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Abstract. This paper considers elimination algorithms for sparse matri-
ces over finite fields. We mostly focus on computing the rank, because it
raises the same challenges as solving linear systems, while being slightly
simpler.
We developed a new sparse elimination algorithm inspired by the Gilbert-
Peierls sparse LU factorization, which is well-known in the numerical
computation community. We benchmarked it against the usual right-
looking sparse gaussian elimination and the Wiedemann algorithm using
the Sparse Integer Matrix Collection of Jean-Guillaume Dumas.
We obtain large speedups (1000× and more) on many cases. In particu-
lar, we are able to compute the rank of several large sparse matrices in
seconds or minutes, compared to days with previous methods.

1 Introduction

There are essentially two families of algorithms to perform the usual operations
on sparse matrices (rank, determinant, solution of linear equations, etc.): direct
and iterative methods.

Direct methods (such as gaussian elimination, LU factorization, etc.) gener-
ally produce an echelonized version of the original matrix. This process often
incurs fill-in: the echelonized version has more non-zero entries than the origi-
nal. Fill-in increases the time and space needed to complete the echelonization.
As such, the time and space requirements of direct methods are usually unpre-
dictable; they may fail if not enough storage is available, or become excruciat-
ingly slow.

Iterative methods such as theWiedemann algorithm [29] only perform matrix-
vector products and only need to store one or two vectors in addition to the
matrix. They do not incur any fill-in. On rank-r matrices, the number of matrix-
vector products that must be performed is 2r. Also, when a matrix M has |M |
non-zero entries, computing the matrix-vector product x ·M requires O (|M |)
operations. The time complexity of iterative methods is thus O (r|M |), which
is fairly easy to predict, and the space complexity is essentially that of keeping
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the matrix in memory. These methods are often the only option for very large
matrices, or for matrices where fill-in makes direct methods impractical.

In a paper from 2002, Dumas and Villard [15] surveyed and benchmarked
algorithms dedicated to rank computations for sparse matrices modulo a small
prime number p. In particular, they compared the efficiency of sparse gaussian
elimination and the Wiedemann algorithm on a collection of benchmark matrices
that they collected from other researchers and made available on the web [16].
They observed that while iterative methods are fail-safe and can be practical,
direct methods can sometimes be much faster. This is in particular the case when
matrices are almost triangular, so that gaussian elimination barely has anything
to do.

It follows that both methods are worth trying. In practical situations, a
possible workflow could be : “try a direct method ; if there is too much fill-in,
abort and restart with an iterative method ”.

We concur with the authors of [15], and strengthen their conclusion by devel-
oping a new sparse elimination algorithm which outperforms all other techniques
in some cases, including several large matrices which could only be processed by
an iterative algorithm.

Lastly, it is well-known that both methods can be combined: performing one
step of elimination reduces the size of the “remaining” matrix (the Schur comple-
ment) by one, while increasing the number of non-zeros. This may decrease the
time complexity of running an iterative method on the Schur complement. This
strategy can be implemented as follows: “While the product of the number of re-
maining rows and remaining non-zeros decreases, perform an elimination step ;
then switch to an iterative method ”. For instance, one phase of the record-setting
factorization of a 768-bit number [20] was to find a few vectors on the kernel
of a 2 458 248 361 × 1 697 618 199 very sparse matrix over F2 (with about 30
non-zero per row). A first pass of elimination steps (and discarding “bad” rows)
reduced this to a roughly square matrix of size 192 796 550 with about 144 non-
zero per row. A parallel implementation of the block-Wiedemann [7] algorithm
then finished the job. The algorithm presented in this paper lends itself well to
this hybridization.

