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Introduction

It is a well-known that, unlike the linear case, the observability for nonlinear systems is, in general, not only a local property [START_REF] Hermann | Nonlinear controllability and observability[END_REF] but also depends on the input of the system [START_REF] Gauthier | A simple observer for nonlinear systems with applications to bioreactors[END_REF]. A direct implication of these is that, in the nonlinear case, one has to determine the so-called 'observability singularity set' if proper observability analysis has to be carried out. Roughly speaking, the observability singularity set is the set of points in the state space whereby the observability matrix is not of full rank.

On the other hand, owing to the fact that it is easier to design an observer for linear systems, the natural approach to designing nonlinear observers, adopted by several researchers [START_REF] Krener | Nonlinear observer with linearizable error dynamics[END_REF][START_REF] Xia | Nonlinear observer design by observer error linearization[END_REF][START_REF] Rudolph | A block triangular nonlinear observer normal form[END_REF][START_REF] Kazantzis | Nonlinear observer design using lyapunov's auxiliary theorem[END_REF][START_REF] Guay | Observer linearization by output-dependent time-scale transformation[END_REF][START_REF] Andrieu | Observability necessary conditions for the existence of observers[END_REF][START_REF] Andrieu | Note on diffeomorphism extension for observer design[END_REF], consist in transforming the original system into * K.A.A. Langueh is with EPI Non-A INRIA, Lille, Nord-Europe.O. Datcu is with Politehnica University of Bucharest, Faculty of Electronics, Telecommunications, and Information Technology, J-P Barbot is with QUARTZ Laboratory, IPGP, ENSEA, 6 Avenue du Ponceau, 95014 Cergy-Pontoise and EPI Non-A, INRIA, G. Zheng is with EPI Non-A INRIA, Lille, Nord-Europe and K. Busawon is with Northumbria University, Newcastle, UK. 1 i) either a linear one plus a nonlinear part having some special structures ii) or a linear one plus a nonlinear part depending only on the input and the output so the observer has linear error dynamics.

Unfortunately, even if the observer design is done using these approaches, the problem introduced by the observability singularity set stays omnipresent and is not overcomed. In this paper, we propose a solution, based on the immersion technique, to tackle this problem under very weak conditions.

It is important to mention that, since the work of [START_REF] Rapaport | Embedding for exponential observers of nonlinear systems[END_REF][START_REF] Rapaport | Design of exponential observers for nonlinear systems by embedding[END_REF], the immersion technique was extensively used in the observer design context. However, it is generally used to recover the linearity property by diffeomorphism and output injection [START_REF] Back | Immersion of nonlinear systems into linear systems up to output injection: characteristic equation approach[END_REF][START_REF] Back | Dynamic observer error linearization[END_REF][START_REF] Ticlea | Extended output depending normal form[END_REF][START_REF] Tami | Extended output depending normal form[END_REF]. In the majority of the mentioned papers, immersion was realized by adding a dynamic by means of output integration [START_REF] Back | Immersion of nonlinear systems into linear systems up to output injection: characteristic equation approach[END_REF]. The stability of such extra dynamics can be problematic and an elegant solution to deal with this issue is proposed in [START_REF] Tami | Extended output depending normal form[END_REF]. However, the problem of observability singularity was not treated. In this work, a dual immersion technique using only extra differentiations is proposed to by pass the observability singularity issue. This method is close to the one proposed in [START_REF] Andrieu | Note on diffeomorphism extension for observer design[END_REF][START_REF] Bernard | Nonlinear observer in the original coordinates with diffeomorphism extention and jacobian completion[END_REF] in a completely different context. Moreover, for stability reasons, we chose to employ exponentially stable dynamics instead of constant dynamics. It is shown that the proposed approach is realisable thanks to the finite time differentiator as, for example, the one proposed in [START_REF] Diop | On numerical differentiation algorithms for nonlinear estimation[END_REF][START_REF] Fliess | Nonlinear estimation is easy[END_REF] (but for these methods, the delay appears due to the data acquisition frame) or High Order Sliding Mode (HOSM) [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF][START_REF] Fridman | Sliding Modes after the first Decade of the 21st Century: State of the Art[END_REF].

