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Local exact controllability of the

2D-Schrödinger-Poisson system

K. Beauchard ∗, C. Laurent †, ‡

Abstract

In this article, we investigate the exact controllability of the 2D-

Schrödinger-Poisson system, which couples a Schrödinger equation on a

bounded domain of R2 with a Poisson equation for the electrical potential.

The control acts on the system through a Neumann boundary condition

on the potential, locally distributed on the boundary of the space do-

main. We prove several results, with or without nonlinearity and with

di�erent boundary conditions on the wave function, of Dirichlet type or

of Neumann type.

1 Introduction

Microelectronics industry has driven transistor sizes to the nanometer scale.
This has led to the possibility of building nanostructures like single electron
transistors or single electron memories, which involve the transport of only a
few electrons. In general, such devices consist in an active region, on which the
electrical potential can be tuned by an electrode (the gate). In many applica-
tions, the performance of the device will depend on the possibility of controlling
the electrons by acting on the gate voltage.

At the nanometer scale, quantum e�ects become important and a quantum
transport model is necessary. In this paper, we analyze the controllability of a
simpli�ed mathematical model, of the quantum transport of electrons trapped
in a two-dimensional device. The model consists in a single Schrödinger equa-
tion, on a 2D bounded domain, coupled to the Poisson equation for the electrical
potential. The control acts on the system through a Neumann boundary con-
dition on the pontential, on a part of the boundary, modelling the gate. Such a
model has already been studied in [26] for controllability purposes.

It would be physically relevant to impose Dirichlet boundary conditions on
the wave function and to take into account the self-consistent potential model-
ing interactions between electrons. However, the mathematical analysis of this
con�guration is quite complicated, thus we investigate two simpler con�gura-
tions:
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1. a �rst con�guration, in which Dirichlet boundary conditions are imposed
on the wave function, but we neglect the self-consistent potential,

2. a second con�guration, in which we take into account the self-consistent
potential, but Neumann boundary conditions are imposed on the wave
function.

This work is a �rst step towards more realistic models.

1.1 Linear PDE with Dirichlet boundary conditions

First, we consider the system

(
i∂t + ∆

)
ψ(t, x) = v(t, x)ψ(t, x) , (t, x) ∈ (0, T )× Ω ,

ψ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
ψ(0, x) = ψ0(x) x ∈ Ω ,
(−∆ + 1)v(t, x) = 0 , (t, x) ∈ (0, T )× Ω ,
∂νv(t, x) = g(t, x)1Γc(x) (t, x) ∈ (0, T )× ∂Ω ,

(1)

where Ω is a bounded open subset of R2, Γc is an open subset of ∂Ω and 1Γc

is its characteristic function. The control is the real valued function g and we
want to control the wave function ψ.

1.1.1 De�nitions and notations

We denote by 〈., .〉 the complex valued scalar product on L2(Ω,C),

〈f, g〉 :=

∫
Ω

f(x)g(x)dx ,

by S the L2(Ω,C)-sphere

S := {ξ ∈ L2(Ω,C); ‖ξ‖L2(Ω) = 1} ,

by (−∆D) the Laplace operator associated with Dirichlet boundary conditions

D(−∆D) := H2 ∩H1
0 (Ω,C) , −∆Dξ := −∆ξ

by (λk)k∈N∗ the nondecreasing sequence of its eigenvalues, by (ϕk)k∈N∗ the
associated normalized eigenfunctions, −∆ϕk(x) = λkϕk(x) , x ∈ Ω ,

ϕk(x) = 0 , x ∈ ∂Ω ,
‖ϕk‖L2(Ω) = 1 ,

by H3
(0)(Ω) the Sobolev space

H3
(0)(Ω) := D

(
(−∆D)3/2

)
= {ξ ∈ H3 ∩H1

0 (Ω,C); ∆ξ ∈ H1
0 (Ω,C)} ,

and by PK , for K ∈ N∗, the projection

PK : H−1(Ω,C) → AdhH−1(Ω) (Span(ϕk; k > K))

ξ 7→ ξ −
∑K−1
k=1 〈ξ, ϕk〉H−1,H1

0
ϕk

where 〈., .〉H−1,H1
0
is the duality product between H−1(Ω) and H1

0 (Ω). We also
use the weak observability of the Schrödinger equation, de�ned below; several
con�gurations (Ω,Γc) for which it has been proved are recalled in Section 2.1.
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De�nition 1 (Observability and weak observability of Schrödinger equation).
Let Γ be an open subset of ∂Ω and 0 6 τ1 < τ2 <∞. The Schrödinger equation
on Ω is observable (resp. weakly observable) on (τ1, τ2)×Γ if there exists C0 > 0
such that

‖φT ‖H1
0 (Ω) 6 C0‖∂νφ‖L2((τ1,τ2)×Γ) , ∀φT ∈ H1

0 (Ω,C)(
resp. ‖φT ‖H1

0 (Ω) 6 C0
(
‖∂νφ‖L2((τ1,τ2)×Γ)+‖φT ‖H−1(Ω)

)
, ∀φT ∈ H1

0 (Ω,C)
)

(2)
where φ(t) := ei∆D(t−T )φT , i.e. φ is the solution of

(
i∂t + ∆

)
φ(t, x) = 0 , (t, x) ∈ (0, T )× Ω ,

φ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
φ(T, x) = φT (x) , x ∈ Ω .

(3)

The Schrödinger equation on Ω is observable (resp. weakly observable) on Γ if it
is observable (resp. weakly observable) on (τ1, τ2)×Γ for some 0 6 τ1 < τ2 <∞.

In the inequality (2), the last term ‖φT ‖H−1(Ω) may be equivalently replaced
by any term of the form ‖φT ‖Hs(Ω) with −1 < s < 1, by an interpolation
argument.

1.1.2 Local exact controllability of high frequencies

Our �rst result is the local exact controllability of high frequencies of system
(1), around any trajectory of the free system.

Theorem 1. Let Ω be a bounded open subset of R2, Γc be a non empty open
subset of ∂Ω, T > 0, ψ0 ∈ H3

(0)(Ω)∩S and ψref (t) := ei∆Dtψ0. We assume that

• [H1]: either Ω is of class C∞ and locally on one side of ∂Ω; or Ω =
(0, π)× (0, L) for some L > 0 and Γc does not contain any vertex of Ω,

• [H2]: the Schrödinger equation on Ω is weakly observable on (0, T̃ ) × Γc
for some T̃ ∈ (0, T ),

• [H3]: |∂νψref (t, x)| > m > 0 , ∀(t, x) ∈ (T ′, T ′′)×Γc for some T
′, T ′′ ∈

[0, T ] such that T ′′ − T ′ > T̃ .

Then, there exists K, δ > 0 and a C1-map

Υ : V → L2((0, T )× Γc,R)

where V := {ψf ∈ PK [H3
(0)(Ω,C)]; ‖ψf − PK [ψref (T )]‖H3

(0)
< δ}, such that

• Υ(PK [ψref (T )]) = 0,

• for every ψf ∈ V, the solution of (1) with control g = Υ(ψf ) satis�es
PK [ψ(T )] = ψf .

As a consequence, there exists K ′ > K and g ∈ L2((0, T )× Γc,R) such that the
solution of (1) satis�es PK′ [ψ(T )] = 0; in particular, x 7→ ψ(T, x) is a smooth
function.
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Such a result may be used to prove global exact controllability of the Schrödinger-
Poisson system in H3

(0)(Ω,C) with controls g ∈ L2((0, T ),R), by following the

strategy of [6]. This will be at the core of future works by the authors.

In particular, Theorem 1 applies, for arbitrary T > 0 and ψ0 ∈ H3
(0)(Ω)∩S,

when (see Propositions 1 and 2)

• Ω = (0, π)× (0, L) for some L > 0 and Γc contains both a horizontal and
a vertical segment,

• Ω is a disk and Γc is arbitrary.

Theorem 1 also applies when (Ω,Γc) satis�es the Geometric Control Condition,
for any T > 0 and ψ0 ∈ H3

(0)(Ω) ∩ S that satisfy [H3] (see Proposition 1).

Assumption [H1] is important for system (1) to be well-posed in H3
(0)(Ω)

with control g ∈ L2((0, T )× Γc,R) (see Section 3.4). When Ω is a rectangle, it
is important to assume that its vertices do not belong to Γc, in order to take
advantage of the usual elliptic regularity on the potential v.

1.1.3 Local exact controllability around an eigenstate

Our second result is the local exact controllability of system (1) around an
eigenstate.

Theorem 2. Let Ω be a bounded open subset of R2, Γc be an open subset of
∂Ω, T > 0, R ∈ N∗ and ψref (t) := ϕR(x)e−iλRt. We assume [H1], [H2],

• [H3']: |∂νϕR(x)| > m > 0 ,∀x ∈ Γc,

• [H4]: λR is a simple eigenvalue of (−∆D) and for any eigenvector Φ of
(−∆D), the solution w of{

(−∆ + 1)w(x) = ϕR(x)Φ(x) , x ∈ Ω ,
∂νw(x) = 0 , x ∈ ∂Ω ,

does not identically vanish on Γc: w 6= 0 on Γc.

Then, there exists δ > 0 and a C1-map

Υ : V → L2((0, T )× Γc,R)

where V := {(ψ0, ψf ) ∈ [H3
(0)(Ω,C)∩S]2; ‖ψ0−ψref (0)‖H3

(0)
+‖ψf−ψref (T )‖H3

(0)
<

δ}, such that Υ[ψref (0), ψref (T )] = 0 and, for every (ψ0, ψf ) ∈ V, the solution
of (1) with control g = Υ(ψ0, ψf ) satis�es ψ(T ) = ψf .

Note that, under assumption [H1], then assumption [H3'] systematically
holds with R = 1. The assumptions of Theorem 2 could look quite technical,
but roughly speaking the main assumptions are:

• the weak observability (Assumption [H2]), that ensures the controllability
of high frequencies, as in Theorem 1,

• the unique continuation property (Assumption [H4]), that ensures the
controllability of low frequencies, see Proposition 5).
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If [H2] holds, but [H4] is not satis�ed, then the linearised system around ψref
is not controllable: it misses a �nite number of directions corresponding to the
eigenfunctions Φ for which [H4] is not satis�ed, see Remark 2. It would be
interesting to recover these directions by power series expansions [17, Chapter
8].

Theorem 2 applies, in particular, when Ω = (0, π)×(0, L) for some L > 0, Γc
is an open subset of ∂Ω that contains both a horizontal and a vertical segment
and λR is a simple eigenvalue of (−∆D) (see Proposition 3).

The validity of Theorem 2 on the disk Ω = {(x, y) ∈ R2;x2 + y2 < 1} is
an open problem: cheking Assumption [H4] would require some study on the
product of Bessel functions, which might require lengthy computations.

Following arguments by Méhats, Privat and Sigalotti [26] (relying on meth-
ods of Privat-Sigallotti [33, 32]), it should be possible to prove that [H4] holds
generically with respect to the domain Ω. This becomes more clear with some
equivalent ways of expressing Assumption [H4] described in Proposition 4.

Assumption [H4] is quite unusual in control theory. It looks like a classical
unique continuation property for eigenfunctions but it does not seem that we
can refer to some already known results to prove it in great generality. We have
indeed chosen to discuss about it more precisely in Subsection 2.3.