1.1 Our contribution

Our original intention was to check whether the conclusions of [15] could be
refined by using more sophisticated sparse elimination techniques used in the
numerical world. To do so, we developed the SpaSM software library (SPArse
Solver Modulo p). Its code is publicly available in a repository hosted at:

https://github.com/cbouilla/spasm

Our code is heavily inspired by CSPARSE (“A Concise Sparse Matrix Package
in C ”), written by Davis and abundantly described in his book [9]. We modified
it to work row-wise (as opposed to column-wise), and more importantly to deal
with non-square or singular matrices. At its heart lies a sparse LU factorization

https://github.com/cbouilla/spasm
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algorithm. It is capable of computing the rank of a matrix, but also of solving
linear systems (and, with minor adaptations, of computing the determinant,
finding a basis of the kernel, etc.).

We used this as a playground to implement the algorithms described in this
paper —as well as some other, less successful ones. This was necessary to test
their efficiency in practice. We benchmarked them using matrices from Dumas’s
collection [16], and compared them with the algorithms used in [15], which are
publicly available inside the LinBox library. This includes a right-looking sparse
gaussian elimination, and the Wiedemann algorithm.

There are several cases where the algorithm described in section 3 achieve
a 1000× speedup compared to previous algorithms. In particular, it systemati-
cally outperforms the right-looking sparse gaussian elimination implemented in
LinBox.

It is capable of computing the rank of several of the largest matrices from [16],
where previous elimination algorithms failed. In these cases, it vastly outperforms
the Wiedmann algorithm. In a striking example, two computations that required
two days with the Wiedemann algorithm could be performed in 30 minutes and
30 seconds respectively using the new algorithm. More complete benchmark
results are given in section 4.

We relied on three main ideas to obtain these results. First, we built upon
GPLU [19], a left-looking sparse LU factorization algorithm. We then used a
simple pivot-selection heuristic designed in the context of Gröbner basis compu-
tation [18], which works well with left-looking algorithms. On top of these two
ideas, we designed a new, hybrid, left-and-right looking algorithm.

Our intention is not to develop a competitor sparse linear algebra library; we
plan to contribute to LinBox, but we wanted to check the viability of our ideas
first.

1.2 Related Work

Sparse Rank Computation mod p. Our starting point was [15], where a
right-looking sparse gaussian elimination and theWiedemann algorithm are com-
pared on many benchmark matrices. [23,24] consider the problem of large dense
matrices of small rank modulo a very small prime, while [25] shows that most
operations on extremely sparse matrices with only two non-zero entries per row
can be performed in time O (n). [17] discusses sparse rank computation of the
largest matrices of our benchmark collection by various methods. The largest
computation were performed with a parallel block-variant of the Wiedemann
algorithm.

Direct Methods in the Numerical World. A large body of work has
been dedicated to sparse direct methods by the numerical computation com-
munity. Direct sparse numerical solvers have been developped during the 1970’s,
so that several software packages were ready-to-use in the early 1980’s (MA28,



4 Charles Bouillaguet and Claire Delaplace

SPARSPAK, YSMP, ...). For instance, MA28 is an early “right-looking” (cf. sec-
tion 2) sparse LU factorization code described in [12,13]. It uses Markowitz
pivoting [22] to choose pivots in a way that maintains sparsity.

Most of these direct solvers start with a symbolic analysis phase that ignores
the numerical values and just examines the pattern of the matrix. Its purpose is
to predict the amount of fill-in that is likely to occur, and to pre-allocate data
structures to hold the result of the numerical computation. The complexity of
this step often dominated the running time of early sparse codes. In addition, an
important step was to choose a priori an order in which the rows (or columns)
were to be processed in order to maintain sparsity.

Sparse linear algebra often suffers from poor computational efficiency, be-
cause of irregular memory accesses and cache misses. More sophisticated direct
solvers try to counter this by using dense linear algebra kernels (the BLAS and
LAPACK) which have a much higher FLOP per second rate.

The supernodal method [6] does this by clustering together rows (or columns)
with similar sparsity pattern, yielding the so-called supernodes, and process-
ing them all at once using dense techniques. Modern supernodal codes include
CHOLDMOD [5] (for Cholesky factorization) and SuperLU [11]. The former is
used in Matlab on symmetric positive definite matrices.