The paper is organized as follows: in the next section some observability and observability singularity definitions are presented and the problem statement is explained. In Section 3, the dual immersion method is presented. After that, some recalls on HOSM differentiator are given in Section 4. In Section 5, a simulation example is given in order to highlight the fact that the proposed method can be extended to nonautonomous system. The paper ends with some conclusions and perspectives.

Some recalls and problem statement

Consider the following autonomous system:

ẋ = f (x) y = h(x) (1) 
where the state x ∈ R n , the output y ∈ R m and the vector fields f and h are assumed to be C ∞ . It is also assumed that the outputs are independent for ∀x ∈ R n . Notation: For 1 ≤ i ≤ m, we denote by ρ i the observability index [START_REF] Krener | Nonlinear observer with linearizable error dynamics[END_REF] of the output function

h i at x 0 ∈ R n .
It is worth noting that, if the smallest order of output derivatives are considered, then the choice of m-tuples (ρ 1 , • • • , ρ m ) is not unique. Now suppose that around a certain point x 0 the system (1) is observable, i.e. m i=1 ρ i = n, and rank dO |x 0 = n where

O(n) =                h 1 . . . L ρ 1 -1 f h 1 . . . hm . . . L ρm-1 f hm                (2) 
is the observability map and

dO(n) |x 0 =                dh 1 .
. .

dL ρ 1 -1 f h 1 . . . dhm . . . dL ρm -1 f hm                |x 0 (3) 
is the observability matrix with

L i f h = ∂L i-1 f h ∂x f the usual Lie derivative and dL i f h = ∂L i f h ∂x1 , ∂L i f h ∂x2 , ..., ∂L i f h ∂xn its corresponding 1-form.
Since dO(n) |x 0 is only of full rank n around x 0 , this implies that there might exist some x ∈ R n such that rank dO(n) |x < n. Due to this fact, we define the following observability singularity set:

S n = {x ∈ R n : rank {dO(n) |x } < n} (4) 
In this case, for the purpose of removing the singularities in dO(n) |x defined in (3), it is necessary to increase the dimension of (3) by involving more derivatives of the output. The following example illustrates the procedure involved.

Example 1 Let us consider the following simple system:

ẋ1 = x 2 + x 2 2 ẋ2 = -x 3 2 + 1 (5) ẋ3 = x 2 -x 3 2
with y 1 = x 1 and y 2 = x 3 .

It can be seen that, if we choose the corresponding observability indices as

(ρ 1 = 2, ρ 2 = 1), then dO(3) |x =   1 0 0 0 1 + 2x 2 0 0 0 1  
and we obtain the following observability singularity set:

S 3 = {x ∈ R 3 : x 2 = -0.5}
On the other hand, if the observability indices were chosen as (ρ 1 = 1, ρ 2 = 2), then

dO(3) |x =   1 0 0 0 0 1 0 1 -3x 2 2 0  
and the observability singularity set is now given by:

S 3 = {x ∈ R 3 : x 2 = ±1 √ 3 }
It is clear that both observability matrices contain singularities, but they are not the same. In order to overcome those singularities, one can compute further derivatives of the output. Indeed, consider the observability indices (ρ 1 = 3, ρ 2 = 1), then we obtain

dO(4) =     1 0 0 0 1 + 2x 2 0 0 -8x 3 2 -3x 2 2 + 2 0 0 0 1    
and S 4 = ∅, i.e. there is no longer any observability singularity. These highlight the fact that the choice of the observability indices is crucial in designing an observer for a nonlinear system. As a result, we obtain the following immersion from R 3 to R 4 .

z = φ(x) =     x 1 x 2 + x 2 2 -2x 4 2 -x 3 2 + 2x 2 + 1 x 3    
The previous example shows that, even if the observability matrix dO(n) contains singularities, i.e. its rank is not equal to n for some x ∈ R n , it is still possible to obtain a higher dimensional map, O(n+ k), that will not contain any singularity. This map can then be regarded as an immersion. It may, therefore, be interesting to design an observer of dimension greater than n for the system; which is equivalent to using a state space representation or order greater than n. More precisely, this immersion is obtained by finding the smallest integer

k ∈ Z + such that rank{dO(n + k)} = n, ∀x ∈ R n (6) 
where

O(n + k) =                 h 1 . . . L ρ 1 +k 1 f h 1 . . . hm . . . L ρm+km f hm                 (7) 
with

m i=1 ρ i = n and m i=1 k i = k.
Then, the immersion can be defined as

z = O(n + k) yielding a higher dimensional transformed system ż = ∂O(n + k) ∂x f (x)
and which can be rewritten as follows:

              ż1,1 . . . żρ 1 +k 1 . . . żm,1 . . . z ρm+km               =                 z 1,2 . . . L ρ 1 +k 1 f h 1 . . . z m,2
. . .

