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]. In the frame of evolutionary algorithms, the use of chaotic sequences instead of random ones has been introduced by Caponetto and al.

, which is based on a new global locally averaged strategy. The simulation results are done in 2 and 3-dimension. In 2dimension the objective function possessing hundreds of local minima is used, in order to test this new method vs the previous one in very tough conditions. In 3-dimension both Griewank and Rosenbrock objective functions are tested. We emphasize improvement of the numerical optimization results.

Introduction

Chaos theory (the term chaos was coined par Li and Yorke [START_REF] Li | Period three implies chaos[END_REF]) is recognized as very useful in many engineering applications. An essential feature of chaotic systems is sensitive dependence on initial condition, (i.e. small changes in the parameters or the starting values for the data lead to drastically different future behaviors). Details about analysis of chaotic behavior can be found in [START_REF] Li | Period three implies chaos[END_REF][START_REF] Lozi | Un attracteur étrange? du type attracteur de Hénon[END_REF][START_REF] Strogatz | Nonlinear dynamics and chaos[END_REF][START_REF] Parker | Practical numerical algorithms for chaotic system[END_REF][START_REF] Alligood | Chaos: an introduction to dynamical systems[END_REF]. The application of chaotic sequences can be an interesting alternative to provide the search diversity in an optimization procedure. Due to the non-repetition of chaos, it can carry out overall searches at higher speeds than stochastic ergodic searches that depend on probabilities. A novel chaotic approach is proposed in [START_REF] Coelho | Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach[END_REF] based on Lozi map [START_REF] Lozi | Un attracteur étrange? du type attracteur de Hénon[END_REF] which is piecewise linear simplification of the Hénon map [START_REF] Hénon | A two dimensional mapping with a strange attractor[END_REF] and it admits strange attractors.

It is given by
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where k is the iteration number. In this work, the values of y are normalized in the range [0,1] to each decision variable in 2-dimensional space of optimization problem. This transformation is given by The COLM Algorithm
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In this section we briefly recall the algorithm of COLM introduced by L. S. Coelho [START_REF] Coelho | Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach[END_REF]. There are three steps in this algorithm. In the first one the variables and the initial conditions are initialized. The second step refers to the chaotic global search. It is mainly this second step which will be modified in our method. The last one deals with a local search in order to refine the result of the global search. As this step will be leaved unchanged we will present it in the next section. The chaotic search procedure (step 1 and 2) can be illustrated as follows:

The Figure 2 displays the representation of the chaotic search when the objective function is in dimension 2.

Improved COLM Method

The COLM method [START_REF] Shayeghi | Robust PSS Design using Chaotic Optimization Algorithm for a Multimachine Power System[END_REF][START_REF] Shayeghi | A PSO based Unified Power Flow Controller for Damping of Power System Oscillations[END_REF] is then improved by locally averaging the global search, doing few steps of chaotic local search around every point obtained by the chaotic series.

Heuristics: the global locally averaged strategy of Improved COLM leads to better results than COLM as shown on Fig. 3. In this figure only three global search results are displayed 
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The local search following the local-global one starts now from the best globally averaged result 4)) and leads to x .
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Figure 4 shows the Local refinement of each step of the global search. During the chaotic local search, the step  is an important parameter in convergence behavior of optimization. Hence, two different values of  are successively employed during the local search. We call this method ICOLM (improved COLM). Many unconstrained optimization problems with continuous variables can be formulated as the following functional optimization problem. 

Find X to minimize f(X), X = [x 1 , x 2 , …,x n ] Subject to , i i i x L U   .
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Where f is the objective function, and X is the decision solution vector consisting of n variables 𝑥 𝑖 ∈ 𝑅 𝑛 

A tough 2-D objective function

In order to test this new method vs. the previous one in very tough conditions the simulation results are done with the following 2-D objective function possessing hundreds of local minima: The function f which is very complex has several local minima.
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We test ICOLM on the search domain:

i 10 x 10    , i 1, 2 
.The essential feature of this benchmark function is that location of minima is not symmetric ( see Fig. 5,6). We display few of the results we have obtained showing the better optimization results obtained by this new method. In each case study, 48 independent runs were made for each of both the COLM and ICOLM methods involving 48 different initial trial conditions y 1 (0), y(0) (parameters of Lozi map).

For all studied cases, the four configurations, numbered from IC1 to IC4 and C1 to C4, that are used are presented in Tab. 1. The locally averaged strategy of ICOLM is illustrated on Fig. 7 on which the result of every step 2-2 is plotted.

Table 1:

The set of parameters values for every run on the benchmark suite defined in Sec. 4 and 5. The numerical results are given on table 2. A magnification of f 1 and the position of the minima in the region 

3-D Numerical results

ICOLM is again tested in dimension 3, with both following test functions in order to clarify its efficiency.

Griewank:
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in the search domain:

i 500 x 500    , i 1, 2,3  . Rosenbrock: 2 2 2 2 3 i 1 i i i1 f 1 100(x x ) ( 1 x )         (8) 
in the search domain:

i 2.048 x 2.048    , i 1, 2  .
Griewank's function has many irregularities but it has only one unique global minimum (See Fig. 10). The Rosenbrock's function is a non-convex function or Rosenbrock's banana function (See Fig 11). The global minimum is inside a long, narrow, parabolic shaped flat valley. To find the valley is trivial. To converge to the global minimum, however, is difficult.

The same cases described in Table 1 are used. The results are given in Table 3 for Grienwank's function and in Table 4 for Rosenbrock's function. 

Conclusion

In every test, with the same computational cost, ICOLM gives better results than COLM best values and Mean Best values but in one case. The presented study allows us to conclude that the proposed method is fast and converges to a good optimum. As we used a sampling mechanism to coordinate the research methods based on chaos theory, and we refined the final solution using a second method of local search. Further research is needed to gain more confidence and better understanding of the proposed methodology. The proposed algorithm has to be evaluated for a large number of test functions in higher dimension.
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 1 Figure 1: density of iterated values of y(k) of equation (1) over the interval [0, 1] split in 100 boxes for 10,000,000,000 iterated values.

Figure 2 :

 2 Figure 2: Scheme of global search in COLM. The space of variable is randomly explored by tossing random numbers for every variable.
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Figure 3 :

 3 Figure 3: Heuristics of the global locally-averaged strategy.

Figure 4 :

 4 Figure 4: Local refinement of each step of the global search involving both random and chaotic numbers.
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Figure 5 :

 5 Figure 5: plot of test function f 1 used in this study on the search domain i 10 x 10    , i 1, 2  .

Figure 6 :

 6 Figure 6: Position of the minima of f 1 in the search domain.

Figure 7 :

 7 Figure 7: Locally-averaged strategy of chaotic search. Results of every Step 2-2 for f 1 .
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 2 Comparison of algorithms COLM and ICOLM for f 1 .
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 8 Figure 8: magnification of Fig. 5.
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 9 Figure 9: magnification of Fig. 6.

Figure 10 :

 10 Figure 10: plot of test Grienwank's function used in this study.

Figure 11 :

 11 Figure 11: plot of test Rosenbrock's function used in this study.
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