In the same vein, the multifrontal method [14] turns the computation of a
sparse LU factorization into several, hopefully small, dense LU factorizations.
The starting point of this method is the observation that the elimination of a
pivot creates a completely dense submatrix in the Schur complement. Contem-
porary implementations of this method are UMFPACK [8] and MUMPS [1]. The
former is also used in Matlab in non-symmetric matrices.

Finally, “left-looking” algorithms are those that do not explicitly compute
the Schur complement during the sparse factorization. This is for instance the
case of SPARSPAK cited earlier. A very interesting algorithm, referred to as
GPLU [19], computes an LU factorization in time proportionnal to the number
of arithmetic operations needed to compute the product L × U (assuming the
zeros are not stored). In particular, the symbolic part of the factorization does
not dominate the numerical part asymptotically. This algorithm is implemented
in Matlab, and is used for very sparse unsymmetric matrices. It is also the heart
of the specialized library called KLU [10], dedicated to circuit simulation.

Direct Methods Modulo p. The world of exact sparse direct methods is much
less populated. Besides LinBox, we are not aware of many implementations of
sparse gaussian elimination capable of computing the rank of a matrix modulo p.
According to its handbook, the MAGMA [2] computer algebra system computes
the rank of a sparse matrix by first performing sparse gaussian elimination with
Markowitz pivoting, then switching to a dense factorization when the matrix
becomes dense enough. The Sage [28] system uses LinBox.

Some specific applications rely on exact sparse linear algebra. All competitive
factoring and discrete logarithms algorithms work by finding a few vectors in the
kernel of a large sparse matrix. Some controlled elimination steps are usually
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performed, which makes the matrix smaller and denser. This has been called
“structured gaussian elimination” [21]. The process can be continued until the
matrix is fully dense (after which it is handled by a dense solver), or stopped
earlier, when the resulting matrix is handled by an iterative algorithm. The
current state-of-the-art factoring codes, such as CADO-NFS [26], seem to use the
sparse elimination techniques described in [4].

Modern Gröbner basis algorithms work by computing the reduced row-echelon
form of particular sparse matrices. An ad hoc algorithm has been designed, ex-
ploiting the mostly triangular structure of these matrices to find pivots without
performing any computation [18]. An open-source implementation, GBLA [3], is
available.

2 Sparse LU Factorization

In this section we discuss algorithms to compute a sparse LU factorization of a
matrix A of size n×m over a finite field. The techniques described in this paper
could in principle work over any field; for the sake of simplicity we focus on the
case of integers modulo a prime p that fits into a machine integer.

2.1 Definitions and Notations

We recall here some usefull definitions. A is an n-by-m matrix and its (unknown)
rank is denoted by r.

Because A is rectangular, we consider the PLUQ factorization of A where
L is n-by-r and lower-trapezoidal with a unit diagonal, U is r-by-m and upper-
trapezoidal with a non-zero diagonal and P (resp. Q) is a permutation over the
rows (resp. columns) of A. Computing a PLUQ factorization essentially amounts
to performing gaussian elimination. We recall the usual (dense) algorithm: at
each step i, choose a coefficient aik 6= 0 called the pivot and “eliminate” every
coefficients under it by adding suitable multiples of row i to the rows below.
This method is said to be right-looking, because at each step it accesses the
data stored in the bottom-right of A (shaded aera in figure 1a). This contrasts
with left-looking algorithms (or the up-looking row-by-row equivalent described
in section 2.3), that accesses the data stored in the left of L (respectively in the
top of U) represented by the shaded aera in figure 1b (1c).

If we assume that we have performed some steps of the PLUQ decomposition,
then we have

PAQ =

(
A00 A01

A10 A11

)
,

such that A00 is square, nonsingular and can be factored as A00 = L00 · U00. It
leads to the following factorization of A :

PAQ =

(
L00

L10 I

)
·
(
U00 U10

S11

)
,
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L
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(a) right-looking

L

U

A

(b) left-looking

L
U

A

(c) up-looking

Fig. 1: Data access pattern of several PLUQ factorization algorithms. The dark
area is the echelonization front. While the algorithm processes, they only access
data in the shaded area.

where L10 = A10U
−1
00 , U01 = L−1

00 A01 and S11 = A11 − A10A
−1
00 A01 is the Schur

Complement of A11 in A. It is represented by S in figure 1a.