L ρm+km f hm                 (8) 
For ( 8) a traditional high-gain observer [START_REF] Gauthier | A simple observer for nonlinear systems with applications to bioreactors[END_REF] (or sliding mode observer [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF]) can be easily designed to estimate z. One can then obtain an estimation of x as follows x = arg min

x∈R n ||ẑ -O(n + k)(x)||
where ẑ is the estimate of z.

It is important to note that, for the above optimization task, the Jacobian of O(n + k) is a non-square matrix of dimension(n + k) by n. This will inevitably cause difficulties when applying numerical methods to solve the optimization problem. Obviously, some additional techniques can be used even if the jacobian matrix of O(n+ k) is not square, However, the optimisation task would be much more easier if one can find a full rank square Jacobian matrix.

By taking into account these previous remarks, we are going to propose, for a given O(n) defined in (3) containing the singularities, a constructive way to deduce, not only a simple immersion, but a global diffeomorphism O(n + k) as defined in [START_REF] Fliess | Nonlinear estimation is easy[END_REF] by increasing the state space dimension arbitrarily in the original coordinates. In the literature, this technique is called immersion and several authors have used this immersion technique in order to obtain a specific normal form [START_REF] Tami | Extended output depending normal form[END_REF]. Most often, the immersion is obtained by output integration. In this paper, however, the immersion will be derived by a dual method which will be presented in the next section.

Remark 1

The above problem statement can be extended to general dynamical systems, including nonautonomous one. For instance, consider the following system:

ẋ = f (x, u, t) y = h(x) (9) 
where u ∈ C ∞ is the input. Then, as it was pointed out in [START_REF] Gauthier | A simple observer for nonlinear systems with applications to bioreactors[END_REF], the observability of ( 9) also depends on the input (which has, in turn led, to the concept of universal input). In this case, instead of Lie derivative it is necessary to use the Lie Bäcklund derivative [8] 1 . For system [START_REF] Fridman | Sliding Modes after the first Decade of the 21st Century: State of the Art[END_REF], we can define the following observability matrix

dO(n) :=                dh 1 . . . d Lρ 1 -1 f h 1 . . . dhm . . . d Lρm-1 f hm                | x,u,••• ,u (n-1)
and its associated singularity observability set, parameterized by the input and its derivatives, as follows:

S n = {x ∈ R n : rank{dO(n) | x,u,••• ,u (n-1) } < n}

Dual immersion technique 3.1 Preliminary results

In this section, for a given observability map O(n) containing singularities in its associated observability singularity set S n , we will propose a constructive method to deduce a global diffeomorphism O(n + k) as defined in [START_REF] Fliess | Nonlinear estimation is easy[END_REF] by increasing the state dimension (and consequently its associated dynamics). We start by stating the following trivial result.

Lemma 1 Consider the observability singularity set S n associated to the observability map O(n) as defined in (2), then 1) where u (j) is the j th derivative of u with respect to time.

S n+i ⊆ S n+i-1 fori ≥ 1. 1 The Lie Backlund is Li f h = ∂L i-1 f h ∂x f + ∂L i-1 f h ∂u u + • • • + ∂L i-1 f h ∂u (j-2) u (j-
Proof. For i ≥ 0, according to the definition, we have

O(n + i) =                h 1 . . . L ρ 1 +i 1 f h 1 . . . hm . . . L ρm+im f hm                with m i=1 ρ i = n and m j=1 i j = i.
Consequently, there exists an elementary matrix S i such that

O(n + i) = S i      O(n + i -1) L ρ1+i1 f h 1 . . . L ρm+im f h m      Hence, we have rank{dO(n + i)} ≥ rank{dO(n + i -1)} which implies that S n+i ⊆ S n+i-1 .
In what follows, we make the following assumption on the global observability in order to find a global diffeomorphism by iteratively differentiating the output.