In principle, it may be possible to state a Theorem of exact controllability
similar to Theorem 2 close to any reference trajectory ψref as done in Theorem
1. Yet, the equivalent of Assumption [H4] would be a unique continuation
type assumption complicated to state and depending on time. That is why we
have chosen to state Theorem 2 only close to an eigenfunction where the unique
continuation type Assumption takes the nice form of [H4].

1.2 Controllability of Schrödinger equation with real val-
ued control

For the Schrödinger-Poisson system, the control g corresponds to a potential
and therefore needs to be real valued to have a physical meaning. Therefore, as
an intermediary result, we will also get the exact controllability of Schrödinger
equation with real valued controls (instead of complex valued ones in the existing
literature), when the equation is weakly observable. The result that we need for
the control of the Schrödinger-Poisson system will actually be more complicated.
Yet, we believed that it could be useful for other contexts and we give a simpler
proof in the simpler context of the free Schrödinger equation (see for instance
Araruna-Cerpa-Mercado-Santos [2] where related questions are raised).

Theorem 3. Let Ω be an open subet of R2, Γ be an open subset of ∂Ω and
0 < T̃ < T < ∞. If the Schrödinger equation on Ω is weakly observable on
(0, T̃ ) × Γ then, for every ψf ∈ H−1(Ω,C), there exists a real valued control
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u ∈ L2((0, T )× ∂Ω,R) such that the solution of (i∂t + ∆)ψ = 0 , (t, x) ∈ (0, T )× Ω ,
ψ(t, x) = u(t, x)1Γ(x) , (t, x) ∈ (0, T )× ∂Ω ,
ψ(0, x) = 0 , x ∈ Ω ,

satis�es ψ(T ) = ψf .

The proof will be given in Section 6.

1.3 Nonlinear PDE, on a rectangle, with Neumann bound-
ary conditions

Now, we consider the nonlinear Schrödinger-Poisson system on a rectangle
i∂tψ(t, x) = −∆ψ(t, x) + ṽ(t, x)ψ(t, x) , (t, x) ∈ (0, T )× Ω ,
∂νψ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
ψ(0, x) = ψ0(x) , x ∈ Ω ,
(−∆ + 1)ṽ(t, x) = ε|ψ(t, x)|2 , (t, x) ∈ (0, T )× Ω ,
∂ν ṽ(t, x) = g(t, x)1Γc(x) , (t, x) ∈ (0, T )× ∂Ω ,

(4)

where ε ∈ R, x = (x1, x2) ∈ Ω := (0, π) × (0, L) , L > 0 and Γc is an open
subset of ∂Ω . The control is the real valued function g and we want to control
the wave function ψ.

For the nonlinear system (4), our main result is the local exact controllability
around the reference trajectory, constant in space,(

ψref (t, x) =
e
−i εt√

πL

√
πL

, ṽref (t, x) = 0 , gref (t, x) = 0

)
. (5)

We denote by ∆N the Laplace operator associated with Neumann boundary
conditions

D(∆N ) = H2
N (Ω,C) := {ϕ ∈ H2(Ω,C); ∂νϕ = 0 on ∂Ω}

∆Nϕ := ∆ϕ .

Theorem 4. Let L > 0, Ω := (0, π)× (0, L), Γc be an open subset of ∂Ω such
that Γc does not contain any vertex of Ω, T > 0, ε ∈ R be such that

ε > −πL
2
m(m+ 1)2 where m := min

{
1;
(π
L

)2
}
. (6)

and ψref be de�ned by (5). There exists δ > 0 and a C1-map

Υ : V → L2((0, T )× ∂Ω,R)

where

V :=
{

(ψ0, ψf ) ∈ [H2
N (Ω,C) ∩ S]2; ‖ψ0 − ψref (0)‖H2 + ‖ψf − ψref (T )‖H2 < δ

}
such that Υ(ψref (0), ψref (T )) = 0 and for every (ψ0, ψf ) ∈ V, the solution of
(4) with control g = Υ(ψ0, ψf ) satis�es ψ(T ) = ψf .
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This part with the nonlinear Schrödinger equation only deals with Ω a rect-
angle, where the boundary is �at. Indeed, with the Neumann boundary control,
the smoothing e�ect, required in our proof, is not well understood for a general
open set Ω. The nonhomogeneous boundary Cauchy problem is then quite com-
plicated. This was for instance investigated for the wave equation by Tataru
[35] and earlier papers by Lasiecka and Triggiani [20]. The curvature of the
boundary has important consequences in this case.

1.4 Bibliography

1.4.1 Schrödinger equation with bilinear control

The Schrödinger equation with bilinear control has been widely studied in the
litterature, and is related to the system under study in this article. This model
writes{

(i∂t + ∆− V )ψ(t, x) = u(t)µ(x)ψ(t, x) , (t, x) ∈ (0, T )× Ω ,
ψ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,

(7)

where V, µ : Ω → R are given functions, the state ψ lives in S and the control
is the real valued function u : (0, T )→ R. When V and µ solve an appropriate
Poisson equation, then system (7) is a particular case of Schrï¾ 1

2dinger-Poisson
system (1) (take v(t, x) = V (x) + u(t)µ(x)).

A negative result A negative control result was proved by Turinici in [37], as
a consequence of a general result by Ball, Marsden and Slemrod in [3]. It states
that, for V = 0, for a given function µ ∈ C2(Ω,R), for a given initial condition
ψ0 ∈ (H2∩H1

0 )(Ω,C)∩S, and by using controls u ∈ Lrloc((0,∞),R) with r > 1,
one may only reach a subset of (H2 ∩H1

0 )(Ω)∩S that has an empty interior in
(H2 ∩H1

0 )(Ω,C) ∩ S. Recently, Boussaid, Caponigro and Chambrion extended
this negative result to the case of controls in L1

loc((0,∞),R), see [11]. However,
this negative results are actually due to an inappropriate choice of functional
setting, as emphasized in the next paragraph.

Note that this type of negative results is speci�c to systems with a bilinear
control, which is a function ot the time variable t (and not a function of both t
and x)). Thus, it does not apply to the Schrödinger-Poisson system (1) studied
in this article. See also Section 5.3 for some comments about this type of control
in our context.

Local exact results in 1D Beauchard proved in [4] the exact controlla-
bility of equation (7), locally around the ground state in H7, with controls
u ∈ H1((0, T ),R) in large time T , in the case N = 1, Ω = (−1/2, 1/2), µ(x) = x
and V = 0. The proof of [4] relies on Coron's return method and Nash-Moser
theorem.

Reference [5], by the authors of this paper, improves this result and estab-
lishes the exact controllability of equation (7), locally around the ground state
in H3, with controls u ∈ L2((0, T ),R), in arbitrary time T > 0, and with generic
functions µ when N = 1, Ω = (0, 1). This result, proved with V = 0 in [5],
can be extended to an arbitrary potential V , as explained in [25]. The proof
relies on a smoothing e�ect, that allows to conclude with the inverse mapping
theorem (instead of Nash-Moser's one).
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Then, Morancey and Nersesyan developped this stategy to control a Schrödinger
equation with a polarizability term [24] and a �nite number of Schrödinger equa-
tions with one control [23, 25].

The goal of this article is to extend this type of strategy (previously applied
in 1D) to the 2D Schrödinger-Poisson system (1). New di�culties appear at the
2 levels of the proof:

• in controlling the linearized system, because a new observability inequality
is required,

• in proving the appropriate smoothing e�ect or the 2D-system (1).

Global approximate results Three strategies have been developed to study
approximate controllability for equation (7)

The �rst strategy is a variationnal argument introduced by Nersesyan in [29].
It proves the global controllability to the ground state, approximately in H3,
with smooth controls u ∈ C∞c ((0, T ),R), in large time T , for generic functions
(µ, V ), in arbitray dimension N .

Note that this global approximate control result may be coupled to the
previous local exact controllability results to provide global exact controllability,
see [30] for equation (7), [24] for a Schrödinger equation with a polarizability
term, [25] for �nite number of Schrödinger equations with the same control.

A second strategy consists in deducing approximate controllability in regular
spaces (containing H3) from exact controllability results in in�nite time by
Nersesyan and Nersisyan [31]

A third strategy, due to Chambrion, Mason, Sigalotti, and Boscain [16],
relies on geometric techniques for the controllability of the Galerkin approxima-
tions. It proves (under appropriate assumptions on V and µ) the approximate
controllability of (7) in L2, with piece-wise constant controls. The hypotheses
of this result were re�ned by Boscain, Caponigro, Chambrion, and Sigalotti in
[8]. The approximate controllability is proved in higher Sobolev norms in [11]
for one equation, and in [10] for a �nite number of equations with one control.
For more details and more references about the geometric techniques, we refer
the reader to the recent survey [9].

1.4.2 Schrödinger-Poisson system

In [26], Méhats, Privat and Sigalotti prove the approximate controllability in L2

for a Schrödinger-Poisson system, with mixed boundary conditions (of Dirichlet
or Neumann type, depending on the place where we are on the boundary).
This result holds for generic domains Ω and generic control supports Γc on
the boundary. The proof relies on the general result of [16] and analyticity
arguments to obtain genericity.

1.5 Structure of the article

This article is organized in 7 Sections.
Section 2 is a discussion about our assumptions [H2], [H3] and [H4], in

particular when Ω is a rectangle domain or a disk.
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Section 3 is dedicated to the well-posedness of system (1), in appropriate
spaces for our control problem. The starting point is a smoothing e�ect proved
by Puel in [34], that needs to be recast in our context.

In Section 4, we prove local exact controllability of hight frequencies, around
any trajectory of the free system, i.e. Theorem 1.

Section 5 is devoted to the proof of the local exact controllability, around
any eigenstate, i.e. Theorem 2.

The goal of Section 6 it to explain how the strategy of Section 5 can be used
to get controllability for the Schrödinger equation with real-valued boundary
controls (instead of complex valued ones in the literature), i.e. Theorem 3.

Finally, in Section 7, we prove the local exact controllability of the nonlinear
Schrï¾ 1

2dinger-Poisson system (4) on a rectangle, i.e. Theorem 4.

1.6 Notations

Implicitly functions take values in C, otherwise we specify, for instance L2((0, T )×
∂Ω,R). The volume element on Ω is denoted dx and the surface element on ∂Ω
is denoted dσ(x). When ϕ ∈ S then TSϕ denotes the tangent space to the
sphere S at point ϕ

TSϕ :=

{
ξ ∈ L2(Ω,C);<

(∫
Ω

ϕ(x)ξ(x)dx

)
= 0

}
.

2 Discussion on our assumptions

The goal of this section is to prove that our assumptions [H2], [H3] and [H4]
hold for appropriate con�gurations (Ω,Γc) and to explain why [H4] is related
to the control of low frequencies.

2.1 Weak observability of Schrödinger equation [H2]

The goal of this section is to recall known results about assumption [H2].

Proposition 1. Property [H2] holds in the following cases.

1. Ω = (0, π)× (0, L) for some L > 0, T̃ > 0 and Γc is an open subset of ∂Ω
that contains both a horizontal and a vertical segment with nonzero length
(necessary and su�cient condition).

2. Ω is smooth, does not have a contact of in�nite order with its tangents
and (Ω,Γc) satis�es the Geometric Control Condition.

3. Ω =
{

(x, y)
∣∣x2 + y2 < 1

}
and Γc is an arbitrary open set of the boundary.

Statement 1 is proved by Tenenbaum and Tucsnak in [36, Theorem 1.4].