2.2 The Classical Right-Looking Algorithm

LinBox implements a sparse gaussian elimination that only computes U (and
not L) which is a straightforward adaptation of the classical (dense) algorithm
to sparse data structures: find a pivot, permute the rows and columns to move
the pivot to the diagonal, eliminate all the entries below the pivot, repeat. In
LinBox’s gaussian elimination code, a sparse matrix is an array of sparse vectors;
a sparse vector is a dynamic array of (column index, coefficient) pairs, sorted
by column indices. This dynamic array is essentially a std::vector object from
the C++ STL.

This is very similar to the early MA28, except that in MA28, sparse vectors are
unordered. Also, MA28 implements full Markowitz pivoting (greedily choosing the
pivot that minimises fill-in in the Schur complement), while LinBox implements
a faster relaxation thereof. Note that choosing the next pivot takes time Ω(n),
so that the complexity of the whole process is lower-bounded by Ω(n2). This is
suboptimal in some cases (e.g. tridiagonal matrices).

2.3 The Left-Looking GPLU Algorithm.

The GPLU Algorithm was introduced by Gilbert and Peierls in 1988 [19]. It is
also abundantly described in [9], up to implementation details. During the k-th
step, the k-th column of L and U are computed from the k-th column of A
and the previous columns of L. The algorithm thus only accesses data on the
left of the echelonization front, and the algorithm is said to be “left-looking”.
It does not compute the Schur complement at each stage. We implemented a
row-by-row (as opposed to column-by-column) variant of this method which is
then “up-looking”.
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The main idea behind the algorithm is that the next row of L and U can
both be computed by solving a triangular system. If we ignore row and col-
umn permutations, this can be derived from the following 3-by-3 block matrix
expression : L00

l10 1
L20 l21 L22

U00 u01 U02

u11 u12

U22

 =

A00 a01 A02

a10 a11 a12
A20 a21 A22

 .

Here (a10 a11 a12) is the k-th row of A. L is assumed to have unit diagonal.
Assume we have already computed (U00 u01 U02), the first k rows of U . Then
we have: (

l10 u11 u12

)
·

U00 u01 U02

1
Id

 =
(
a01 a11 a21

)
. (1)

Thus, the whole PLUQ factorization can be performed by solving a sequence of
n sparse triangular systems.

Sparse Triangular Solving. To make the above idea work, we need to solve
efficiently x ·U = b, where U is a sparse matrix stored by rows, and b is a sparse
vector (a row of A). The main trick of the GPLU algorithm is that it is possible
to determine the sparsity pattern of x without performing any kind of numerical
computation.

Theorem 1 (Gilbert and Peierls [19]). Define the directed graph GU =
(V,E) with nodes V = {1 . . .m} and edges E = {(i, j)|uij 6= 0}. Let ReachU (i)
denote the set of nodes reachable from i via paths in GU and for a set B, let
ReachU (B) be the set of all nodes reachable from any nodes in B. The non-zero
pattern X = {j|xj 6= 0} of the solution x to the sparse linear system x ·U = b is
given by X = ReachU (B), where B = {i|bi 6= 0}, assuming there is no numerical
cancellation.

xi

xj
uii

uij

ujj

Fig. 2: The presence of xi and of uij entails that of xj in x.

This is due to the fact that xj can only be non-zero if either (1) bj is non-
zero, or (2) there is a node i such that xi 6= 0 and uij 6= 0 as shown in figure 2.
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Thus, X can be determined by performing a graph traversal in GU starting from
each node of B. If we perform a depth-first search, then we will naturally obtain
X sorted in topological order : if uij 6= 0, then i comes up before j in X . This
enables the following efficient procedure to compute x:
1: Scatter b into a (dense) working array w, initially filled with 0.
2: for all i ∈ X in topological order do
3: wi ← wi/uii
4: for all j > i such that uij 6= 0 do
5: wj ← wj − wiuij

6: Gather x (get wi for i ∈ X ), and reset w.

