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Abstract. Recently chaotic optimization algorithms as an emergent method of global 

optimization have attracted much attention in engineering applications. Their good 

performances have been emphasized [1, 2, 3, 12, 13]. In the frame of evolutionary algorithms, 

the use of chaotic sequences instead of random ones has been introduced by Caponetto and al. 

[4]. Since their original work, the literature on chaotic optimization is flourishing. They are 

used in the scope of tuning method for determining the parameters of PID control for an 

automatic regulator voltage, or in order to solve economic dispatch problems, or also for 

engineering design optimization and in many others physical, economical and biological 

problems. Different chaotic mapping have been considered, combined with several working 

strategies. The assessments of the algorithms have been done with respect to numerous 

objective functions in 1, 2 or 3-dimension. In this paper we present an improvement of the 

COLM (Chaotic Optimization based on Lozi Map) presented in [1], which is based on a new 

global locally averaged strategy. The simulation results are done in 2 and 3-dimension. In 2-

dimension the objective function possessing hundreds of local minima is used, in order to test 

this new method vs the previous one in very tough conditions. In 3-dimension both Griewank 

and Rosenbrock objective functions are tested. We emphasize improvement of the numerical 

optimization results. 
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1  Introduction 

Chaos theory (the term chaos was coined par Li and Yorke [5]) is recognized as very useful in 

many engineering applications. An essential feature of chaotic systems is sensitive 

dependence on initial condition, (i.e. small changes in the parameters or the starting values for 

the data lead to drastically different future behaviors). Details about analysis of chaotic 

behavior can be found in [5, 6, 7, 8, 9]. The application of chaotic sequences can be an 

interesting alternative to provide the search diversity in an optimization procedure. Due to the 

non-repetition of chaos, it can carry out overall searches at higher speeds than stochastic 
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ergodic searches that depend on probabilities. A novel chaotic approach is proposed in [1] 

based on Lozi map [6] which is piecewise linear simplification of the Hénon map [10] and it 

admits strange attractors. 

It is given by 

1 1

1

y ( k ) 1 a y ( k 1) by( k 1)

y( k ) y ( k 1)

     


 
  (1) 

where k is the iteration number. In this work, the values of y are normalized in the range [0,1] 

to each decision variable in 2-dimensional space of optimization problem. 

This transformation is given by 

 y( k )
z( k )



 





    (2) 

where  y 0.6418,0.6716  and   , 0.6418,0.6716     . The parameters used in this 

work are a = 1.7 and b = 0.5. Numerical computation leads to the density d(s) of iterated 

values of y(k) displayed on Fig. 1. In this figure, the density is normalized to 1 over the whole 

interval [0, 1] i.e. 

1

0
d( s )ds 1  

 

Figure 1: density of iterated values of y(k) of equation (1) over the 

interval [0, 1] split in 100 boxes for 10,000,000,000 iterated values. 
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Figure 2: Scheme of global search in COLM. The space of variable 

is randomly explored by tossing random numbers for every variable. 

 

2  The COLM Algorithm 

In this section we briefly recall the algorithm of COLM introduced by L. S. Coelho [1]. There 

are three steps in this algorithm. In the first one the variables and the initial conditions are 

initialized. The second step refers to the chaotic global search. It is mainly this second step 

which will be modified in our method. The last one deals with a local search in order to refine 

the result of the global search. As this step will be leaved unchanged we will present it in the 

next section. The chaotic search procedure (step 1 and 2) can be illustrated as follows: 

The Figure 2 displays the representation of the chaotic search when the objective function is 

in dimension 2. 
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3  Improved COLM Method 

The COLM method [14, 15] is then improved by locally averaging the global search, doing 

few steps of chaotic local search around every point obtained by the chaotic series. 

Heuristics: the global locally averaged strategy of Improved COLM leads to better results 

than COLM as shown on Fig. 3. In this figure only three global search results are displayed 

1x ( k ) , 2x ( k ) , 3x ( k ) with 

     2 3 1f x ( k ) f x ( k ) f x ( k ) 
   (3) 

 

 

Figure 3: Heuristics of the global locally-averaged strategy. 
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The local search following global one starts from the best global result 2x ( k )  (from (3)) and 

gives 2x ( k 1) . Instead the local-global search around 1x ( k ) , 2x ( k ) , and 3x ( k )  leads to 

1x ( k 1) , 2x ( k 1) , 3x ( k 1)  which verify 

     1 3 2f x ( k 1) f x ( k 1) f x ( k 1)         (4) 

The local search following the local-global one starts now from the best globally averaged 

result 1x ( k 1)  (from(4)) and leads to x . 

 1f ( x ) f x ( k 1)      (5) 

Figure 4 shows the Local refinement of each step of the global search. During the chaotic 

local search, the step   is an important parameter in convergence behavior of optimization. 

Hence, two different values of   are successively employed during the local search. We call 

this method ICOLM (improved COLM). Many unconstrained optimization problems with 

continuous variables can be formulated as the following functional optimization problem. 