Precisely, they prove that the Schrödinger equation is observable on (0, T̃ )×Γc
i� Γc contains both a horizontal and a vertical segment with nonzero length.
Thus weak observability also holds in this con�guration. Moreover, the same
counter-example as in [36, page 967] proves that this condition is necessary: with
Γc := (a, b) × {0}, 0 6 a < b 6 π, m ∈ N∗ and φT (x, y) := sin(mx) sin(πy/L),
we get

Cm 6 ‖φT ‖H1
0 (Ω) and ‖∂νφ‖L2((T ′,T ′′)×Γc) + ‖φT ‖H−1(Ω) 6 C ′ ,
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for some constants C,C ′ > 0 independant of m.

Statement 2 is proved by Lebeau in [21] when Ω is analytic. The result is
actually also true if Ω is smooth (see for instance Burq-Zworski [15]). The as-
sumptions of contact of �nite order is made in order to ensure the uniqueness of
the broken geodesic �ow. It is certainly also true if Ω is only C3 using the result
by Burq [13] for the wave equation and transmutation or resolvent methods (see
Miller [27, 28] for instance).

Statement 3 is proved by Anatharaman, Léautaud and Macià in [1].

2.2 Simulatenous validity of [H2] and [H3]

The goal of this section is to prove the claim written after Theorem 1.

Proposition 2. We assume that

• either Ω is a disk and Γc is a non empty open subset of ∂Ω,

• or Ω = (0, π) × (0, L) for some L > 0 and Γc contains both a horizontal
and a vertical segment.

Let T > 0 , ψ0 ∈ H3
(0)(Ω,C) ∩ S and ψref (t) := ei∆Dtψ0. Then assumptions

[H2] and [H3] are satis�ed when Γc is replaced by an appropriate nonempty
open subset Γ′c of Γc. As a consequence, the conclusion of Theorem 1 holds.

Proof of Proposition 2: Let us assume that Ω is a disk and Γc is a non
empty open subset of ∂Ω. By unique continuation for the Schrödinger equa-
tion, we know that the continuous function ∂νψref does not identically vanish
on (0, T ) × Γc. Thus, there exists 0 6 T ′ < T ′′ 6 T and an open subset Γ′c
of Γc such that |∂νψref (t, x)| > m > 0 for every (t, x) ∈ (T ′, T ′′) × Γ′c. Let

T̃ ∈ (0, T ′′ − T ′). By the previous proposition, the Schrödinger equation on Ω

is weakly observable on (0, T̃ ) × Γ′c. Therefore, both [H2] and [H3] hold with
Γc replaced by Γ′c. Then, Theorem 1 provides controls supported in (0, T )× Γ′c
that are, a fortiori, also supported in (0, T )× Γc.

Now, let us assume that Ω = (0, π)× (0, L) for some L > 0 and Γc contains
both a horizontal segment ΓH and a vertical segment ΓV . By unique contin-
uation for the Schrödinger equation, we know that ∂νψref does not identically
vanish on (0, T )×ΓH . Thus, there exists 0 6 T ′H < T ′′H 6 T and an open subset
Γ′H of ΓH such that |∂νψref (t, x)| > mH > 0 for every (t, x) ∈ (T ′H , T

′′
H) × Γ′H .

By unique continuation for the Schrödinger equation, we know that ∂νψref does
not identically vanish on (T ′H , T

′′
H)×ΓV . Thus, there exists T

′
H 6 T ′ < T ′′ 6 T ′′H

and an open subset Γ′V of ΓV such that |∂νψref (t, x)| > mV > 0 for every
(t, x) ∈ (T ′, T ′′)× Γ′V . Then |∂νψref (t, x)| > m := min{mH ;mV } > 0 for every
(t, x) ∈ (T ′, T ′′) × Γ′c with Γ′c := Γ′H ∪ Γ′V . The conclusion comes as in the
previous case. 2.

2.3 Unique continuation assumption [H4]

The goal of this section is to prove that [H4] holds on rectangular domains and
is related to the controllability of low frequencies.
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2.3.1 The case of a rectangle

Proposition 3. Let L > 0, Ω := (0, π)× (0, L), Γc be a non empty open subset

of ∂Ω, R1 , R2 ∈ N∗ be such that R2
1 +

(
R2π
L

)2
is a simple eigenvalue of (−∆D)

and ϕR(x, y) := 2√
πL

sin(R1x) sin
(
R2πy
L

)
. Then [H4] is satis�ed.

Proof of Proposition 3: Without loss of generality, one may assume that Γc
contains (a, b)× {0} for some 0 6 a < b 6 π. Let λ ∈ Sp(−∆D), J := {(p, n) ∈
(N∗)2; p2+

(
nπ
L

)2
= λ} wich is a �nite set, and Φ =

∑
(p,n)∈J cp,n sin(px) sin

(
nπy
L

)
be an eigenfunction of (−∆D) associated to the eigenvalue λ. >From the rela-
tion 2 sin(a) sin(b) = cos(a− b)− cos(a+ b) we deduce that

ϕRΦ =
∑

(p,n)∈J

∑
ε1 = ±1,
ε2 = ±1

cp,nε1ε2

2
√
πL

cos[(p+ ε1R1)x] cos

[
(n+ ε2R2)πy

L

]

thus

w(x, y) =
∑

(p,n)∈J

∑
ε1 = ±1,
ε2 = ±1

cp,nε1ε2 cos[(p+ ε1R1)x] cos
[

(n+ε2R2)πy
L

]
2
√
πL

[
(p+ ε1R1)2 +

(
(n+ε2R2)π

L

)2

+ 1

]
and in particular

w(x, 0) =
∑

(p,n)∈J

∑
ε1 = ±1,
ε2 = ±1

cp,nε1ε2 cos[(p+ ε1R1)x]

2
√
πL

[
(p+ ε1R1)2 +

(
(n+ε2R2)π

L

)2

+ 1

] .
Let P := max{p ∈ N∗;∃n ∈ N∗ such that (p, n) ∈ J and cp,n 6= 0}. Let N ∈ N∗
be the unique integer such that (P,N) ∈ J . Then x 7→ w(x, 0) is a �nite sum
of cosine functions

w(x, 0) =

P+R1∑
k=0

αk cos(kx)

and its fastest oscilating term has coe�cient

αP+R1
=

cP,N

2
√
πL

 1[
(P +R1)2 +

(
(N+R2)π

L

)2

+ 1

] − 1[
(P +R1)2 +

(
(N−R2)π

L

)2

+ 1

]
 .

If w(x, 0) = 0 for every x ∈ (a, b), then αk = 0 for k = 0, ..., P + R1 and in
particular αP+R1 = 0. This is impossible because cP,N 6= 0 and (N + R2)2 6=
(N −R2)2 (note that N,R2 ∈ N∗). 2

2.3.2 General comments

First, we prove the equivalence between assumption [H4] and the existence of
some non-vanishing integral quantities. To this aim, we introduce the following
notation: for χ ∈ L2(∂Ω), Vχ denotes the unique solution in H

3
2 (Ω) of{

(−∆ + 1)Vχ(x) = 0 , x ∈ Ω
∂νVχ(x) = χ(x) , x ∈ ∂Ω .

(8)
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Proposition 4. Let Ω be a smooth bounded open subset of R2 and (ϕk)k∈N be
an orthogonal basis of eigenfunctions of (−∆D), R ∈ N∗. If the spectrum of
(−∆D) is simple, then the following statements are equivalent.

1. For any eigenvector Φ of (−∆D), the solution w of{
(−∆ + 1)w(x) = ϕR(x)Φ(x) , x ∈ Ω ,
∂νw(x) = 0 , x ∈ ∂Ω ,

does not identically vanish on Γc: w 6= 0 on Γc.

2. there is an open dense set in L2(Γc) of functions χ such that
∫

Ω
VχϕRϕk 6=

0 for any k ∈ N∗

3. there is one χ ∈ L2(Γc) such that
∫

Ω
VχϕRϕk 6= 0 for any k ∈ N∗.

If the spectrum of (−∆D) is not simple, we still have 1⇒ 2⇒ 3.

Proof We have obvisously 2⇒ 3. The main tool for the other implications will
be the following formula∫

Ω
VχϕRΦ =

∫
Ω
Vχ(−∆ + 1)w

=
∫

Ω
(−∆ + 1)Vχw +

∫
∂Ω

[∂νVχw − Vχ∂νw]
=
∫
∂Ω
χw .

In the case of simple eigenvalues, we easily get 3 ⇒ 1 by selecting χ ∈ L2(Γc)
such that

∫
Ω
VχϕRϕk =

∫
∂Ω
χwk 6= 0. So, the main task is to prove 1⇒ 2. For

k ∈ N∗, we introduce the set

Gk :=

{
χ ∈ L2(∂Ω,R);

∫
Ω

VχϕR(x)ϕk(x)dx 6= 0

}
,

By assumption 1, for any k, wk is not identically zero on Γc, so there exists
χ such that such

∫
∂Ω
χwk =

∫
Ω
VχϕRϕk 6= 0 . In particular, Gk 6= ∅ for every

k ∈ N∗. Because of the linearity, Gk is a dense open subset of L2(∂Ω,R). By
Baire Lemma ∩k∈N∗Gk is a dense subset of L2(∂Ω,R). This proves 2. 2

With the previous Proposition in hands, it should be possible to prove that
[H4] is generic with respect to perturbations of the domain, as done in [26].
Indeed, the previous Proposition proves that [H4] is equivalent to the existence
of one χ so that some integral quantities are not zero. It is then often a good
starting point to prove genericity with respect to χ and deformation of Ω. This
would then directly imply that [H4] is generic with respect to perturbations of
the domain.

Note also that with the same proof, χ can be chosen in Ck0 (Γc) for some
k ∈ N.

2.3.3 Control of low frequencies

Actually, the condition [H4] is a condition of controllability of the low frequen-
cies for a control only depending on time. More precisely, we have the following
result.

12



Proposition 5. Assume all the eigenvalues of ∆D are simple and [H4] is
ful�lled for one R ∈ N∗. Let ψref (t) := ϕR(x)e−iλRt. Then there is one χ ∈
C4(Γc) such that

∫
Ω
VχϕRΦk 6= 0 for any k ∈ N∗. This implies the following

local controllability property for low frequencies.
For any N ≥ 0, there exists δ > 0 such that for every ψf ∈ V := {ψf ∈

H3
(0)(Ω) ∩ S; ‖ψf − ψref (T )‖H3

(0)
< δ}, there exists u ∈ L2((0, T ),R) such that

the solution of
(
i∂t + ∆

)
ψ(t, x) = u(t)Vχ(x)ψ(t, x) , (t, x) ∈ (0, T )× Ω ,

ψ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
ψ(0, x) = ϕR(x) x ∈ Ω ,

(9)

satis�es P⊥Nψ(T ) = P⊥Nψf where P⊥N is the orthogonal projection on the N �rst
eigenfunctions.