A striking feature of this triangular solver is that it may terminate in constant
time in some cases (for instance if U is bidiagonal, and b has only a constant
number of entries). In addition, the complexity of finding X is of the same order
as that of the numerical computation of x once X is known: each iteration of
line 5 in the above pseudo-code corresponds to the crossing of an edge in GU

during the construction of X . This holds well in our implementation: computing
X consistenty requires 25% of the time needed to compute x.

Selecting the Pivots. For the triangular systems to have a solution, we need to
make sure that the diagonal coefficient of U (the pivots) are non-zero. However,
while solving the system (1), we may find u11 = 0. There are two possible cases:
(1) If u11 = 0 and u12 6= 0, then we can permute the column j0 where u11 is
with another one j1, such that j0 < j1. (2) If u11 = 0 and u12 = 0, then there is
no way we can permute the columns of U to bring a non-zero coefficent on the
diagonal. This means that the current row of A is a linear combinations of the
previous rows. When the factorization is done, the number of non-empty rows
of U is the rank r of the matrix A.

Useful Heuristics. Right-looking algorithms have the possibility to choose the
next pivot by exploiting knowledge of the Schur complement (this is typically
what Markowitz pivoting is about). On the other hand, the only information
available to left-looking algorithms such as GPLU to choose pivots is the origi-
nal matrix, and the part of U that has already been computed. It is possible to
choose an a priori order in which to process the rows of the matrix in order to
keep U as sparse as possible. Many different strategies have been designed to do
so in the numerical world: the (approximate) minimum degree algorithm, nested
dissection, etc. The problem is that these algorithms are mostly adapted to sym-
metric matrices, and a fortiori to square matrices. They are usually retrofitted
to the unsymmetric case by applying them to ATA, which is square and sym-
metric. However, when A is very rectangular, this becomes completely dense and
provide little useful information.

We instead implemented a much simpler heuristic inspired from an echel-
onization procedure dedicated to Gröbner basis computation by Faugère and
Lachartre [18]. We map each row to the column of its leftmost coefficient. When
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several rows have the same leftmost coefficient, we select the sparsest row. We
then move the selected rows before the others and sort them by increasing po-
sition of the left-most coefficient. As a result, the leftmost coefficient of each
row cannot occur in any selected row below it. It follows that the selected rows
are copied as-is into U , with zero fill-in. This is particularly well-suited to the
GPLU algorithm, because this keeps U as sparse as possible; this in turn makes
the triangular solver fast.

Also, we observed that it can be beneficial to compute the rank of the trans-
pose of the matrix. Indeed, U has size r ×m, so when m is much larger than
n, transposing the matrix before starting the computation ensures than U is
smaller. More often than not this decreases the running time of the factoriza-
tion (on the matrices from [16]). Lastly, we note that the running time of the
right-looking algorithm implemented in LinBox is usually not the same on A and
AT .

We also implemented a simple early abort test which is performed when
sufficiently many rows have been processed without finding any new pivot. A
random linear combination of the remaining rows is computed; if it belongs to
the row-space of U , then no new pivot will be found in the remaining rows with
probability greater than 1−1/p. This test can be repeated to increase its success
probability exponentially.

2.4 Left or Right?

The two algorithms presented in this section are incomparable. We illustrate this
by exhibiting two situations where each one consistently outperforms the other.
We generated two random matrices with different properties (situations A and B
in table 1). The entries of matrix A are identically and independently distributed.
There are zero with probability 99%, and chosen uniformly at random modulo
p otherwise. GPLU terminates very quickly in this case because it only process
the first ≈ 1000 rows before stopping, having detected that the matrix has full
column-rank.

