

where the factor 2/π appeared due to different normalization of the periods for trigonometric
and saw-tooth sines.

In the presence of linear viscous damping, boundary-value problem (21) becomes coupled
throughout the terms Y ′(τ) and X′(τ) in the first and second equations, respectively. However,
the problem remains resolvable due to the linearity. Let the equation of motion be written as

ẍ + 2ζ ẋ + ω2
0x = p

de(ωt)

d(ωt)
, (24)

where ζ is the damping factor.
The boundary-value problem for the X and Y components of the steady-state periodic

solution has no discontinuous terms and is written as

X′′ + 2
ζ

ω
Y ′ +

(ω0

ω

)2
X = 0, Y ′′ + 2

ζ

ω
X′ +

(ω0

ω

)2
Y = 0,

X′|τ=±1 = p

ω2 , Y |τ=±1 = 0. (25)

Solving the boundary-value problem in a standard way involving the characteristic equation,
one finally obtains

x = X + Ye = p

βω2(cos2 β cosh2 α + sin2 β sinh2 α)

× [cosh α cos β cosh ατ sin βτ − sinh α sin β sinh ατ cos βτ

+ (sinh α cos βτ cosh ατ sin β − sinh ατ sin βτ cosh α cos β)e], (26)

where τ = τ(ωt) and e = e(ωt); α = ζ/ω and β =
√

ω2
0 − ζ 2/ω.

Figure 6 illustrates the qualitatively different responses of the system when varying the
external excitation frequency. In different proportions, the responses combine properties of



Figure 6. Different responses of the damped harmonic oscillator under the periodic impulsive excitation for
p = 0.1, ζ = 0.5, ω0 = 4 and (a) ω = 0.2 (large distance between the impulses); (b) ω = (2/π)ω0 = 2.5465
(principal resonance).

the harmonic damped and nonsmooth motions generated by the impact loading. For example,
when ω � ω0 and ω � ζ , the system approaches the limit of a free particle under the periodic
impulsive force. In this case, the boundary-value problem is reduced to

X′′ = 0, Y ′′ = 0; X′|τ=±1 = p

ω2 , Y |τ=±1 = 0 (27)

and its solution gives the saw-tooth time shape of the motion, x = pτ(ωt)/ω2, which is
approached by the time history record in Figure 6c.

Now let us consider the N-degrees-of-freedom system

Mÿ+ Ky = p
de(ωt)

d(ωt)
, (28)



Figure 6. Continued. (c) ω = 6 (small distance between the impulses).

where y(t) is an N-dimensional vector function, M and K are constant N × N mass and
stiffness matrices, respectively. Let {e1, . . . , eN } and ω1, . . . , ωN be the principal coordinate
normalized basis and natural frequencies such as the following conditions hold

Kej = ω2
jMej , eT

k Mej = δkj ; k = 1, . . . , N; j = 1, . . . , N.

Introducing the principal coordinates xj (t) as

y =
N∑

j=1

xj (t)ej , (29)

one obtains a decoupled set of impulsively forced harmonic oscillators

ẍj + ω2
jx

j = pj de(ωt)

d(ωt)
, (30)

where pj = eT
j p.

Making use of solution (22) for each of the oscillators (30) and taking into account expan-
sion (29), one obtains the steady-state response

y =
N∑

j=1

(eT
j p)ej

ωωj

sin
[

ω0
ωj

τ (ωj t)
]

cos ω0
ωj

. (31)

The resonance condition is

ω = 2
π

ωj

n
; n = 1, 3, 5, . . . ; j = 1, . . . , N.

These resonances can also be obtained in a regular way, by taking the generalized Fourier
expansion of the right-hand side of Equation (30). Note, however, that a convergence of the
related Fourier expansions is slow, whereas solutions (22) and (31) are not series and, hence,
the convergence problem is of no importance for them.



3.3. NONLINEARIZABLE OSCILLATOR UNDER PERIODIC IMPULSIVE EXCITATION

Let us consider an essentially nonlinear oscillator with a power homogeneous characteristic
under the periodic sequence of impulses

ẍ + xm = p
de(ωt)

d(ωt)
, (32)

where m is a positive odd number; p, ω = const.
When m = 1, one has the impulsively forced harmonic oscillator considered in Section 3.2.