Proof of Proposition 5: The map

Θ : L2((0, T ),R) → P⊥N [S]
u 7→ P⊥N [ψ(T )]

is of class C1 and

dΘ(0) : L2((0, T ),R) → P⊥N [Tψref (T )S]
u 7→ P⊥N [Ψ(T )]

where

Ψ(T ) = −i
∫ T

0
ei(T−t)∆D

(
u(t)Vχψref (t)

)
dt

= −i
∞∑
k=1

〈VχϕR, ϕk〉
(∫ T

0
u(t)ei(λk−λR)tdt

)
e−iλkTϕk

The surjectivity of dΘ(0) can be formulated in terms of a �nite trigonometric
moment problem on u. Since 〈VχϕR, ϕk〉 6= 0 for every k and the frequencies
(λk−λR) are all di�erent, this moment problem has a solution u ∈ L2((0, T ),R).
We can therefore apply the inverse function theorem to Θ. We skip the details
since it is a simpler version of arguments used several times in the paper. 2

3 Well posedness of the Schrödinger-Poisson sys-

tem and linearization

The goal of this section is to prove the well-posedness of system (1) in functional
spaces that are appropriate for the controllability problem. This proof requires
several preliminary results. The �rst one concerns Sobolev embeddings, trace
theorems and elliptic estimates; they are recalled in Section 3.1. The second
preliminary result concerns smoothing e�ects of the Schrödinger equation on a
bounded domain: a smoothing e�ect concerning the normal derivative is recalled
in Section 3.2, a smoothing e�ect concerning the source term is justi�ed in
Section 3.3. Finally, in Section 3.4, we prove the well-posedness of system (1)
in H3

(0)(Ω) when the control g lives in L2((0, T )×Γc); the smoothing e�ects are

crucial at this point. In Section 3.5, we prove the C1-regularity of the end-point
map.
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3.1 Preliminary

3.1.1 Sobolev embeddings

In the whole section Ω is an open subset of Rn such that [H1] is satis�ed. For
s ≥ 0 and p ≥ 1, we use the de�nitions

W s,p(R2) :=
{
f̃ ∈ S ′(R2);F−1[(1 + | · |s)F f̃ ] ∈ Lp(R2)

}
,

‖f̃‖W s,p(R2) :=
∥∥∥F−1[(1 + | · |s)F f̃ ]

∥∥∥
Lp(R2)

,

W s,p(Ω) := {f̃ |Ω; f̃ ∈W s,p(R2)} ,

‖f‖W s,p(Ω) := inf

{∥∥∥f̃∥∥∥
W s,p(R2)

; f̃ ∈W s,p(R2), f = f̃ on Ω

}
If p = 2, we use the notation Hs instead of W s,2.

Remark that if s = 1, we also have

W 1,p(Ω) := {f ∈ Lp(Ω);∇f ∈ Lp(Ω)n}

with the obvious norm equivalent to the one previously introduced.
The standard Sobolev embeddings

H1(Ω) ⊂ Lq(Ω) , ∀q ∈ [2,∞) , (10)

W 1,p(Ω) ⊂ L∞(Ω) , ∀p > 2

(see [12, Corollary IX.14]) and

W s,p(R2) ⊂W s1,p1(R2) for s− 2

p
= s1 −

2

p1
, 1 < p ≤ p1 < +∞ ,

(see [7, Theorem 6.5.1]) yield to

H
3
2 (Ω) ⊂ L∞(Ω) , (11)

H
1
2 (Ω) ⊂ L4(Ω) , (12)

∀ε ∈
(

0,
1

2

)
,∃p ∈ (1, 2) such that W 1,p(Ω) ⊂ H 1

2 +ε(Ω) . (13)

If s ≥ 0, we denote

H−s(Ω) := (Hs
0(Ω))

′

which is a space of distributions.
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3.1.2 Regularity for elliptic boundary value problems on a smooth
domain

In this section, we recall classical results used in the article (see [22, Theorem
5.4 page 176, Theorem 6.5, Theorem 6.7 page 192]).

Proposition 6. Let Ω be a bounded open subset of R2, of class C∞ and locally
on one side of ∂Ω.

1. The mapping
C∞(Ω) → C∞(∂Ω)

f 7→ f |∂Ω

has a unique continuous extension from D(∆, L2(Ω)) := {f ∈ L2(Ω); ∆f ∈
L2(Ω)} into H− 1

2 (∂Ω).

2. The mapping
H2(Ω) → L2(∂Ω)

f 7→ ∂νf

has a unique continuous extension from {f ∈ H 3
2 (Ω); ∆f ∈ L2(Ω)} into

L2(∂Ω).

3. For every f ∈ L2(Ω) and g ∈ L2(∂Ω), there exists a unique v ∈ H 3
2 (Ω)

such that {
(−∆ + 1)v = f in Ω ,
∂νv = g on ∂Ω .

Moreover, there exists C(Ω) > 0 such that

‖v‖
H

3
2 (Ω)

6 C
[
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

]
.

3.1.3 Regularity and Green formula for elliptic boundary value prob-
lems on a rectangle

The goal of this section is to state the following results.

Proposition 7. Let Ω = (0, π)× (0, L) for some L > 0, (Γj)16j64 be its edges,
(νj)16j64 be its unitary exterior normal vectors, (Sj)16j64 be its vertices and
p > 1.

1. The mapping u 7→ (u|Γj , ∂νju), which is well de�ned for u ∈W 2,p(Ω) has
a unique extension as an operator from

D(∆, Lp(Ω)) := {u ∈ Lp(Ω); ∆u ∈ Lp(Ω)}

into

• W−
1
p ,p(Γj)×W−1− 1

p ,p(Γj) when p 6= 2,

• H− 1
2−ε(Γj)×H−

3
2−ε(Γj), for every ε > 0, when p = 2.

2. Moreover,∫
Ω

(
(∆u)v − u(∆v)

)
dx =

4∑
j=1

∫
Γj

(
(∂νju)v − u(∂νjv)

)
dσj(x)

for every u ∈ D(∆, Lp(Ω)) and v ∈W 2,p′(Ω) such that
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• v(Sj) = 0 for j = 1, ..., 4 when p > 2,

• v(Sj) = 0 and ∇v(Sj) = 0 for j = 1, ..., 4 when p < 2,

• v ≡ 0 on a neighborhood of Sj for j = 1, ..., 4 when p = 2.

3. For every f ∈ L2(Ω) and g ∈ L2(∂Ω), there exists a unique v ∈ H 3
2 (Ω)

such that {
(−∆ + 1)v = f in Ω ,
∂νv = g on ∂Ω .

(14)

Moreover, there exists C(Ω) > 0 such that

‖v‖
H

3
2 (Ω)

6 C
[
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

]
.

For the �rst two statements, see [18, Theorem 1.5.3.4 and Theorem 1.5.3.6].
The third one is a consequenc of the same one on (R/2πZ) × (0, L) after sym-
metrisation and periodization. More precisely, by linearity, one may assume that
Supp(g) ⊂ [0, π]× {0}. Then we extend g as a function g̃ : (R/πZ)× {0} → R
such that g̃(−x1, 0) = g(x1, 0) for every x1 ∈ (0, π) and g̃(x1, 0) = g̃(x1 + 2π, 0).
Perform similar symmetrisation and periodization for f to produce g̃ well de-
�ned on (R/2πZ)× (0, L).

Then, since (R/2πZ)× (0, L) is a smooth compact manifold with boundary,

there exists a unique ṽ ∈ H 3
2 ((R/2πZ)× (0, L)) such that{

(−∆ + 1)ṽ = f̃ in Ω ,
∂ν ṽ = g̃ on (R/πZ)× {0, 1} .

Then, we easily check that the symmetry gives that if f ∈ C∞0 (Ω) and
g ∈ C∞0 (0, π), then, ∂x1 ṽ(x1, x2) = 0 for x1 ∈ {0, π} and x2 ∈ (0, L). Therefore,
v = ṽ|Ω satis�es (14) in the weak sense. The uniqueness can be obtained by
following the same process.

3.2 Smoothing e�ect on the normal derivative

The goal of this section is to state the following results.

Proposition 8. Let T > 0 and Ω be a bounded open subset of R2 which is
either C∞ or a rectangle. There exists C = C(T,Ω) > 0 such that, for every
ψ0 ∈ H1

0 (Ω) and h ∈ L1((0, T ), H1
0 (Ω)), the solution ψ of (i∂t + ∆)ψ(t, x) = h(t, x) , (t, x) ∈ (0, T )× Ω ,

ψ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
ψ(0, x) = ψ0(x) , x ∈ Ω ,

(15)

satis�es∫ T

0

∫
∂Ω

|∂νψ(t, x)|2|∂νϕ1(x)|dσ(x)dt 6 C
(
‖ψ0‖H1

0 (Ω) + ‖h‖L1((0,T ),H1
0 (Ω))

)
.

(16)
In particular, if Γc is an open subset of ∂Ω such that [H1] holds, then the
following linear mapping is continuous

H1
0 (Ω) × L1((0, T ), H1

0 (Ω)) → L2((0, T )× Γc)
(ψ0 , ϕ) 7→ ∂νψ .
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When Ω is smooth, Puel proves these results in [34, Lemma 3.1]. Precisely,
he �rst proves inequality (16) for smooth data (ψ0, h) ∈ C∞c (Ω)×C∞c ((0, T )×Ω),
by applying the multiplier ∇ϕ1 to equation (15): under these assumptions ψ
is regular, ∂ψ

∂ν makes perfect sense and integrations by parts are legitimate.
Then, inequality (16) holds for (ψ0, h) ∈ H1

0 (Ω)×L1((0, T ), H1
0 (Ω)) by a density

argument. Finally, Puel gets the �nal result because |∂νϕ1(x)| > β > 0 ,∀x ∈
∂Ω

When Ω is a rectangle, Puel's proof of inequality (16) is still valid. Then,
the conclusion of Proposition 8 follows because |∂νϕ1(x)| > β > 0 ,∀x ∈ Γc; this
is one of the reasons why we need to assume that Γc does not touch the vertices
of Ω.

3.3 Smoothing e�ect on the source term

The goal of this section is to justify the following result.

Theorem 5. Let T > 0, Ω be an open subset of R2 and Γc be an open subset of
∂Ω such that [H1] holds. For every ψ0 ∈ H3

(0)(Ω), µ1 ∈ L2((0, T ), H2 ∩H1
0 (Ω))

and µ2 ∈ L1((0, T ), H3
(0)(Ω)) such that

∆2µ1 ≡ 0 , Supp
(

∆µ1

∣∣∣
∂Ω

)
⊂ [0, T ]× Γc , ∆µ1

∣∣∣
Γc
∈ L2((0, T )× Γc) , (17)

the solution of
(
i∂t + ∆

)
ψ(t, x) =

(
µ1 + µ2

)
(t, x) , (t, x) ∈ (0, T )× Ω ,

ψ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
ψ(0, x) = ψ0(x) , x ∈ Ω ,

satis�es ψ ∈ C0([0, T ], H3
(0)(Ω)). Moreover, there exists a constant C > 0 (in-

dependent of ψ0, µ1, µ2) such that

‖ψ‖L∞([0,T ],H3
(0)

(Ω)) 6 C
(
‖ψ0‖H3

(0)
(Ω)+

∥∥∥∥∆µ1

∣∣∣
Γc

∥∥∥∥
L2((0,T )×Γc)

+‖µ2‖L1((0,T ),H3
(0)

(Ω))

)
.