In matrix B, one row over 1000 is random (as in matrix A), and the 999
remaining ones are sparse linear combination of a fixed set of 100 other random
sparse rows (as in matrix A). The right-looking algorithm discovers these linear
combinations early and quickly skip over empty rows in the Schur complement.
On the other hand, GPLU has to work its way thoughout the whole matrix. Sec-
tion 4 contains further “real” examples where an algorithm clearly outperforms
the other.

Matrix rows columns non-zero rank Right-Looking (LinBox) GPLU (SpaSM)
A 100 000 1 000 995 076 1000 3.0 0.02
B 100 000 1 000 4 776 477 200 1.7 9.5

Table 1: Running time (in seconds) of the two algorithms on extreme cases.
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3 A New Hybrid Algorithm

The right-looking algorithm enjoys a clear advantage in terms of pivot selection,
because it has the possibility to explore the Schur complement. The short-term
objective of pivot selection is to keep the Schur complement sparse.

In GPLU pivot selection has to be done “in the dark”, with the short-term
objective to keep U sparse (since this keeps the triangular solver fast). However,
GPLU performs the elimination steps very efficiently.

In this section, we present a new algorithm that combines these two strong
sides. It usually outperforms both the classical right-looking elimination and
GPLU. The new algorithm works as follows:

1. Use the Faugère-Lachartre heuristic to find as many pivots as possible in A.
2. Compute the Schur complement S with respect to these pivots, using GPLU.
3. Compute the rank of S by any mean (including recursively).

Pivot Selection. As in the right-looking algorithm, we begin by exploring the
matrix looking for pivots. However, instead of choosing only one, we try to pick
as many as possible. For this, we use the Faugère-Lachartre heuristic described in
section 2.3: it finds a sequence of k rows such that the leftmost coefficient of each
rows does not appear in any subsequent row. It can thus be chosen as a pivot.
Those specific rows are copied as-is into U without any arithmetic operation.
The cost of this step is that of iterating over the entries of A.

Schur Complement. We then compute the Schur complement S with respect
to the chosen pivots. This amounts to eliminating every entries below the cho-
sen pivots. The left-looking side of the combination is that we use the GPLU
algorithm to compute the Schur complement.

If we denote by P the permutation of the rows of A that “pushes” this well-
chosen set of linearly independant rows at the top of A and if we ignore the
permutation over the columns of A, the PLU factorization of A can be repre-
sented by the following 2-by-2 block matrix expression :

PA =

(
U00 U01

A10 A11

)
=

(
Id
L10 L11

)
·
(
U00 U01

U11

)
,

where (U00 U01) is the part of U provided by the Faugère-Lachartre heuristic.
What we need is S = A11 − A10U

−1
00 U01, the Schur Complement of A with

respect to U00. We compute S row-by-row. To obtain the ith row si of S, denote
by (ai0 ai1) the ith row of (A10 A11) and consider the following system:

(x0 x1) ·
(
U00 U01

Id

)
= (ai0 ai1)

We get x1 = ai1 − x0U01 = ai1 − ai0U
−1
00 U01. From the definition of S, it

follows that x1 = si. Thus S can be computed by a sequence of sparse triangular
solve. Because we chose U to be as sparse as possible, this process is fast. It can
also be parallelized efficiently: all the rows of S can be computed independently.
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Computing the Rank of S. Once the Schur complement S has been com-
puted, it remains to find its rank. Several options are possible. If S is sparse, we
can either use the same technique recursively, or switch to GPLU, or switch to
the Wiedemann algorithm. If S is small and dense, we switch to dense gaussian
elimination. If S is big and dense, we abort and report failure.

In the first case, where several options are possible, some guesswork is re-
quired to find the best course of action. By default, we found that allowing
only a limited number of recursive calls (usually less than 10, often 3) and then
switching to GPLU yields good results.

Tall and Narrow Schur Complement. It is beneficial to consider a special
case in the above procedure, when S has much more rows than columns (we
transpose S if it has much more columns than rows). This happens in particular
in the favorable situation where the Faugère-Lachartre heuristic finds almost all
possible pivots, and only very few remain to be found.