For a large exponent, m � 1, the system gives a smooth approximation of the simplest vibro-
impact oscillator (Figure 1). Free vibration of the system admits an exact analytical solution
in terms of complicated-enough special functions [23–25]. The oscillator was of interest to
many authors [12, 26–30]. An approximate analytical solution for arbitrary exponent m was
obtained in [20] in the power series form with respect to the saw-tooth function of time.

We will seek a periodic (T = 4/ω) solution of Equation (32) in the form

x = X(τ(ωt)), (33)

where the Y -component of the representation is supposed to be zero, based on the final result
of the previous subsection. Note that the equation considered is nonlinear and the two com-
ponents of the transformed system are coupled. However, the system still admits a family of
solutions on which Y ≡ 0.

Substituting Equation (33) into Equation (32), one obtains

(ω2X′′ + Xm) + (ω2X′ − p)
de(ωt)

d(ωt)
= 0 (34)

and the equivalent boundary-value problem

ω2X′′ + Xm = 0, (35)

ω2X′|τ=±1 = p, (36)

where the boundary condition stays for the elimination of the periodic singular term from
the transformed Equation (34). In the case of free vibration (p = 0), the boundary condition
becomes homogeneous and the parameter ω is treated as oscillator’s natural frequency which
was previously unknown and should be coupled with a parameter of amplitude.

Due to the symmetry provided by the oddness of m, the system admits a family of solutions
where X(−τ) ≡ −X(τ). Taking into account this remark, we will seek an odd with respect
to τ solution and take care of only one point, τ = 1, of the boundary condition (36).

In this example, the difference between free and forced vibrations is reduced to differ-
ent values of the right-hand side of the boundary condition (36). A scheme of successive
approximation [20] gives an approximate solution of Equation (35) in the power series form

X = A

[
τ − ητm+2

(m + 2)
+ mη2τ 2m+3

2(m + 2)(2m + 3)
− m(m2 + m − 1)η3τ 3m+4

2(m + 2)2(2m + 3)(3m + 4)
+ · · ·

]
,(37)

where τ = τ(ωt) and A is arbitrary constant, and

η = Am−1

(m + 1)ω2 .



The solution is in power series form. However, it is periodic with respect to the original
parameter of time, t .

The substitution of solution (37) into the boundary condition (36) for τ = 1 gives the
algebraic equation

A

[
1 − η + mη2

2(m + 2)
− m(m2 + m − 1)η3

2(m + 2)2(2m + 3)
+ · · ·

]
= p

ω2 . (38)

Equation (38) remains for the elimination of the periodic singular terms4 from the transformed
system (34).

If p = 0, Equation (38) couples the parameters A and ω associated with the amplitude and
frequency of the free vibration. When p 
= 0, it gives a nonlinear frequency response for the
system under external impulsive excitation (Figure 7).

A point of interest is the limit of the vibro-impact oscillator when m −→ ∞ (see Sec-
tion 1). For a sufficiently large exponent m = 9, the phase trajectory’s projection on the
plane xv and the time history record for the velocity show the discontinuities of the velocity v

created by external impulses when the coordinate x reaches its amplitude values (see Figures 8
and 9). In the vibro-impact limit, when m −→ ∞ the amplitude values of the coordinate
are defined by the rigid barriers appearing at points x = ±1. It means that both external and
internal impacts must act at the same time instances to provide the periodic regime considered.

To this end, note that starting from the boundary-value problem in the form ω2X′′+f (X) =
0; ω2X′|τ=±1 = p and using successive approximations, one can consider a more general case
of the odd characteristic f (x) represented by Maclaurin’s series.

4. Parametric Excitation

In this section, two cases of parametric excitation will be considered based on a relatively
simple linear model. The time shapes of a piecewise-constant excitation and an impulsive
one will be described by means of the functions e(ωt; γ ) and ∂e(ωt; γ )/∂(ωt), respectively.
Both systems can be considered as particular cases of the more general example represented
in [17]. However, the parameters selected in [17] correspond, in principal, to the case of
impulsive excitation only (see Section 4.2). Note that both of the systems are piecewise linear
and can be solved in a regular manner [31]. These examples have been chosen to illustrate
the applicability of the saw-tooth transformation of time to systems under parametric discon-
tinuous excitations. Finally, there are two reason to use the transformation as a preliminary
step in analysis. Firstly, the saw-tooth transformation automatically gives the conditions of
matching at the points of discontinuity of the excitation. Secondly, the solution is represented
as a closed-form expression, and this is an important feature in many cases.