(18)

Remark 1. When Ω is smooth, then the trace ∆µ1|∂Ω is well de�ned in

L2((0, T ), H−
1
2 (∂Ω)) (see Proposition 6), which gives a sense to the last 2 re-

quirements in (17).
When Ω is a rectangle, then the traces along the 4 sides ∆µ1|Γj ,

1 6 j 6 4, are well de�ned in L2((0, T ), H−
1
2−ε(Γj)) (see Proposition 7). The

last 2 requirements in (17) have to be interpreted in the following sense:

Γj ∩ Supp
(

∆µ1

∣∣∣
∂Ω

)
⊂ Γj ∩ Γc , ∀j ∈ {1, ..., 4}

∆µ1

∣∣∣
Γc∩Γj

∈ L2((0, T )× Γc ∩ Γj) , ∀j ∈ {1, ..., 4} .

Theorem 5 emphasizes a regularizing e�ect, concerning the source term,
because µ1 is not assumed to belong to L1((0, T ), H3

(0)(Ω)). When Ω is a regular

domain and Γc = ∂Ω, Puel proves this result in [34, Theorem 2.1]. His proof,
by transposition, relies on the smoothing e�ect of Proposition 8.
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Puel does not treat the case of a rectangle domain, but his proof would prob-
ably lead to Theorem 5 in this case too. For sake of completeness, we propose
below an alternative argument.

Proof of Theorem 5 on a rectangle: Let L > 0, Ω := (0, π) × (0, L),
Γc be an open subset of ∂Ω, ψ0 ∈ H3

(0)(Ω), µ1 ∈ L2((0, T ), H2 ∩ H1
0 (Ω)) and

µ2 ∈ L1((0, T ), H3
(0)(Ω)) be such that (17) holds. By linearity, we may assume

that Γc ⊂ (a, b)×{0} with 0 < a < b < π. Letm ∈ N∗ be such that (m−1) 2L2

π <

T 6 T0 := 2mL2

π and t ∈ (0, T ).
By the Duhamel formula, we have

ψ(t) = ei∆Dtψ0 − i
∫ t

0

ei∆D(t−τ)
(
µ1(τ) + µ2(τ)

)
dτ .

The �rst and third terms in the right hand side belong to C0([0, T ], H3
(0)(Ω))

because H3
(0)(Ω) is stable by ei∆Dt. Thus, we focus on the second one. We will

make the proof in 2 steps: the �rst one when µ1 is regular enough to perform
integration by parts and the second one to get to the �rst case with a suitable
regularization.

Step 1: µ1 regular enough
In this step, we assume moreover that ∆µ1 ∈ L2((0, T ), Lp(Ω)), with p > 2.
Using the equality −∆ϕk = λkϕk and integrations by part, that are licit

because µ1 ∈ L2((0, T ), H2 ∩H1
0 (Ω)), we get

S =

∥∥∥∥ t∫
0

ei∆(t−τ)µ1(τ)dτ

∥∥∥∥2

H3
(0)

(Ω)

=
∞∑
k=1

∣∣∣∣λ3/2
k

t∫
0

∫
Ω

µ1(τ, x)ϕk(x)dxeiλkτdτ

∣∣∣∣2
=
∞∑
k=1

∣∣∣∣ 1√
λk

t∫
0

∫
Ω

∆µ1(τ, x)∆ϕk(x)dxeiλkτdτ

∣∣∣∣2
We can apply Green formula (see Proposition 7) because ∆µ1(τ, .) ∈ D(∆, Lp(Ω))

for almost every τ ∈ (0, T ) and ϕk ∈ H2(Ω) vanishes on the vertices of Ω. Using
∆2µ1 ≡ 0, this leads to

S =
∞∑
k=1

∣∣∣∣ 1√
λk

t∫
0

∫
∂Ω

∆µ1(τ, x)∂νϕk(x)dσ(x)eiλkτdτ

∣∣∣∣2
=
∞∑
k=1

∣∣∣∣∣ 1√
λk

t∫
0

∫
Γc

∆µ1(τ, x)∂yϕk(x)dσ(x)eiλkτdτ

∣∣∣∣∣
2

6 C
∑

p,n∈N∗

∣∣∣∣∣ nπ
L√

p2+(nπL )
2

t∫
0

π∫
0

∆µ1(τ, x1, 0) sin(px1)e
−i
(
p2+(nπL )

2
)
τ
dx1dτ

∣∣∣∣∣
2

6 C
∑
p∈N∗

∑
n∈N∗

∣∣∣∣∣T0∫
0

1[0,t](τ)
π∫
0

∆µ1(τ, x1, 0) sin(px1)dx1e
−i
(
p2+(nπL )

2
)
τ
dτ

∣∣∣∣∣
2

6 C
∑
p∈N∗

T0∫
0

∣∣∣∣1[0,t](τ)
π∫
0

∆µ1(τ, x1, 0) sin(px1)dx1e
−ip2τ

∣∣∣∣2 dτ
6 C

∑
p∈N∗

t∫
0

∣∣∣∣ π∫
0

∆µ1(τ, x1, 0) sin(px1)dx1

∣∣∣∣2 dτ
6 C

t∫
0

‖∆µ1(τ, ., 0)‖2L2(0,π)dτ .
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To go from the �rst line to the second one, we have used: Supp(∆µ1|∂Ω) ⊂
[0, T ] × Γc, ϕk ≡ 0 on Γc. To go from the fourth line to the �fth line, we have
used Bessel-Parseval inequality.

Note that ∆µ1 can be computed explicitly in terms of ∆µ1|Γc , thanks to the
rectangular form of the domain. This explicit expression shows the existence of
a constant C = C(Ω) > 0 such that

‖∆µ1‖L2((0,t)×Ω)) 6 C

∥∥∥∥∆µ1

∣∣∣
Γc

∥∥∥∥2

L2((0,t)×Γc)

, ∀t ∈ [0, T ] .

Thus, we get∥∥∥∥∫ t

0

ei∆(t−τ)µ1(τ)dτ

∥∥∥∥2

H3
(0)

(Ω)

6 C ‖∆µ1|Γc‖
2
L2((0,t)×Γc)

.

This proves that the map t ∈ [0, T ] 7→
∫ t

0
ei∆(t−τ)µ1(τ)dτ takes values inH3

(0)(Ω)
and is continuous at t = 0. The same argument proves the continuity at any
t ∈ [0, T ].

Step 2: regularization
We have to be a bit careful with the regularization to keep the required condi-

tions. Let fε ∈ C∞0 ((0, T )×Γc) converging strongly to ∆µ1|Γc in L2((0, T )×Γc).
Denote {

∆gε(t, x) = 0 , (t, x) ∈ (0, T )× Ω ,
gε(t, x) = fε(t, x) , (t, x) ∈ (0, T )× ∂Ω ,

By elliptic regularity (similar to Proposition 7), gε converges strongly to ∆µ1

in L2((0, T ), H1/2(Ω)).
Now, denote µ1,ε the solution of{

∆µ1,ε(t, x) = gε(t, x) , (t, x) ∈ (0, T )× Ω ,
µ1,ε(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω.

By elliptic regularity, µ1,ε converges to µ1 in L2((0, T ), H2 ∩H1
0 (Ω)). Estimate

(18) (that is proven for µ1,ε regular enough thanks to Step 1) allows to prove
that the related ψε make a Cauchy sequence in L∞([0, T ], H3

(0)(Ω)). The limit
can only be the expected ψ by uniqueness of the solution and convergence of
µ1,ε to µ1. The estimate (18) follows in this case. 2

3.4 Well posedness of the linear PDE

The goal of this section is the proof of the following result, thanks to Theorem
5.

Theorem 6. Let T > 0, Ω be an open subset of R2 and Γc be an open subset of
∂Ω such that [H1] holds. For every ψ0 ∈ H3

(0)(Ω) and g ∈ L2((0, T ) × ∂Ω,R),

there exists a unique solution ψ ∈ C0([0, T ], H3
(0)(Ω)) of system (1).

To this aim, we will need the following preliminary result.

Proposition 9. Let T > 0 and ψ ∈ C0([0, T ], H3
(0)(Ω)). For every g ∈

L2((0, T )× ∂Ω,R), the solution of{
(−∆ + 1)v(t, x) = 0 , (t, x) ∈ (0, T )× Ω ,
∂νv(t, x) = g(t, x)1Γc(x) , (t, x) ∈ (0, T )× ∂Ω ,

(19)
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satis�es v ∈ L2((0, T ), H
3
2 (Ω)), vψ ∈ L2((0, T ), H2∩H1

0 (Ω)) and ∆2[vψ] belongs
to L2((0, T ), H−1(Ω)). Moreover, the operator

L2((0, T )× ∂Ω,R) → L2((0, T ), H−1(Ω))
g 7→ ∆2(vψ)

is continuous.

Proof of Proposition 9:
Step 1: We prove that vψ ∈ L2((0, T ), H2 ∩ H1

0 (Ω)). By Proposition 6 and

7, we know that v ∈ L2((0, T ), H
3
2 (Ω)). Thus vψ ∈ L2((0, T ), H

3
2 (Ω) ∩H1

0 (Ω))

because H
3
2 (Ω) ⊂ L∞ is an algebra. To end Step 1, it is su�cient to prove that

∆(vψ) ∈ L2((0, T ), L2(Ω)). Using ∆v = v in (0, T )× Ω, we get

∆(vψ) = v(ψ + ∆ψ) + 2∇v · ∇ψ

• The Sobolev embedding (11) justi�es that H
3
2 (Ω) ∗ H1

0 (Ω) ⊂ L∞(Ω) ∗
L2(Ω) = L2(Ω) (where ∗ stands for the multiplication of scalar valued
functions). Thus v(ψ + ∆ψ) ∈ L2((0, T ), L2(Ω)).

• The Sobolev embedding (11) justi�es that H
1
2 (Ω) ∗ H2(Ω) ⊂ L2(Ω) ∗

L∞(Ω) = L2(Ω). Thus ∇v · ∇ψ ∈ L2((0, T ), L2(Ω)).

Step 2: We prove that ∆2[vψ] ∈ L2((0, T ), H−1(Ω)). Using ∆v = v, we get

∆2[vψ] = v(ψ + 2∆ψ + ∆2ψ) + 4∇v · ∇(ψ + ∆ψ) + 4Tr[D2v .D2ψ] . (20)

• The Sobolev embeddings (11) and (12) justify that H
3
2 (Ω) ∗ H1

0 (Ω) ⊂
H1

0 (Ω). Thus, by duality, H
3
2 (Ω) ∗H−1(Ω) ⊂ H−1(Ω). This proves that

v(ψ + 2∆ψ + ∆2ψ) ∈ L2((0, T ), H−1(Ω)).

• The Sobolev embedding (12) justify that H
1
2 (Ω) ∗ H1

0 (Ω) ⊂ L4(Ω) ∗
L4(Ω) ⊂ L2(Ω). Thus, by duality, H

1
2 (Ω) ∗ L2(Ω) ⊂ H−1(Ω). This

proves that ∇v · ∇(ψ + ∆ψ) ∈ L2((0, T ), H−1(Ω)).