This situation can be detected as soon as the pivots have been selected,
because we known that S has size (n − k) × (m − k). In this case where S is
very tall and very narrow, it is wasteful to compute S entirely. Many well-known
techniques can be applied to obtain its rank by looking only at a fraction of
its entries (see [24]). For instance, a naïve solution consists in choosing a small
constant ε, building a dense matrix of size (m − k + ε) × (m − k) with random
(dense) linear combinations of the rows of S, and computing its rank using dense
linear algebra. A linear combination of the rows of S can be formed by taking
a random linear combinations of the rows of A, and then solving a triangular
system, just like before.

4 Implementation and Results

All the experiments we carried on an Intel core i7-3770 with 8GB of RAM.
Only one core was ever used. We used J.-G. Dumas’s Sparse Integer Matrix
Collection [16] as benchmark matrices. We restricted our attention to the 660
matrices with integer coefficients. Most of these matrices are small and their
rank is easy to compute. Some others are pretty large. In all cases, their rank
is known, as it could always be computed using the Wiedemann algorithm. We
fixed p = 42013 in all tests.

Our implementation is quite straightforward. Matrices are stored in Com-
pressed Sparse Row format. Coefficients are stored in int variables, and are
reduced modulo p after each multiplication.

Sparse Elimination: Right-looking vs GPLU We first compare the efficien-
cies of the right-looking gaussian elimination algorithm implemented in LinBox
and our implementation of the GPLU algorithm. LinBox uses its Markowitz-like
pivot selection, while SpaSM uses its default setting : transposing the matrix if
it has more columns than rows, and using the Faugère-Lachartre heuristic to
select pivots before actually starting the factorization.
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We quickly observed that no algorithm is always consistently faster than the
other ; one may terminate instantly while the other may run for a long time
and vice-versa. In order to perform a systematic comparison, we decided to set
an arbitrary threshold of 60 seconds, and count the number of matrices that
could be processed in this much time. LinBox could dispatch 579 matrices, while
SpaSM processed 606. Amongst these, 568 matrices could be dealt with by both
algorithms in less than 60s. This took 1100s to LinBox and 463s to SpaSM. LinBox
was faster 112 times, and SpaSM 456 times. These matrices are “easy” for both
algorithms, and thus we will not consider them anymore.

Table 2 shows the cases where one algorithm took less than 60s while the other
took more. There are cases where each of the two algorithm is catastrophically
slower than the other. In some cases, a bug made the LinBox test program crash
with a segmentation fault. We conclude there is no clear winner (even if GPLU
is usually a bit faster. The hybrid algorithm described in section 3 outperforms
both.

Matrix Right-looking GPLU Hybrid
Franz/47104x30144bis 39 488 1.7
G5/IG5-14 0.5 70 0.4
G5/IG5-15 1.6 288 1.1
G5/IG5-18 29 109 8
GL7d/GL7d13 11 806 0.3
GL7d/GL7d24 34 276 11.6
Margulies/cat_ears_4_4 3 184 0.1
Margulies/flower_7_4 7.5 667 2.5
Margulies/flower_8_4 37 9355 3.7
Mgn/M0,6.data/M0,6-D6 45 8755 0.1
Homology/ch7-8.b4 173 0.2 0.2
Homology/ch7-8.b5 611 45 10.7
Homology/ch7-9.b4 762 0.4 0.4
Homology/ch7-9.b5 3084 8.2 3.4
Homology/ch8-8.b4 1022 0.4 0.5
Homology/ch8-8.b5 5160 6 2.9
Homology/n4c6.b7 223 0.1 0.1
Homology/n4c6.b8 441 0.2 0.2
Homology/n4c6.b9 490 0.3 0.2
Homology/n4c6.b10 252 0.3 0.2
Homology/mk12.b4 72 9.2 1.5
Homology/shar_te2.b2 94 1 0.2
Kocay/Trec14 80 31 4
Margulies/wheel_601 7040 4 0.3
Mgn/M0,6.data/M0,6-D11 722 0.4 0.6
Smooshed/olivermatrix.2 75 0.6 0.1