4.1. PIECEWISE-CONSTANT EXCITATION

Let us consider a linear oscillator under the periodic piecewise-constant excitation

ẍ(t) + ω2
0[1 + εe(ωt; γ )]x = 0, (39)

where ω0, ω, γ are constants, and the parameter ε is not necessarily small.
4 Recall that the quasilinear techniques give the corresponding relations after the elimination of the secular

terms.



Figure 7. Frequency response of the ‘quasi-impact’ oscillator under periodic impulsive excitation for p = 2,
m = 3 (dashed line) and m = 9 (solid line). In standard normalization of the linear vibration theory, the frequency
is (π/2)ω. The neighborhood of zero frequency is not shown.

We will seek a periodic solution with the period of excitation T = 4/ω in the form (15).
The coordinate of the system x(t) and velocity ẋ(t) must be continuous functions of time
under the excitation considered. It means that neither velocity ẋ(t) nor acceleration ẍ(t) can
include any δ-functions. The first derivative of representation (15), due to expression (7), is

ẋ(t) =
[
αY ′ + (X′ + βY ′)e + Y

∂e(ωt; γ )

∂(ωt)

]
ω. (40)

The last term consisting of δ-functions can be excluded by imposing the boundary condition
for Y -component of the solution as

Y |τ=±1 = 0. (41)

Under this condition, the second derivative is

ẍ(t) = ω2[α(X′′ + βY ′′)] + ω2[βX′′ + (α + β2)Y ′′]e



Figure 8. Projection of the impulsively forced ‘quasi-impact’ oscillator’s orbit on the plane ‘coordinate–velocity’,
xv. The velocity experiences momentary steps (see also the next figure), when the system’s coordinate reaches its
amplitude values. The periodic regime corresponds to the parameters p = 2, m = 9, ω = 3 and A = 1.79354.

Figure 9. The velocity time record shows sudden vertical ‘steps’ caused by external impulses.

+ ω2(X′ + βY ′)
∂e(ωt; γ )

∂(ωt)
, (42)

where the multiplication rule for basic element (7) has been taken into account once again.
Analogously to the previous step, one eliminates the underlined term by means of the

conditions

(X′ + βY ′)|τ=±1 = 0. (43)

Substituting expressions (15) and (42) into equation of motion (39) and taking into account
Equation (7) gives an element of the algebraic structure {· · ·} + {· · ·}e. Equating each of the



two components of the element to zero, one obtains the set of differential equations for X(τ)

and Y (τ) in matrix form, as(
α αβ

β α + β2

)(
X

Y

)′′
+ r2

(
1 αε

ε 1 + βε

) (
X

Y

)
= 0, (44)

where r = ω0/ω.
We put(

X

Y

)
= B

(
1
μ

)
exp(λτ); B,μ, λ = const. (45)

From the differential equations for X and Y (Equation (44)), subject to the condition B 
= 0,
we obtain a characteristic equation which has the following two pairs of roots:

λ2 = [−(1 − γ )ε − (1 − γ )2]r2 ≡ ±k2,

λ2 = [(1 + γ )ε − (1 + γ )2]r2 ≡ ±l2.

We now consider the case of negative pairs. This means that the coefficient of x in Equa-
tion (39) is positive at any time t .

The general solution of a system of equations subjected to this condition will have the form

X = B1 sin kτ + B2 cos kτ + B3 sin lτ + B4 cos lτ,

Y = μ1(B1 sin kτ + B2 cos kτ) + μ2(B3 sin lτ + B4 cos lτ ), (46)

μ1 = − 1
α

αk2 − r2

βk2 − εr2 , μ2 = − 1
α

αl2 − r2

βl2 − εr2 .

In view of the homogeneity of the boundary conditions, the requirement that the solution
should be nontrivial leads to the relation

[μ1(1 + βμ2)l cos k sin l − μ2(1 + βμ1)k cos l sin k]
× [μ1(1 + βμ2)l cos l sin k − μ2(1 + βμ1)k cos k sin l] = 0.

Figure 10 shows a family of curves in which this expression is equal to zero and, hence,
periodic solutions exist with related instability zones. Figure 11 shows different time history
records when crossing a region covered by two neighboring curves. An increasing of the
amplitude in Figures 11b and 11e indicates the parametric instability of the system, when the
point (r, ε) is located inside the instability regions shown in Figure 10.