• The Sobolev embedding (10) and then (13) justify that H1(Ω) ∗H1
0 (Ω) ⊂

H
1
2 +ε(Ω). Thus, by duality, H1(Ω) ∗H− 1

2−ε(Ω) ⊂ H−1(Ω). This proves
that Tr[D2v .D2ψ] ∈ L2((0, T ), H−1(Ω)). 2

Proof of Theorem 6: Let T > 0, ψ0 ∈ H3
(0)(Ω), g ∈ L2((0, T )× ∂Ω,R) and v

be the solution of (19) We apply the �xed point theorem to the map

F : C0([0, T ], H3
(0)(Ω)) → C0([0, T ], H3

(0)(Ω))

ψ 7→ ξ

where ξ = F (ψ) is the solution of
(
i∂t + ∆

)
ξ(t, x) = v(t, x)ψ(t, x) , (t, x) ∈ (0, T )× Ω ,

ξ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
ξ(0, x) = ψ0(x) , x ∈ Ω .
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Step 1: We prove that F takes values in C0([0, T ], H3
(0)(Ω)). Let ψ ∈ C0([0, T ], H3

(0)(Ω)).
We introduce the solution µ2 of{

∆2µ2(t, x) = ∆2[vψ](t, x) , (t, x) ∈ (0, T )× Ω ,
µ2(t, x) = ∆µ2(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω

(21)

and the function µ1 := vψ−µ2. To prove that ξ = F (ψ) belongs to C0([0, T ], H3
(0)(Ω)),

it su�ces to prove that µ1 and µ2 satisfy the assumptions of Theorem 5.
By Proposition 9, ∆2[vψ] belongs to L2((0, T ), H−1(Ω)) thus, by elliptic reg-

ularity, µ2 ∈ L2((0, T ), H3
(0)(Ω)). Then, µ1 belongs to L2((0, T ), H2 ∩H1

0 (Ω)),

by Proposition 9. Moreover, ∆2µ1 ≡ 0 by (21) and ∆µ1|∂Ω = 2g ∂νψ 1Γc .

Step 2: We prove that F is a contraction when g is small enough. Let ψ, ψ̃ ∈
C0([0, T ], H3

(0)(Ω)). >From (18) and elliptic regularity, we get

‖F (ψ)− F (ψ̃)‖C0([0,T ],H3
(0)

(Ω))

6 C
(
‖∆(µ1 − µ̃1)‖L2((0,T )×Γc) + ‖µ2 − µ̃2‖L1((0,T ),H3

(0)
(Ω))

)
6 C ′‖g‖L2((0,T )×Γc)‖ψ − ψ̃‖C0([0,T ],H3

(0)
(Ω)) .

for some constant C ′ independant of ψ and ψ̃. Thus F is a contraction when
C ′‖g‖L2((0,T )×Γc) < 1. Otherwise, one may subdivide the interval (0, T ) into a
�nite number of intervals on which this assumption is satis�ed and iterate the
previous result. 2

3.5 C1-regularity of the end point map

Proposition 10. Let T > 0, Ω be an open subset of R2 and Γc be an open
subset of ∂Ω such that [H1] holds. Consider the end point map

Θ : [H3
(0)(Ω) ∩ S] × L2((0, T )× Γc,R) → H3

(0)(Ω) ∩ S
(ψ0 , g) 7→ ψ(T )

where ψ is the solution of (1). Then, Θ is C1 and for every ψ0 ∈ [H3
(0)(Ω)∩S],

dΘ(ψ0, 0) : [H3
(0)(Ω) ∩ TSψ0] × L2((0, T )× Γc,R) → H3

(0)(Ω) ∩ TSψref (T )

(Ψ0 , G) 7→ Ψ(T )

where ψref (t) := ei∆Dtψ0 and Ψ is the solution of the linearized system

(
i∂t + ∆

)
Ψ(t, x) = V (t, x)ψref (t, x) , (t, x) ∈ (0, T )× Ω ,

Ψ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
Ψ(0, x) = Ψ0(x) , x ∈ Ω ,
(−∆ + 1)V (t, x) = 0 , (t, x) ∈ (0, T )× Ω ,
∂νV (t, x) = G(t, x)1Γc(x) , (t, x) ∈ (0, T )× ∂Ω .

(22)

This result is a consequence of estimate (18). Its proof is classical and follows
the same steps as in [5, Proof of Proposition 3, Pages 531-532].
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4 Local exact control of high frequencies

The goal of this section is the proof of Theorem 1, via a perturbation argument.
In Section 4.1, we prove the controllability of the linearized system at high
frequency, thanks to the weak observability inequality of the adjoint system
and the Hilbert Uniqueness Method. In Section 4.2, we prove Theorem 1 by
applying the inverse mapping theorem.

4.1 Control of high frequencies for the linearized system

The goal of this section is to prove the following result.

Proposition 11. Let T > 0, ψ0 ∈ H3
(0)(Ω) ∩ S and ψref (t) := ei∆Dtψ0. We

assume that [H1], [H2] and [H3] hold. Then, there exists K ∈ N∗ and a
continuous linear map

L : PK [H3
(0)(Ω)]→ L2((0, T )× Γc,R)

such that, for every Ψf ∈ PK [H3
(0)(Ω)], the solution of (22) with Ψ0 = 0 and

control G = L[Ψf ] satis�es PK [Ψ(T )] = Ψf .

The following proposition will allow to work on r := ∆2Ψ instead of Ψ.

Proposition 12. Let T > 0, ψ0 ∈ H3
(0)(Ω) ∩ S, ψref (t) := ei∆Dtψ0, G ∈

L2((0, T ) × Γc,R) and Ψ ∈ C0([0, T ], H3
(0)(Ω)) be the solution of system (22)

with Ψ0 = 0. Then, the function r := ∆2[Ψ] belongs to C0([0, T ], H−1(Ω)) and
is the solution by transposition of

(
i∂t + ∆

)
r(t, x) = K[G](t, x) , (t, x) ∈ (0, T )× Ω ,

r(t, x) = 2G∂νψref1Γc , (t, x) ∈ (0, T )× ∂Ω ,
r(0, x) = 0 , x ∈ Ω ,

(23)

where

K : L2((0, T )× Γc,R) → L2((0, T ), H−1(Ω))

G 7→ ∆2[V ψref ] where

{
(−∆ + 1)V = 0 in (0, T )× Ω ,
∂νV = G1Γc on (0, T )× ∂Ω .

(24)
This means that, for every φT ∈ H1

0 (Ω) and ϕ ∈ L1((0, T ), H1
0 (Ω)) the following

equality holds∫ T
0
〈r(t), ϕ(t)〉H−1,H1

0
dt =

∫ T
0
〈K(G)(t), φ(t)〉H−1,H1

0
dt− i〈r(T ), φT 〉H−1,H1

0

+2
∫ T

0

∫
Γc
G(t, x)∂νψref (t, x)∂νφ(t, x)dσ(x)dt

(25)
where φ ∈ C0([0, T ], H1

0 (Ω)) is the solution of
(
i∂t + ∆

)
φ(t, x) = ϕ(t, x) , (t, x) ∈ (0, T )× Ω ,

φ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω
φ(T, x) = φT (x) , x ∈ Ω .
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Note that, there is no ambiguity in this de�nition because for every φT ∈
H1

0 (Ω) and ϕ ∈ L1((0, T ), H1
0 (Ω)) then ∂νφ belongs to L2((0, T )×Γc) by Propo-

sition 8.

Proof of Proposition 12: When G ∈ C∞c ((0, T ) × Γc), ϕ ∈ C∞c ((0, T ) × Ω)
and φT ∈ C∞c (Ω), then, formula (25) can be proved with integrations by part.
The conclusion follows thanks to the continuity of the maps K (see Proposition
9) and the continuity of the following linear mappings

L2((0, T )× Γc) → C0([0, T ], H3
(0)(Ω)) → C0([0, T ], H−1(Ω))

G 7→ Ψ 7→ r = ∆2Ψ

L1((0, T ), H1
0 (Ω))×H1

0 (Ω) → L2((0, T )× Γc)
(ϕ, φT ) 7→ ∂νφ

stated in Theorem 5 and Proposition 8. 2

From now on, we denote by K∗ the adjoint operator of K,

K∗ : L2((0, T ), H1
0 (Ω))→ L2((0, T )× Γc,R) ,

i.e.

<

(∫ T

0

〈K(G), ξ〉H−1,H1
0
dt

)
=

∫ T

0

∫
Γc

GK∗(ξ)dσ(x)dt (26)

for every ξ ∈ L2((0, T ), H1
0 (Ω)) and G ∈ L2((0, T )× Γc,R).

Thus Proposition 11 is a consequence of the following result.

Proposition 13. Let T > 0, ψ0 ∈ H3
(0)(Ω) ∩ S and ψref (t) := ei∆Dtψ0. We

assume that [H1], [H2] and [H3] hold. Then, there exists K ∈ N∗ and a
continuous linear map

L̃ : PK [H−1
(0) (Ω)]→ L2((0, T )× Γc,R)

such that, for every rf ∈ PK [H−1
(0) (Ω)], the solution of (23) with control G =

L̃[rf ] satis�es PK [r(T )] = rf .

The controllability result of Proposition 13 is a consequence of the following
weak observability result.

Proposition 14. Let T > 0, ψ0 ∈ H3
(0)(Ω) ∩ S and ψref (t) := ei∆Dtψ0. We

assume that [H1], [H2] and [H3] hold. There exists C1 > 0 such that, for every
φT ∈ H1

0 (Ω,C) the solution of
(
i∂t + ∆

)
φ(t, x) = 0 , (t, x) ∈ (0, T )× Ω ,

φ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
φ(T, x) = φT , x ∈ Ω ,

(27)

satis�es

‖φT ‖H1
0 (Ω) 6 C1

(
‖2=(∂νψref∂νφ) +K∗(iφ)‖L2((0,T )×Γc) + ‖φT ‖H−1(Ω)

)
. (28)
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Proof of Proposition 13 thanks to Proposition 14: By [12, Theorems
II.10 and II.19], the existence of a continuous right inverse to the continuous
operator

FK : L2((0, T )× Γc,R) → PK [H−1(Ω)]
G 7→ PK [r(T )]

is equivalent to the existence of C2 > 0 such that

‖φT ‖H1
0 (Ω) 6 C2‖F ∗K(φT )‖L2((0,T )×Γc) , ∀φT ∈ PK [H1

0 (Ω)] , (29)

where F ∗K : PK [H1
0 (Ω)] → L2((0, T ) × Γc,R) is the adjoint operator associated

to FK .

For G ∈ L2((0, T ) × Γc,R) and φT ∈ PK [H1
0 (Ω)], we have (note that K is

R-linear)

<
(
〈FK(G), φT 〉H−1,H1

0

)
= <

(
〈r(T ), φT 〉H−1,H1

0

)
because φT ∈ PK [H1

0 (Ω)]

= <
(
− i
∫ T

0

∫
Γc

2G∂νψref∂νφdσ(x)dt− i
∫ T

0

∫
Ω
〈K(G), φ〉H−1,H1

0
dxdt

)
by (25)

=
∫ T

0

∫
Γc
G
(

2=(∂νψref∂νφ) +K∗(iφ)
)
dσ(x)dt by (26) .

Thus F ∗K has the following explicit expression

F ∗K : PK [H1
0 (Ω)] → L2((0, T )× Γc,R)

φT 7→ 2=(∂νψref∂νφ) +K∗(iφ) .

Let C1 be as in Proposition 14. There exists K ∈ N∗ such that

C1‖φT ‖H−1(Ω) 6
1

2
‖φT ‖H1

0 (Ω) , ∀φT ∈ PK [H1
0 (Ω)]

and then (29) results from (28) with C2 := 2C1. 2

Proof of Proposition 14: Let T̃ be as in [H2] and T ′, T ′′ be as in [H3]. Let

ε := (T ′′−T ′− T̃ )/2 and ρ ∈ C∞c (R,R) be such that ρ ≡ 1 on (T ′+ε, T ′+ε+ T̃ )
and Supp(ρ) ⊂ (T ′, T ′′).