Table 2: Comparison of sparse elimination techniques. Times are in seconds.
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A reviewer asked a comparison with GBLA [3]. This is difficult, because GBLA
is tailored for matrices arising in Gröbner basis computations, and exploit their
specific shape. For instance, they have (hopefully small) dense areas, which GBLA
rightly store in dense data structures. This phenomenon does not occur in our
benchmark collection, which is ill-suited to GBLA. GBLA is nevertheless undoubt-
edly more efficient on Gröbner basis matrices.

Direct Methods vs Iterative Methods. We now turn our attention to the
remaining matrices of the collection, the “hard” ones. Some of these are yet
unamenable to any form of elimination, because they cause too much fill-in.
However, some matrices can be processed much faster by our hybrid algorithm
than by any other existing method.

For instance, relat9 is the third largest matrix of the collection; computing
its rank takes a little more than two days using the Wiedemann algorithm.
Using the “Tall and Narrow Schur Complement” technique described above, the
hybrid algorithm computes its rank in 34 minutes. Most of this time is spent in
forming a size-8937 dense matrix by computing random dense linear combination
of the 9 million remaining sparse rows. The rank of the dense matrix is quickly
computed using the Rank function of FFLAS-FFPACK [27]. A straightforward
parallelization using OpenMP brings this down to 10 minutes using the 4 cores
of our workstation (the dense rank computation is not parallel). The same goes
for the rel9 matrix, which is similar.

The rank of the M0,6-D9 matrix, which is the 9-th largest of the collection,
could not be computed by the right-looking algorithm within the limit of 8GB
of memory. It takes 42 hours to the Wiedemann algorithm to find its rank. The
standard version of the hybrid algorithm finds it in less than 30 seconds.

The shar_te.b3 matrix is an interesting case. It is a very sparse matrix of
size 200200 with only 4 non-zero entries per row. Its rank is 168310. The right-
looking algorithm fails, and the Wiedemann algorithm takes 3650s. Both GPLU
and the hybrid algorithm terminate in more than 5 hours. However, performing
one iteration of the hybrid algorithm computes a Schur complement of size
134645 with 7.4 non-zero entries per row on average. We see that the quantity
n|A|, a rough indicator of the complexity of iterative methods, decreases a little.
Indeed, computing the rank of the first Schur complement takes 2422s using the
Wiedemann algorithm. This results in a 1.5× speed-up.

All-in-all, the hybrid algorithm is capable of quickly computing the rank
of the 3rd, 6th, 9th, 11th and 13th largest matrices of the collection, whereas
previous elimination techniques could not. Previously, the only possible option
was the Wiedemann algorithm. The hybrid algorithm allows for large speedup
of 100×, 1000× and 10000× in these cases.

Acknowledgement Claire Delaplace was supported by the french ANR under
the BRUTUS project. We thank the anonymous reviewers for their comments.
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Matrix n m |A| Right-looking Wiedemann Hybrid
kneser_10_4 349651 330751 992252 923 9449 0.1
mk13.b5 135135 270270 810810 M.T. 3304 41
M0,6-D6 49800 291960 1066320 42 979 0.1
M0,6-D7 294480 861930 4325040 2257 20397 0.8
M0,6-D8 862290 1395840 8789040 20274 133681 7.7
M0,6-D9 1395480 1274688 9568080 M.T. 154314 27.6
M0,6-D10 1270368 616320 5342400 22138 67336 42.7
M0,6-D11 587520 122880 1203840 722 4864 0.5
relat8 345688 12347 1334038 244 2
rel9 5921786 274667 23667185 127675 1204
relat9 9746232 274667 38955420 176694 2024

Table 3: Some harder matrices. Times are in seconds. M.T. stands for “Memory
Thrashing”
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