4.2. PARAMETRIC IMPULSIVE EXCITATION

Let us consider the case of a system with a single degree of freedom under the parametric
impulsive excitation of the time shape given by a second derivative of the asymmetric saw-
tooth function, i.e. let us write the equation of motion as (compare with Equation (39))

ẍ + ω2
0

[
1 + ε

∂e(ωt; γ )

∂(ωt)

]
x = 0. (47)



Figure 10. Instability zones of the linear oscillator under the parametric piecewise constant force described by
the first derivative of the asymmetric saw-tooth function for the parameter γ = 0.7. A numerical testing of the
self-intersections of the instability zone boundaries is presented by the series of plots in Figure 11.

This case was considered in [17] based on the saw-tooth transformation of time. It was
shown that the periodic solutions of the period T = 4/ω exist when parameters of the system
satisfy the relation

p2 = 2r2(1 − γ 2)2 sin2 2r

cos 4r − cos 4γ r
, (48)

where r = ω0/ω and p = εr2.
The dependence of p on r for fixed γ has a branched zone-like structure characteristic of

similar problems (see Figure 12, where, in view of the symmetry, only the upper half-plane is
shown). A curious effect is observed when the parameter γ which characterizes the slope of
the ‘saw’ is varied. The question concerns the transverse ‘collapse’ of the sequences of zones
which are regularly situated across each of the s zones, where s is an integer which depends
on the parameter γ (the form of this relationship will be established later). For instance, when
γ = 1/5, each fifth zone is missing and, when γ = 1/2, each second zone is missing as
Figures 6a and 6b, respectively, show. An explanation of this phenomenon was given in [17].



Figure 11. Different time history records when taking the system’s parameters gradually around the point of
self-intersection of the instability zone (point P in Figure 10). (a) r = 3.20, ε = 0.42 (on the left of the instability
zone, under point P ), (b) r = 3.24, ε = 0.42 (inside the instability zone, under point P ).



Figure 11. Continued. (c) r = 3.28, ε = 0.42 (on the right of the instability zone, under point P ), (d) r = 3.24,
ε = 0.52 (on the left of the instability zone, above point P ).



Figure 11. Continued. (e) r = 3.28, ε = 0.52 (inside the instability zone, above point P ), (f) r = 3.32, ε = 0.52
(on the right of the instability zone, above point P ).



Figure 12. ‘Collapse’ of the instability zones of the harmonic oscillator under the periodic impulsive excitation
with the dipole-like shift: (a) γ = 1/5, each fifth zone is missing, (b) γ = 1/2, each second zone is missing.

5. On the Use of the Method of Averaging

The above technique is applicable for analyzing periodic solutions, which are only achieved
under certain initial conditions. Solutions of the Cauchy problem for an arbitrary initial con-
dition are, generally speaking, nonperiodic and can be obtained by involving the idea of
averaging. An appropriate formalization is given by the two-variables expansion technique
[32].

Let us consider the first-order differential equation

v̇ + εv3 = p
de(t)

dt
(49)

under the initial condition

v|t=0 = v◦. (50)

This Cauchy problem describes the one-dimensional motion of a material point under a pe-
riodic series of impulses, nonlinear damping and no elastic forces. Note that any standard



formulation of the idea of averaging is hard to apply directly to Equation (49), because the
right-hand side of the equation is neither smooth nor even a continuous function of time.
To proceed correctly, one should specify the class of solutions to be defined, because the
equation combines the nonlinearity and singular functions (see Section 1 and Appendix 1).
A preliminary analysis shows that a role in the solutions can be played by functions with
discontinuities of the first kind at points � = {t : τ(t) = ±1}. Solutions of the problem (49),
(50) are sought in the form

v = X(τ, t◦) + Y (τ, t◦)e; τ = τ(t), e = e(t), (51)

where the notation t◦ = εt indicates the ‘slow time’ scale. Hence, the solution is assumed to
be dependent on two time variables – fast oscillating time τ and slow time t◦.

Substituting Equation (51) into Equation (49), we obtain the expression

∂Y

∂τ
+ ε

(
∂X

∂t◦
+ X3 + 3XY 2

)
+

[
∂X

∂τ
+ ε

(
∂Y

∂t◦
+ 3YX2 + Y 3

)]
e + (Y − p)ė = 0.