Find X to minimize f(X), X = [x1, x2, …,xn] Subject to ,i i ix L U   . 

 

 
 

Figure 4: Local refinement of each step of the global search involving 

both random and chaotic numbers. 

 

U2 

U1 

L2 

L1 

Rand × 2 ×. z2(s) 

Global 

-Rand × 1 ×. z1(s) Rand × 1 ×. z1(s) 

Rand × 1 ×. z1(s+1) 

Rand × 1 ×. z1(s+2) 
Global-Local 



6 
 

Where f is the objective function, and X is the decision solution vector consisting of n 

variables 𝑥𝑖 ∈ 𝑅𝑛 bounded by lower i( L )  and upper limits i(U ) . The ICOLM can be 

illustrated as follows: 

Inputs: 

Mg : max number of iterations of chaotic Global search. 

Ml : max number of iterations of chaotic Local search. 

1glM : max number of iter of chaotic Local search in Global search. 

2glM : max number of iter of chaotic Local search in Global search. 

 
1 2g gl gl lM M M M   : stopping criterion of chaotic optimization method in iter. 

1gl : step size in first global-local search. 

2gl : step size in second global-local search. 

  step size in chaotic local search. 

Outputs: 

X : best solution from current run of chaotic search. 

f : best objective function (minimization problem). 

 

4  A tough 2-D objective function 

In order to test this new method vs. the previous one in very tough conditions the simulation 

results are done with the following 2-D objective function possessing hundreds of local 

minima: The function f which is very complex has several local minima. 

 

4 2 4 2 2 2

1 1 1 1 2 2 2 1 2 1 1 2 2f x 7x 3x x 9x 5x 11x x 99 sin(71x ) 137 sin( 97x x ) 131sin( 51x )           (6) 

 

We test ICOLM on the search domain: i10 x 10   , i 1, 2 .The essential feature of this 

benchmark function is that location of minima is not  symmetric ( see Fig. 5, 6). 
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Figure 5: plot of test function f1 used in this study on the search 

domain i10 x 10   , i 1, 2 . 

 

Figure 6: Position of the minima of f1 in the search domain. 
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We display few of the results we have obtained showing the better optimization results 

obtained by this new method. In each case study, 48 independent runs were made for each of 

both the COLM and ICOLM methods involving 48 different initial trial conditions y1(0), y(0) 

(parameters of Lozi map). 

For all studied cases, the four configurations, numbered from IC1 to IC4 and C1 to C4, that 

are used are presented in Tab. 1. The locally averaged strategy of ICOLM is illustrated on Fig. 

7 on which the result of every step 2-2 is plotted.  

Table 1: The set of parameters values for every run on the benchmark suite defined in Sec. 4 

and 5. 

 

 

 

 

Figure 7: Locally-averaged strategy of chaotic search. Results of every Step 2-2 for f1. 
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The numerical results are given on table 2. A magnification of f1 and the position of the 

minima in the region 10.4 x 0.8  , 20.3 x 0.6   is displayed on Figs. 8, 9. 

 

Table 2: Comparison of algorithms COLM and ICOLM for f1. 

 

 

 

 

 

Figure 8: magnification of Fig. 5. 
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Figure 9: magnification of Fig. 6. 

 

5 3-D Numerical results 

ICOLM is again tested in dimension 3, with both following test functions in order to clarify 

its efficiency. 

Griewank: 
23 3
i i

2

i 1 1

x x
f 1 cos

4000 i

      (7) 

 

in the search domain: i500 x 500   , i 1, 2,3 . 

Rosenbrock: 
2

2 2 2

3 i 1 i i

i 1

f 1 100(x x ) (1 x )



      (8)  

in the search domain: i2.048 x 2.048   , i 1, 2 . 

Griewank’s function has many irregularities but it has only one unique global minimum (See 

Fig. 10). The Rosenbrock’s function is a non-convex function or Rosenbrock's banana 

function (See Fig 11). The global minimum is inside a long, narrow, parabolic shaped flat 

valley. To find the valley is trivial. To converge to the global minimum, however, is difficult. 

The same cases described in Table 1 are used. The results are given in Table 3 for 

Grienwank's function and in Table 4 for Rosenbrock's function. 
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Figure 10: plot of test Grienwank's function used in this study. 

   

 

Figure 11: plot of test Rosenbrock's function used in this study. 
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Table 3: Comparison of algorithms COLM and ICOLM for f2. 

 

 

Table 4: Comparison of algorithms COLM and ICOLM for f3. 
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6  Conclusion 

In every test, with the same computational cost, ICOLM gives better results than COLM best 

values and Mean Best values but in one case. The presented study allows us to conclude that 

the proposed method is fast and converges to a good optimum. As we used a sampling 

mechanism to coordinate the research methods based on chaos theory, and we refined the 

final solution using a second method of local search. Further research is needed to gain more 

confidence and better understanding of the proposed methodology. The proposed algorithm 

has to be evaluated for a large number of test functions in higher dimension. 
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