Assumption 1 We assume that system (1) is globally observable, i.e. there exists a least positive integer k ∈ Z + such that rank{dO(n + k)} = n [START_REF] Frunzete | Influence of the singular manifold of observable states in reconstructing chaotic attractors[END_REF] for all x ∈ R n , where O(n + k) is defined in [START_REF] Fliess | Nonlinear estimation is easy[END_REF].

Remark 2 It is well known that the choice of observability index is not unique ( [START_REF] Krener | Nonlinear observer with linearizable error dynamics[END_REF]), consequently, the construction of O(n) is not unique. From these, the construction of O(n + k) depends also of the original choice of the observability index this key point will be investigated in forthcoming paper.

With the above assumption, we can state the following result.

Lemma 2 For system (1), if Assumption 1 is satisfied, then there exists a least positive integer k ∈ Z + such that the following inclusion is satisfied:

∅ = S n+k ⊆ • • • ⊆ S n+1 ⊆ S n Moreover, z = O(n + k) is an immersion.
Proof. The subset inclusions can be obtained directly via Lemma 1. Moreover, due to Assumption 1 on the global observability, there exists a least positive integer k ∈ Z + such that no singularities appear in dO(n + k), thus we have

S n+k = ∅, since rank{dO(n + k)} = n ∀x ∈ R n .
The above results show that one can reduce the observability singularity set till the empty set by simply increasing the number of derivatives of the output. Consequently, one can find a least positive integer k ∈ Z + such that z = O(n+k) is an immersion, but not necessarily a diffeomorphism. In what follows, we will propose a constructive method to calculate a global diffeomorphism φ(x) from the deduced immersion, z = O(n + k), in Lemma 2 via the technique of dual immersion, and whose Jacobian dφ(x) is square and invertible.

Dual immersion approach

Consider again system (1), and suppose that we have already found a least positive integer k ∈ Z + such that z = O(n + k) is an immersion. Then, the following algorithm enables to compute a global diffeomorphism φ(x, ξ) (where ξ ∈ R k will be defined hereafter).

Dual immersion algorithm

1. Initialization: Set z i,1 = φ i,1 (x) = y i for 1 ≤ i ≤ m; 2. Calculate z i,j = φ i,j (x) = y (j-1) i
until that a singularity of observability appears in the row dL

(j-1) f h i ; 3. Define φ i,j = y (j-1) i + ξ i,1
where ξ i,1 is an additional state, with the following dynamics:

ξi,1 = -ǫ i,1 ξ i,1 [START_REF] Gauthier | A simple observer for nonlinear systems with applications to bioreactors[END_REF] initialized at ξ i,1 = 0.

4.

• If y j+1 i does not exist on O(n + k) , define φ i,j+1 = y

(j) i -ǫ i,1 ξ i,1 • If y j+1 i exists, define φ i,j+1 = y (j) i -ǫ i,1 ξ i,1 + ξ i,2 , with ξi,2 = -ǫ i,2 ξ i,2 + ǫi,1 ξ i,1 -ǫ 2 i,1 ξ i,1
5. Repeat the operation until we obtain φ i,ρi+ki and this for i ∈ {1, ..., m}.

The resulting matrix dφ becomes a square matrix. In addition, if there exists ǫ i,j sufficiently smooth such that the matrix is regular for all x then the algorithm 3.2 converges.

This algorithm yields the following result: Theorem 1 For system (1), if Assumption 1 is satisfied and Algorithm 3.2 converges, then φ(x, ξ) with ξ ∈ R k is a global diffeomorphism. Moreover, the Jacobian of the generated φ(x, ξ) via the dual immersion satisfies:

dim d φ(x, ξ) ∈ R (n+k)×(n+k)
and dφ(x, ξ) is full rank for all x ∈ R n .

Proof. The proof follows from the algorithm, and Assumption 1 is a necessary condition for the convergence of algorithm 3.2. Considering that, for the order r = n + k, dO(r)(h, f ) generates an empty observability set S(r) or at least an acceptable one with respect to the dynamics (see [START_REF] Frunzete | Influence of the singular manifold of observable states in reconstructing chaotic attractors[END_REF] for chaotic systems), it is possible to define a new change of coordinates z = φ(x, ξ) as follows: z i,j = y (j-1) i until an observability singularity appears in the row dL

(j-1) f h i .
When a singularity appears in row y (j-1) i

, then z i,j is reassigned to y (j-1) i + ξ i,1 where ξ i,1 is an extra state, which satisfies the following dynamics

ξi,1 = -ǫ i,1 ξ i,1 (12) 
that is initialized at ξ i,1 = 0.