This finally leads to the set of partial differential equations

∂X

∂τ
= −ε

(
∂Y

∂t◦
+ 3YX2 + Y 3

)
,

∂Y

∂τ
= −ε

(
∂X

∂t◦
+ X3 + 3XY 2

)
(52)

with the boundary condition

Y |τ=±1 = p. (53)

The asymptotic (ε → 0) solution of problem (52), (53) can be found using the standard
procedure of the method of two-variables expansion in a power series form, as

X =
∞∑
i=0

εiXi(τ, t
◦), Y =

∞∑
i=0

εiYi(τ, t
◦). (54)

Substituting Equation (54) into Equations (52), (53) and matching coefficients of the same
powers of ε, gives a zero-order problem

ε0 : ∂X0

∂τ
= 0,

∂Y0

∂τ
= 0; Y0|τ=±1 = p.

The solution satisfying the boundary condition is

X0 = A0(t
◦), Y0 = p, (55)

where A0 is an arbitrary function of the slow time.
In the first order of ε, taking into account Equation (55) gives

ε1 : ∂X1

∂τ
= −(3pA2

0 + p3),
∂Y1

∂τ
= −

(
dA0

dt◦
+ A3

0 + 3A0p
2
)

; Y1|τ=±1 = 0.

Integrating the equations gives

X1 = −(3pA2
0 + p3)τ + A1(t

◦), Y1 = −
(

dA0

dt◦
+ A3

0 + 3A0p
2
)

τ + C1(t
◦). (56)



Figure 13. The closed-form analytical approach for the velocity of a nonlinearly damped material point of the
periodic impulsive excitation.

Boundary conditions for Y1 give C1(t
◦) ≡ 0 and the leading-order averaged differential

equation for A0(t
◦) is

dA0

dt◦
+ A3

0 + 3A0p
2 = 0. (57)

So, in the first order of ε, one has Y1 ≡ 0, and the function A1(t
◦) in the expression for X1

remains unknown.
Equation (57) admits an elementary integration which gives a solution in the following

explicit form

A0 =
[
− 1

3p2 + const · exp(6p2t◦)
]−1/2

.

Finally, a leading-order asymptotic solution of the Cauchy problem can be written as (Fig-
ure 13)

v = ±
{
− 1

3p2 +
[

1
3p2 + (x◦ − p)2

]
exp(6p2εt)

}−1/2

+ pe(t) + O(ε), (58)

where the plus or minus signs are taken as v◦ − p > 0 or v◦ − p < 0, respectively.
The first term in expression (58) is a transient response of the system, and it tends to zero

when the time tends to infinity. It can be seen that the impulsive external excitation strongly
affects the time scale of the transient response, because that timescale is multiplied by the
impulse parameter squared, p2.



6. Weakly Nonlinear Resonances in the Duffing Oscillator under the Periodic
Impulsive Force

Let us consider the Duffing oscillator under the periodic impulsive excitation

ẍ + ω2
0x = −ε

[
x3 − p

de(ωt)

d(ωt)

]
(59)

in the neighborhood of linear resonance condition (23). Introducing the detuning parameter σ

into the differential equation (59) as

ω2
0 = (

nπ

2
ω)2 + εσ (60)

gives

ẍ +
(nπ

2
ω

)2
x = −ε

[
σx + x3 − p

de(ωt)

d(ωt)

]
. (61)

We shall seek the solution in the form (51), where τ = τ(ωt), e = e(ωt). Assuming the
continuity condition for x(t),

Y |τ=±1 = 0 (62)

gives the first derivative of Equation (51) as

ẋ = ω
∂Y

∂τ
+ ε

∂X

∂t0 +
(

ω
∂X

∂τ
+ ε

∂Y

∂t0

)
e. (63)

Substituting Equations (51) and (63) into differential equation (61) gives

ω2 ∂X

∂τ

∣∣∣∣
τ=±1

= εp, (64)

ω2 ∂2X

∂τ 2 + 2εω
∂2Y

∂τ∂t0 + ε2 ∂2X

∂t02 +
(nπ

2
ω

)2
X = −ε(σX + X3 + 3Y 2X), (65)

ω2 ∂2Y

∂τ 2 + 2εω
∂2X

∂τ∂t0 + ε2 ∂2Y

∂t02 +
(nπ

2
ω

)2
Y = −ε(σY + Y 3 + 3X2Y ). (66)

As a result of the nonsmooth transformation of the argument, the boundary-value prob-
lem (62), (64–66) does not include any singular functions, and one can correctly use the
averaging technique.

We seek an asymptotic solution in a power series form as

X = X0(τ, t
◦) + εX1(τ, t

◦) + ε2X2(τ, t
◦) + · · · ,

Y = Y0(τ, t
◦) + εY1(τ, t

◦) + ε2Y2(τ, t
◦) + · · · .