Step 1: We prove the existence of C1 > 0 such that, for every φT ∈ H1
0 (Ω), the

solution of (27) satis�es

‖φT ‖H1
0 (Ω) 6 C1

(
‖2=(ρ∂νψref∂νφ)‖L2(R×Γc) + ‖φT ‖H−1(Ω)

)
. (30)

Let φT ∈ H1
0 (Ω). By [H2], we have

‖φT ‖2H1
0 (Ω)

6 2C2
0

[
T ′+ε+T̃∫
T ′+ε

∫
Γc

|∂νφ(t, x)|2dσ(x)dt+ ‖φT ‖2H−1

]

6 2C2
0

[∫
R

∫
Γc

∣∣∣ρ(t)∂νφ(t, x)
∣∣∣2 dσ(x)dt+ ‖φT ‖2H−1

]
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because ρ ≡ 1 on (T ′+ ε, T ′+ ε+ T̃ ). Then, taking into account that Supp(ρ) ⊂
(T ′, T ′′) and |∂νψref (t, x)| > m > 0 for every (t, x) ∈ (T ′, T ′′)×Γc, i.e [H3], we
obtain

‖φT ‖2H1
0 (Ω)

6 3C2
0

m2

∫
R
∫

Γc

∣∣∣ρ(t) ∂νψref (t, x) ∂νφ(t, x)
∣∣∣2 dσ(x)dt

−C2
0

∫
R
∫

Γc
|ρ(t) ∂νφ(t, x)|2 dσ(x)dt+ 2C2

0‖φT ‖2H−1 .

Moreover,

2
∫
R
∫

Γc

∣∣ρ ∂νψref ∂νφ∣∣2 dσdt
=

∫
R
∫

Γc

( ∣∣ρ ∂νψref ∂νφ∣∣2 +
∣∣ρ ∂νψref ∂νφ∣∣2 )dσdt

=
∫
R
∫

Γc

( ∣∣2=(ρ ∂νψref ∂νφ)
∣∣2 + 2<[(ρ∂νψref ∂νφ)2]

)
dσdt

Note here that in the end of the proof, we will prove that the second term is
compact. It will be crucial for that to notice that it is <[(ρ∂νψref ∂νφ)2] and

not
∣∣<[ρ∂νψref ∂νφ]

∣∣2.
Thus

‖φT ‖2H1
0 (Ω)

6 3C2
0

2m2

∫
R
∫

Γc

( ∣∣2=(ρ ∂νψref ∂νφ)
∣∣2 + 2<[(ρ∂νψref ∂νφ)2]

)
dσdt

−C2
0

∫
R
∫

Γc
|ρ ∂νφ|2 dσdt+ 2C2

0‖φT ‖2H−1 .

In order to get (30), it su�ces to prove the existence of C > 0 such that∫
R

∫
Γc

<[(ρ∂νψref ∂νφ)2]dσdt 6
m2

3

∫
R

∫
Γc

|ρ ∂νφ|2 dσdt+C‖φT ‖2H−1(Ω) . (31)

Let R ∈ N∗ that will be chosen later on,

ψHref (t) := PR[ψref (t)] and ψLref := ψref − ψHref . (32)

Then ∫
R
∫

Γc
<[(ρ ∂νψref ∂νφ)2]dσdt

=
∫
R
∫

Γc
<
(

(ρ ∂νψ
L
ref ∂νφ)2 + (ρ ∂νφ)2 ∂νψ

H
ref (2 ∂νψ

L
ref + ∂νψ

H
ref )

)
dσdt .

In order to get (31), it is su�cient to prove that, for R large enough∫
R

∫
Γc

<[(ρ ∂νψ
L
ref ∂νφ)2]dσdt 6 C‖φT ‖H−1 , (33)

∫
R

∫
Γc

∣∣∣(ρ ∂νφ)2 ∂νψ
H
ref (2 ∂νψ

L
ref + ∂νψ

H
ref )

∣∣∣dσdt 6 m2

2

∫
R

∫
Γc

|ρ ∂νφ|2 dσdt .

(34)
Note that ψHref → 0 in C0([0, T ], H3

(0)(Ω)) when R→ +∞ because ψ0 ∈ H3
(0)(Ω).

Thus, ∂νψ
H
ref

∣∣∣
Γc
→ 0 in L∞((0, T )×Γc) when R→ +∞, because of the Sobolev

embeddings ∂ν [H3
(0)(Ω)] ⊂ H3/2(Γc) ⊂ L∞(Γc). As a consequence, there exists

R such that

‖∂νψHref (2∂νψ
L
ref + ∂νψ

H
ref )‖L∞((0,T )×Γc) 6

m2

2
.
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This implies (34). Until the end of Step 2, R is �xed. The function ρ is C∞c (R)
thus, for every N ∈ N∗, there exists CN > 0 such that∣∣∣∣∫

R
ρ(t)2ei[λj+λJ−λk−λK ]tdt

∣∣∣∣ 6 CN
(λj + λJ)N

,∀j, J ∈ N∗, k,K ∈ {1, ..., R− 1} .

We have∣∣∣∫R ∫Γc <[(ρ∂νψ
L
ref ∂νφ)2]dσdt

∣∣∣
=

∣∣∣∣∣ R−1∑
k,K=1

∞∑
j,J=1

ψ0
kψ

0
Kφ

0
jφ

0
J

(∫
R ρ(t)2ei[λj+λJ−λk−λK ]tdt

) (∫
Γc
∂νϕk ∂νϕK ∂νϕj ∂νϕJdσ

)∣∣∣∣∣
6

R−1∑
k,K=1

∞∑
j,J=1

|ψ0
kψ

0
Kφ

0
jφ

0
J |

CN
(λj+λJ )N

λαkλ
α
Kλ

α
j λ

α
J for some α > 0

6 C(ψ0, R,N)

(
∞∑
j

λα−Nj |φ0
j |

)2

6 C ′(ψ0, R,N)‖φT ‖2H−1(Ω) for N large enough .

Here, we have used Weyl law so get that for anotherN large enough,
∑∞
j λ−Nj <

+∞. Inequality (33) is proved, which ends Step 1.

Step 2: We prove the existence of C2 > 0 such that, for every φT ∈ H1
0 (Ω), the

solution of (27) satis�es

‖φT ‖H1
0 (Ω) 6 C2

(
‖2=(∂νψref∂νφ) +K∗(iφ)‖L2((0,T )×Γc) + ‖φT ‖H−1(Ω)

)
.
(35)

>From (30), we deduce that

‖φT ‖H1
0 (Ω) 6 C1

(
‖2=(ρ∂νψref∂νφ) +K∗[iφ]‖L2(R×Γc) + ‖K∗[iφ]‖L2(R×Γc) + ‖φT ‖H−1(Ω)

)
.

In order to prove (35), it su�ces to prove the existence of C > 0 such that,

‖K∗[iφ]‖L2((0,T )×Γc) 6
1

2C1
‖φT ‖H1

0 (Ω) + C‖φT ‖H−1 , ∀φT ∈ H1
0 (Ω) . (36)

Let R ∈ N∗ that will be chosen later on and ψHref be de�ned by (32). >From
(24) and expansion (20), we see that K = K1 +K2 where

K1 : L2((0, T )× Γc,R) → L2((0, T ), H−1(Ω))
G 7→ ∆2[V ψHref ]

and
K2 : L2((0, T )× Γc,R) → L2((0, T ), H−1/2−ε(Ω))

G 7→ ∆2[V ψLref ]

is continuous. We denote by ‖K1‖ and ‖K2‖ their operator norm in this func-
tional frame.

Note that ψHref → 0 in C0([0, T ], H3
(0)(Ω)) when R → +∞ because ψ0 ∈

H3
(0)(Ω). Thus, there exists R ∈ N∗ such that

‖K1‖ 6
1

2C1

√
T
.

26



>From now on R is �xed. Then, for every φT ∈ H1
0 (Ω),

‖K∗[iφ]‖L2((0,T )×Γc) 6 ‖K∗1[iφ]‖L2((0,T )×Γc) + ‖K∗2[iφ]‖L2((0,T )×Γc)

6 1
2C1

√
T
‖φ‖L2((0,T ),H1

0 (Ω)) + ‖K2‖‖φ‖L2((0,T ),H1/2+ε(Ω))

6 1
2C1
‖φT ‖H1

0 (Ω) +
√
T‖K2‖‖φT ‖H1/2+ε(Ω) .

This implies (36) after interpolation, which ends Step 2. 2

4.2 Control of high frequencies for the nonlinear system

The goal of this section is the proof of Theorem 1. Thus, in the whole section,
T > 0, ψ0 ∈ H3

(0)(Ω) ∩ S, ψref (t) := ei∆Dtψ0 are �xed and [H1], [H2], [H3]
are assumed to hold. We consider the end-point map

Θ̃K : L2((0, T )× Γc,R) → PK [H3
(0)(Ω)] ∩ S

g 7→ PK [ψ(T )]

where ψ solves (1). By Proposition 10, Θ̃K is of class C1 and

dΘ̃K(0) : L2((0, T )× Γc,R) → PK [H3
(0)(Ω)] ∩ TSψref (T )

G 7→ PK [Ψ(T )]

where Ψ solves (22) with Ψ0 = 0. By Proposition 11, there exists K ∈ N∗ such
that dΘ̃K(0) has a continuous right inverse. By the inverse mapping theorem,

Θ̃K is a local C1-di�eomorphism on a neighborhood of 0. The �rst statement
of Theorem 1 holds with Υ := Θ̃−1

K which is locally well de�ned.

There exists K ′ > K such that

‖ψref (T )− PK′ [ψref (T )]‖H3
(0)
< δ .

Then, ψf := (PK − PK′)[ψref (T )]] belongs to V thus g := Υ(ψf ) is well de�ned
in L2((0, T )× Γc,R) and the associated solution of (1) satis�es PK [ψ(T )] = ψf
thus PK′ [ψ(T )] = 0. As a consequence ψ(T ) is a �nite sum of eigenfunctions of
(−∆D) so it is a smooth function. 2

5 Local exact control around eigenfunctions

The goal of this section is to prove Theorem 2, by following essentially the same
strategy as in the previous section. In Section 5.1, we prove the observability of
the adjoint of the linearized system. In Section 5.2, we prove Theorem 2.

5.1 Observability results

The goal of this section is to prove the following observability inequality.

Proposition 15. Let T > 0, R ∈ N∗. We assume that [H1], [H2], [H3'] and
[H4] hold. There exists C2 > 0 such that, for every φT ∈ H1

0 (Ω) ∩ TSϕR the
solution of 

(
i∂t + ∆ + λR

)
φ(t, x) = 0 , (t, x) ∈ (0, T )× Ω ,

φ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
φ(T, x) = φT , x ∈ Ω ,

(37)
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satis�es
‖φT ‖H1

0 (Ω) 6 C2‖2=(∂νϕR∂νφ) + K̃∗(iφ)‖L2((0,T )×Γc) , (38)

where

K̃ : L2(Γc,R) → L2(Ω,C)

G 7→ ∆2[V ϕR] where

{
(−∆ + 1)V = 0 , in Ω ,
∂νV = G1Γc on ∂Ω .

(39)

The proof of Proposition 15 relies on 2 key ingredients: the weak observabil-
ity of the Schrödinger equation [H2] and a unique continuation result given by
the following statement.