Remark 3 From the stability and the initialization of the dynamics (12) it is not necessary to simulate this dynamic in the observer design because it is equivalent to adding zero at y (j-1) i

. In [START_REF] Andrieu | Note on diffeomorphism extension for observer design[END_REF][START_REF] Bernard | Nonlinear observer in the original coordinates with diffeomorphism extention and jacobian completion[END_REF] the proposed solution consists in adding a constant in order to be able to design a high gain observer in the original coordinate.

After this step, z i,j+l = y (j+l-1) i + ξ (l) i,1 .
If it is necessary to repeat the procedure for another row of dφ with respect to the derivative of y i , then another state ξ i,2 is introduced with the dynamics ξi,2 = -ǫ i,2 ξ i,2 and with ξ i,2 = 0 as initial state.

As all ξ i,j are always equal to zero, then nothing is added to the original system. Then, from the dual immersion approach, the observability matrix φ| x,ξ is a square matrix and the ǫ i,j are chosen so that dφ| x,ξ is full rank.

Example 2 (Example 1 continued) For the system (5), we have obtained, as shown in Example 1, that

O(4) = x 1 , x 2 + x 2 2 , -2x 4 2 -x 3 2 + 2x 2 + 1, x 3
T is an immersion. By applying the proposed method, one obtains

φ(x, ξ) = x 1 , x 2 + x 2 2 + ξ 1,1 , -2x 4 2 -x 3 2 + 2x 2 + 1, x 3 T with ξ = ξ1,1 = -ǫ 1,1 ξ 1,1
, whose Jacobian is equal to:

d φ(x, ξ) =     1 0 0 0 0 1 + 2x 2 0 1 0 -8x 3 2 -3x 2 2 + 2 0 -ǫ 1,1 0 0 1 0    
It can be easily checked that it is square and non singular for all

x ∈ R n if ǫ 1,1 is chosen such that (1 + 2x 2 )ǫ 1,1 -8x 3 2 -3x 2 2 + 2 = 0.
4 Recalls on high-order sliding-mode

In this paper, the proposed method is based on the so-called real-time exact robust HOSM differentiator [START_REF] Levant | Higher-order sliding modes, differentiation and output-feedback control[END_REF][START_REF] Levant | Exact differentiation of signals with unbounded higher derivatives[END_REF], which be recalled in the following. Consider a signal y(t) ∈ C k (at least k times differentiable), let us suppose (y, • • • , y (k) ) = (z 1 , • • • , z k+1 ). The HOSM robust differentiator proposed in [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF] takes the following form:

ż1 = -λ 0 M 1 k |ẑ 1 -y| k k+1 sign(ẑ 1 -y) + ẑ2 ż2 = -λ 1 M 1 k-1 |ẑ 2 -v 1 | k-1 k sign(ẑ 2 -v 1 ) + ẑ3 . . . żk = -λ k-1 M 1 2 |ẑ k -v k-1 | 1 2 sign(ẑ k -v k-1 ) + ẑk+1 żk+1 = -λ k M sign(ẑ k+1 -v k )
where M is chosen to be larger than the k-th derivative of y(t), λ i are positive design parameters, and the adjustment or tuning of those parameters is described in detail in [START_REF] Levant | Higher-order sliding modes, differentiation and output-feedback control[END_REF] and [START_REF] Levant | Robust exact differentiation via sliding mode technique[END_REF]. Defining the observation errors as: e i = z iẑi , then the observation errors dynamics is given by:

e 1 = ẑ1 -y e 2 = ė1 = λ 0 M 1 k |e 1 | k k+1 sign(e 1 ) . . . e k = ėk-1 = λ k-1 M 1 2 |e k-1 | 1 2 sign(e k-1 ) e k+1 = ėk = λ k M sign(e k )
It has been proven in [START_REF] Levant | Higher-order sliding modes, differentiation and output-feedback control[END_REF] that there exists t 0 such that ∀t > t 0 we have

e i = z i -ẑi = 0 for 1 ≤ i ≤ k + 1
In the next section, an example, representing a type of observability singularity that appears for example in the induction motor where the outputs are two phase currents, is presented. Moreover, since this system is non autonomous, it highlights the fact that the proposed method can be generalized to some class of non autonomous system.