Substituting this into Equations (62) and (64–66), and matching coefficients of the same de-
grees of ε, gives a series of boundary value problems with respect to the X and Y components
of the solution.



In the first step, one has the homogenous boundary value problem

∂2X0

∂τ 2 +
(nπ

2

)2
X0 = 0,

∂X0

∂τ

∣∣∣∣
τ=±1

= 0,

∂2Y0

∂τ 2 +
(nπ

2

)2
Y0 = 0, Y0|τ=±1 = 0 (67)

and its nonzero solution is written as

X0 = A0(t
◦) sin

nπ

2
τ, Y0 = D0(t

◦) cos
nπ

2
τ, (68)

where A0(t
◦) and D0(t

◦) are arbitrary functions.
Collecting all terms of order ε gives the boundary-value problem as

ω2
[
∂2X1

∂τ 2 +
(nπ

2

)2
X1

]
= −

(
2ω

∂2Y0

∂τ∂t0 + σX0 + X3
0 + 3Y 2

0 X0

)
,

ω2 ∂X1

∂τ

∣∣∣∣
τ=±1

= p,

ω2
[
∂2Y1

∂τ 2 +
(nπ

2

)2
Y1

]
= −

(
2ω

∂2X0

∂τ∂t0 + σY0 + Y 3
0 + 3X2

0Y0

)
,

Y1|τ=±1 = 0. (69)

The right-hand sides of Equation (69) depend implicitly on the slow time throughout the still
unknown functions A0(t

◦), D0(t
◦), and its derivatives A′

0(t
◦) and D′

0(t
◦).

The solution of the differential equations (69) can be represented as

X1 = A1(t
0) sin

nπ

2
τ + B1(t

◦) cos
nπ

2
τ

+ 1
ω

[
D′

0 + 1
nπω

(
σA0 + 3

4
A3

0 + 3
4
A0D

2
0

)]
τ cos

nπ

2
τ

+ 2
nπω

[
D′

0 + 1
nπω

(
σA0 − 9

16
A3

0 − 21
16

A0D
2
0

)]
sin

nπ

2
τ

− 1
8n2π2ω2 (A3

0 − 3A0D
2
0) sin

3nπ

2
τ,

Y1 = C1(t
0) sin

nπ

2
τ + D1(t

◦) cos
nπ

2
τ

+ 1
ω

[
A′

0 − 1
nπω

(
σD0 + 3

4
A2

0D0 + 3
4
D3

0

)]
τ sin

nπ

2
τ

+ 1
4n2π2ω2 (D3

0 − 3D0A
2
0) sin nπτ sin

nπ

2
τ.

The boundary condition for X1 (see remark at the end of Section 2) gives

B1(t
◦) ≡ 0



and

D′
0 = 1

nπω

[
2(−1)(n−1)/2p + σA0 + 3

4
A0(A

2
0 + D2

0)

]
. (70)

The boundary condition for Y1 gives

C1(t
◦) ≡ 0

and

A′
0 = − 1

nπω

[
σD0 + 3

4
D0(A

2
0 + D2

0)

]
. (71)

In this step, functions A1(t
◦) and D1(t

◦) remain unknown. Equations (70) and (71) allow
us to determine the slow functions A0(t

◦) and D0(t
◦) and to complete the previous step.

These equations can be investigated in a regular manner for the nonlinear vibration theory,
introducing polar coordinates.

In the case when no external impulses are acting, i.e. p = 0, Equations (70) and (71) stay
for elimination of the so-called ‘secular terms’ in the solution. If p 
= 0, secular terms occur
in the solution. These terms, however, are only secular with respect to ‘oscillating time’ τ and,
hence, the solution remains periodic with respect to original time, t .

7. Conclusion

It has been shown that the nonsmooth transformation of the argument is applicable to linear
and nonlinear dynamical systems under periodic impulsive and discontinuous excitations. A
standard pair of nonsmooth periodic functions plays an important role in the proposed method.
In the symmetric case, γ = 0, the pair of functions which is used {τ(t), e(t)} is associated in a
natural way with the motion of a free point mass between two fixed arresting devices, that is,
with one of the two simplest mechanical oscillators. These systems are a vibro-impact system
with a single impact pair and a harmonic oscillator. It is known that the latter generates a
pair of trigonometric functions {sin t, cos t} possessing a number of convenient mathematical
properties. From the mechanical point of view, the functions {sin t, cos t} are associated with
a free rotating disc with angular velocity ω = 1. A ‘complicated’ linear regime of an elastic
structure (say, a free mass-spring model of N degrees of freedom) usually involves a set of
harmonics {sin ωkt, cos ωkt}, k = 1, . . . , N . It means that the regime can be represented by a
set of N free rotating discs with angular velocities ωk, i.e. it appears that the oscillation of an
elastic structure is equivalent to the rigid-bodies motion.

In the same manner, the functions {τ(t), e(t)} are associated to the motion of a free rigid
body with absolutely rigid constraints. It has been shown that a more complicated nonsmooth
(or a quasi nonsmooth) dynamical regime can be represented by this rigid-body motion and
its different deformations, according to the power forms, τ 3, τ 5, . . . , or in another simple way.
Hence, the introduction the pair {τ(t), e(t)} is not a purely mathematical manipulation. It has
a certain physical meaning.

Another essential physical feature of the transformation is that the oscillating time, τ , is
introduced in such a manner that it does not affect the metrical properties of the time, namely,
the metric remains constant after the transformation: [dτ(t)]2 = dt2. This defines a special
role of the saw-tooth transformation among other periodic transformations of time. Due to



this property, the transformed differential equations of motion remain within the framework 
of Newton’s formulation (see Appendix 2).
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Appendix 1

Carathéodory Equation

We will present some remarks concerning nonlinear differential equations with distributions
involved as summands. We will also compare the two different representation for solutions
based on nonsmooth functions.

Let us consider first-order (nonlinear) differential equation, ẋ = f (t, x), where x is a scalar
or a vector, and the right-hand side satisfies the Carathéodory conditions [4]. Namely, in the
domain D of the (t, x) space, the function f (t, x) is defined and continuous in x for almost
all t ; the function f (t, x) is measurable in t for each x; |f (t, x)| ≤ m(t), and the function
m(t) is summable (at each finite interval if t is not bounded in D).

The conditions listed above mean that the restriction taken for the right-hand side’s depen-
dence on t is less strong than the classical existence theorem requires, i.e. the function f (t, x)

is not necessarily continuous in t . It becomes possible if the right-hand side of the equivalent
integral equation, x(t) − x(t0) = ∫ t

t0
f (ξ, x(ξ)) dξ is understood in the sense of Lebesque.

Under the Carathéodory conditions, a series of existence theorems holds [4].
Let the right-hand side of the equation additively involve a δ-impulse and the equation is

written as

ẋ = f (t, x) + νδ(t − a), (72)

where a and v are constant parameters (ν is a scalar or a vector).
Many mechanical and physical problems can be represented in the form (72).

EXAMPLE 1. A parametrically excited Duffing oscillator subjected to external impact at
moment t = a is described with the equation

ü + ω2
0(1 + ε cos 2t)u − βu3 = 2pδ(t − a). (73)

Equation (73) is equivalent to Equation (72) when

x =
[

u

v

]
, f (t, x) =

[
v

βu3 − ω2
0(1 + ε cos 2t)u

]
, ν =

[
0

2p

]
.

In this case, the variable v is the velocity.

EXAMPLE 2. After a special scaling of the variables, equation

d4W

dξ 4 + γ (ξ)W = qδ(t − a) (74)



describes a beam’s centerline, W = W(ξ), resting on an elastic foundation of variable stiff-
ness, γ (ξ) and loaded by a transverse force localized at point ξ = a. Equation (74) can be
represented in the form of (72) when t ≡ ξ ,

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

W

dW
dξ

d2W
dξ2

d3W
dξ3

⎤
⎥⎥⎥⎥⎥⎥⎦

, f (ξ, x) =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
−γ (ξ) 0 0 0

⎤
⎥⎥⎥⎦ x and ν =

⎡
⎢⎢⎢⎣

0
0
0
q

⎤
⎥⎥⎥⎦ .

The right-hand side of Equation (72) no longer satisfies the Carathéodory conditions.
However, a change of variables

x(t) −→ y(t) : x(t) = y(t) + vH(t − a) (75)

brings the differential equation back into the form

ẏ = f (t, y + vH(t − a)) ≡ f̄ (t, y), (76)

where the Dirac function has been eliminated due to equality Ḣ (t − a) = δ(t − a) and, as a
result, the right-hand side, f̄ (t, y), satisfies the Carathéodory conditions.