5 Non autonomous multi-output example.

Let us consider the following non autonomous multi-output system:

ẋ1 = x 2 cos(t) ẋ2 = -x 3 ẋ3 = x 2 (13) ẋ4 = x 2 sin(t)
where y 1 = x 1 and y 2 = x 4 are the outputs.

Remark 4 System ( 13) is exactly of the form (9) with u = t. Moreover, with respect to an induction machine model or other AC three-phase machine model, sin(t) and cos(t) play the same role as cos(ωt), cos(ωt + 2π 3 ) and cos(ωt + 4π 3 ) with ω being the electrical pulsation.

For system [START_REF] Hermann | Nonlinear controllability and observability[END_REF], if we take the observability indices as (ρ 1 = 3, ρ 2 = 1), then the observability singularity occurs at t = π 2 + kπ. Similarly for (ρ 1 = 1, ρ 2 = 3) which yields an observability singularity at t = kπ. Finally, for (ρ 1 = 2, ρ 2 = 2) the observability singularity occurs at t = k π 2 . Nevertheless, if we consider the third derivative for both outputs (i.e. (ρ 1 = 3, ρ 2 = 3)), we have:

O(4) = [x 1 , x 2 cos t, -x 2 sin t -x 3 cos t, x 4 , x 2 sin t, x 2 cos t -x 3 sin t] T
for which dO( 4) is of full column rank; i.e rank{dO(4)} = 4 for all x ∈ R 4 and t ≥ 0. Consequently:

z = φ(x, ξ) =        x 1 x 2 cos t + ξ 1,1 -x 2 sin t -x 3 cos t x 4 x 2 sin t + ξ 2,1 x 2 cos t -x 3 sin t        =        y 1 ẏ1 + ξ 1,1 ÿ1 -ǫ 1,1 y 2 ẏ2 + ξ 2,1 ÿ2 -ǫ 2,1       
with ξ1,1 = -ǫ 1,1 ξ 1,1 and ξ2,1 = -ǫ 2,1 ξ 2,1 both with zero initial conditions. Then, dφ(x, ξ) is square and equal to:

       1 0 0 0 0 0 0 cos t 0 0 1 0 0 -sin t -cos t 0 -ǫ 1,1 0 0 0 0 1 0 0 0 sin t 0 0 0 1 0 cos t -sin t 0 0 -ǫ 2,1       
In this trivial example no numerical method is needed to compute the inverse, since one has the explicit formula of φ -1 (z), which however might not be possible in more complicated examples. Thus, one can obtain an estimate of x via the relation (x T , ξ T ) T = φ -1 (z), where ẑ = z is obtained in finite time by means of HOSM differentiation. For simulation, initial conditions are chosen from an uniform distribution in [0, 1], and the observer parameters are chosen as M = 50 and ǫ 1,1 = ǫ 2,1 = 0. In Fig. 1 and Fig. 2, it can be seen that the observations of x 2 and x 3 are given after a finite time (around 1s).

When adding noise in the output, the results are depicted in Fig. 3 and Fig. 4, in which we apply firstly a Butterworth filter (as done for many engineering processes to filter the noise in advance), then design the HOSM observer. The variations in amplitude of the estimates are due to the filtering of the noise.

Conclusion

In this work, a dual immersion method was proposed in order to overcome the singularity problems due to observability singularity set. The proposed method is based on an immersion which is, in turn, transformed to diffeomorphism by adding a stable fictitious dynamics initialized at the equilibrium point to the original system. The inversion of the obtained diffeomorphism is not necessarily a straightforward task. As a result, in a future work, a numerical solution for the inverse of the diffeomorphism will be investigated by taking into account the particular structure of the obtained diffeomorphism. Another promising solution will be to design an observer in the extended original coordinates with the observer design method introduced in [START_REF] Bernard | Nonlinear observer in the original coordinates with diffeomorphism extention and jacobian completion[END_REF]. Moreover, an extension of the proposed method to some class of non autonomous system seem to be possible. 
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 1 Figure 1: The signal x 2 in blue, and its estimate x2 in red.
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 2 Figure 2: The signal x 3 in blue, and its estimate x3 in red.
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 3 Figure 3: Noisy channel. The signal x 2 in blue, and its estimate x2 in red.
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 4 Figure 4: Noisy channel. The signal x 3 in blue, and its estimate x3 in red.