Note that due to H(t − a), the right-hand side of the transformed equation is generally
piecewise continuous in t , even if the function f (t, x) at the right-hand side of the original
equation (72) is continuous.

‘Single-Tooth’ Transformation of Time

Let us transform Equation (72) by making use of a nonsmooth argument (a ‘single-tooth’
version of the saw-tooth transformation of time). Let the new argument be

|t − a| = s = s(t). (77)

We also introduce the old notation for the first-time derivative of the nonsmooth argument
as ṡ(t) = d|t − a|/d(t − a) = e(t). One has e(t) = −1 for t − a < 0 and e(t) = 1 for
t − a > 0 and hence, e2 = 1 at least for almost all t .

LEMMA 1. An arbitrary function x(t) can be represented in form

x(t) = X(s) + Y (s)e. (78)

Proof. A transformation inverted to (77) is expressed as

t = a + se. (79)

Substituting Equation (79) into Equation (78) and taking e = −1 and e = 1, one obtains

x(a − s) = X(s) − Y (s),

x(a + s) = X(s) + Y (s)



 and, hence,

X(s) = 1
2
[x(a + s) + x(a − s)],

Y (s) = 1
2
[x(a + s) − x(a − s)]. (80)

So when X(s) and Y (s) are selected as Equation (80), the identity (78) holds for any x(t).
Let a solution of Equation (72) be represented in the form of (78). Substituting Equa-

tions (78) and (79) into Equation (72) and taking into account the expression ė(t) = 2δ(t −a),
one obtains

Y ′ + Rf (s,X, Y ) + [X′ + If (s,X, Y )]e + (2Y − v)δ(t − a) = 0, (81)

where the expressions

Rf = 1
2
[f (a + s,X + Y ) + f (a − s,X − Y )],

If = 1
2
[f (a + s,X + Y ) − f (a − s,X − Y )]

have been obtained analogously to Equation (80).
Equality (81) gives a set of equations and a boundary condition

X′ + If (s,X, Y ) = 0,

Y ′ + Rf (s,X, Y ) = 0,

Y |s=0 = v

2
. (82)

As a result of the transformation, the Dirac function has been eliminated from the system.
Equations (82) compared with Equation (76) have a more complicated form. However, one
should pay attention, for its smoothness properties may become better. In fact, the step func-
tion H(t − a) has not been involved in Equation (82). Another (sometimes suitable) point is
that the new time variable s is half-limited, 0 ≤ s < ∞.

Appendix 2

Let us show that the saw-tooth time τ(t) is associated with the group properties of the
oscillator

d2x

dt2 + f (x) = 0 (83)

and, hence, plays a special role among all possible periodic transformations of time.
In this particular case, a one-component version of the saw-tooth transformation of time

can be realized. Alternatively, one may introduce an oscillating time parameter, say g, in a
more general manner as g = g(t) and x = X(g(t)), where g(t) is a periodic function, not
necessarily saw-tooth. One could consider trigonometric sine, elliptic sine, and other specially



selected functions depending on the problem investigated. As a result, one obtains a new
system in the form(

dg

dt

)2 d2X

dg2 + d2g

dt2
dX

dg
+ f (X) = 0. (84)

This transformation becomes physically reasonable if the variable coefficients appear to be
functions of the new time parameter g over all periods of the oscillation. For example, let
g = sin t . In this case, the transformation t −→ g, x −→ X is completed as

(1 − g2)
d2X

dg2 − g
dX

dg
+ f (X) = 0. (85)

In this example, one undesirable result of the transformation is that the system has lost its
original Newton form given by Equation (83) and, hence, the dynamical properties of the
system cannot be treated any more in a regular manner.

To preserve Newton’s form of the system, one should set(
dg

dt

)2

= 1 and
d2g

dt2
dX

dg
= 0 (86)

in Equation (84). The first equality is satisfied by g = α + t and g = β − t , where α and β are
arbitrary constants. It means that the function g(t), to be periodic, must consist of different
pieces of linear functions with positive and negative slopes of the same absolute value, i.e. it
has a piecewise linear saw-tooth form. The simplest (monofrequency) case of the saw-tooth
function is given by τ(t) (Equation (3)), as Figure 3 shows. In this case, the second equality
of Equation (86) holds for all t under the condition (dX/dτ)|τ=±1 = 0, and the new equation
has the same form as the original one: (d2X/dτ 2) + f (X) = 0.
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