Proposition 16. Let T > 0, R ∈ N∗. We assume that [H1], [H2], [H3'] and
[H4] hold. Then for every non zero φT ∈ H1

0 (Ω) ∩ TSϕR,

2=(∂νϕR∂νφ) + K̃∗(iφ) 6= 0 on (0, T )× Γc ,

where φ(t) := ei∆D(t−T )φT .

Proof of Proposition 16: Let T ′ ∈ (T̃ , T ) where T̃ is as in [H2]. By Proposi-
tion 14 (with T replaced by T ′) and the change of phase φ(t, x)← φ(t, x)eiλRt,
we know that there exists C1 > 0 such that, for every φT ∈ H1

0 (Ω), the solution
of (37) satis�es

‖φT ‖H1
0 (Ω) 6 C1

(
‖2=(∂νϕR∂νφ) + K̃∗(iφ)‖L2((0,T ′)×Γc) + ‖φT ‖H−1(Ω)

)
. (40)

We introduce

NT :=
{
φ0 ∈ H1

0 (Ω) ∩ TSϕR; 2=(∂νϕR∂νφ) + K̃∗(iφ) = 0 in L2((0, T )× Γc)
}

where φ(t) := ei(∆D+λR)tφ0 := S(t)φ0. NT is a R-vector subspace of H1
0 (Ω).

We want to prove that NT = {0}.

Step 1: We prove that NT contains eigenfunctions of −∆D. Let φ0 ∈ NT .

Since φ0 ∈ H1
0 (Ω), then φε := S(ε)φ0−φ0

ε is bounded in H−1(Ω) uniformly when
ε→ 0. Moreover, for ε < T − T ′, φε belongs to NT ′ . Applying (40) to φε, with
ε < T −T ′, we get ‖φε‖H1

0 (Ω) 6 C1‖φε‖H−1 . Thus φε is bounded in H1
0 (Ω) when

ε→ 0. Therefore φ0 ∈ H3
(0)(Ω). Indeed, by Fatou lemma,

‖φ0‖2H3
(0)

=
∑∞
k=1

∣∣∣λ3/2
k 〈φ0, ϕk〉

∣∣∣2
=
∑∞
k=1 lim infε→0

∣∣∣√λk eiλkε−1
ε 〈φ0, ϕk〉

∣∣∣2
6 lim infε→0

∑∞
k=1

∣∣∣√λk eiλkε−1
ε 〈φ0, ϕk〉

∣∣∣2
6 lim infε→0 ‖φε‖H1

0
<∞ .

For T ′′ < T , the map

JT ′′ : H1
0 (Ω) → L2((0, T ′′)× Γc)

φ0 7→ 2=[∂νϕR∂νφ] +K∗(iφ)
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is continuous (see Propositions 8 and 9, which implies the continuity of K :
L2(Γc,R)→ L2(Ω) and thus of K∗ : L2(Ω) 7→ L2(Γc,R)). Moreover, JT ′′(φε) =
0 for every ε < T − T ′′, and φε → i(∆D + λR)φ0 in H1

0 (Ω) thus JT ′′ [i(∆D +
λR)φ0] = 0. This holds for every T ′′ ∈ (0, T ), thus i(∆D + λR)φ0 ∈ NT .

We have proved that NT is stable by i(∆D + λR) and only contains smooth
functions in D[(−∆D)s], ∀s ∈ N∗. Applying again estimate (40) to i(∆D +
λR)φ0, we get

‖(∆D + λR)φ0‖H1
0 (Ω) 6 C1‖(∆D + λR)φ0‖H−1(Ω) .

This shows that the unit ball of NT is compact (for the H1
0 (Ω)-topology), thus

NT has �nite dimension (Rellich theorem).
Then the �nite dimensional space NT is stable by the real symmetric oper-

ator −(∆D + λR)2 = [i(∆D + λR)]2, thus −(∆D + λR)2 has an eigenfunction in
NT . This candidate is also an eigenfunction of (−∆D).

Step 2: We prove that

K̃∗(zϕk) = <(z)
(
λ2
kwk − 2 ∂νϕR ∂νϕk

)
|Γc

, ∀z ∈ C, k ∈ N∗ (41)

where wk is de�ned in [H4]. Let z ∈ C and k ∈ N∗. For every G ∈ L2(Γc,R),
we have∫

Γc

GK̃∗(zϕk)dσ(x) = <
(∫

Ω

K̃(G)zϕkdx

)
= <(z)

∫
Ω

K̃(G)ϕkdx

thus K̃∗(zϕk) = <(z)K̃∗(ϕk).
If G ∈ C∞c ((0, T ) × Γc,R), then the potential V de�ned in (39) belongs to

C∞((0, T )× Ω,R) thus the following integrations by part are legitimate∫
Ω
K̃(G)ϕkdx =

∫
Ω

∆2[V ϕR]ϕkdx with V as in (39)

=
∫
∂Ω

(
∂ν [∆(V ϕR)]ϕk −∆(V ϕR) ∂νϕk

)
dσ(x) +

∫
Ω

∆[V ϕR]∆ϕkdx

= −2
∫

Γc
G∂νϕR ∂νϕk dσ(x)− λk

∫
Ω

∆[V ϕR]ϕkdx ,∫
Ω

∆[V ϕR]ϕkdx = −λk
∫

Ω
V ϕRϕkdx

= −λk
∫

Ω
V (−∆ + 1)wkdx

= −λk
∫

Γc
Gwkdσ(x) .

This proves that∫
Ω

K̃(G)ϕkdx =

∫
Γc

G
(
λ2
kwk − 2∂νϕR ∂νϕk

)
dσ

for every G ∈ C∞c ((0, T ) × Γc,R). The same equality holds for every G ∈
L2((0, T )× Γc,R) by density. Therefore, K̃∗(ϕk) = λ2

kwk − 2∂νϕR ∂νϕk.

Step 3: We prove that NT = {0}. Working by contradiction, we assume that
NT 6= {0}. By Step 1, there exists z ∈ C \ {0} and k ∈ N∗ such that zϕk ∈ NT .
Moreover, by Step 2,

2=
(
∂νϕR∂ν [zϕkei(λR−λk)t]

)
+ K̃∗(izϕkei(λR−λk)t) = <[izei(λR−λk)t]λ2

kwk .
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Thus <[izei(λR−λk)t]wk vanishes on (0, T )×Γc. By assumption [H4], we deduce
that

<[izei(λR−λk)t] ≡ 0 on (0, T ) . (42)

First case: k = R. Then z ∈ iR because zϕk ∈ TSϕR. >From (42), we deduce
that 0 = <(iz) = iz, which is impossible because z 6= 0.
Second case: k 6= R. Then λk 6= λR because λR is a simple eigenvalue (see
[H4]). >From (42), we deduce that z = 0, which is a contradiction. 2

Remark 2. Note that assumption [H4] is necessary for the controllability of
the linearized system 22 (with Ψ0 = 0) around (ψref (t) = ϕRe

−iλRt, gref ≡ 0).
Indeed, for any eigenfunction Φ of (−∆D) associated with the eigenvalue λΦ,
we have

〈Ψ(T ),Φ〉 =
〈
i
∫ T

0
e−i∆D(T−t)

(
V (t)ψref (t)

)
dt,Φ

〉
= ie−iλΦT

∫ T
0
e−i(λR−λΦ)t〈V (t), ϕRΦ〉dt

= ie−iλΦT
∫ T

0
e−i(λR−λΦ)t〈G(t), w〉L2(Γc)dt

where w is as in [H4] (apply the Green formula, as in the proof of Proposition
2). In particular, if [H4] is not ful�lled, we are in one of the following situation

• if λR is a multiple eigenvalue, then, for any eigenfunction Φ associated
to the eigenvalue λΦ = λR and linearly independent of ϕR, one cannot
control the complex component i〈Ψ(T ),Φ〉eiλΦT because it only takes real
values

i〈Ψ(T ),Φ〉eiλΦT =

∫ T

0

〈G(t), w〉dt ∈ R ,

• if there exists an eigenfunction Φ for wich w ≡ 0 on Γc, then, one cannot
control the component 〈Ψ(T ),Φ〉 because it vanishes

〈Ψ(T ),Φ〉 = ie−iλΦT

∫ T

0

e−i(λR−λΦ)t〈G(t), w〉L2(Γc)dt = 0 .

Proof of Proposition 15: Working by contradiction, we assume that, for
every n ∈ N∗, there exists φnT ∈ H1

0 (Ω) such that

1 = ‖φnT ‖H1
0 (Ω) > n‖2=(∂νϕR∂νφn) + K̃∗(iφn)‖L2((0,T )×Γc) . (43)

Up to a subsequence, one may assume that φnT ⇀ φ∞T weakly in H1
0 (Ω). The

strong continuity of the operator

H1
0 (Ω) −→ L2((0, T )× Γc)

φT 7−→ 2=(∂νϕR∂νφ) + K̃∗(iφ)

implies its continuity for the weak topology [12, Theorem III.9]. Thus

2=(∂νϕR∂νφn) + K̃∗(iφn) ⇀
n→∞

2=(∂νϕR∂νφ∞) + K̃∗(iφ∞) in L2((0, T )× Γc) .

>From (43), we deduce that

2=(∂νϕR∂νφ∞) + K̃∗(iφ∞) = 0 on (0, T )× Γc .
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By Proposition 16, φ∞T = 0. Thus, up to a subsequence, ‖φnT ‖H−1(Ω) → 0 when
n→∞. We deduce from (40) that

1 = ‖φnT ‖H1
0 (Ω) 6 C1

( 1

n
+ ‖φnT ‖H−1(Ω)

)
→

n→∞
0 ,

which is a contradiction. 2

5.2 Proof of Theorem 2

Let T > 0, R ∈ N∗ and ψref (t) := ϕR(x)e−iλRt. We assume that [H1], [H2],
[H3'] and [H4] hold. By Proposition 10, the end point map

Θ̃ : [H3
(0)(Ω) ∩ S] × L2((0, T )× Γc,R) → [H3

(0)(Ω) ∩ S]2

(ψ0 , g) 7→ (ψ0, ψ(T )eiλRT )

is of class C1 and

dΘ̃(ϕR, 0) : [H3
(0)(Ω) ∩ TSϕR] × L2((0, T )× Γc,R) → [H3

(0)(Ω) ∩ TSϕR]2

(Ψ0 , G) 7→ (Ψ0,Ψ(T ))

where

(
i∂t + ∆ + λR

)
Ψ(t, x) = V (t, x)ϕR , (t, x) ∈ (0, T )× Ω ,

Ψ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
Ψ(0, x) = Ψ0(x) , x ∈ Ω ,
(−∆ + 1)V (t, x) = 0 , (t, x) ∈ (0, T )× Ω ,
∂νV (t, x) = G(t, x)1Γc(x) , (t, x) ∈ (0, T )× ∂Ω .

(44)

The same arguments as in the previous section prove that dΘ̃(ϕR, 0) has a con-
tinuous right inverse thanks to Proposition 15. The inverse mapping theorem,
proves that Θ̃ is a local C1-di�eomorphism. 2

5.3 Some comments about control only depending on time

In this subsection, we comment on the information given by our previous study
for a control that would be of the form

(
i∂t + ∆

)
ψ(t, x) = v(t, x)ψ(t, x) , (t, x) ∈ (0, T )× Ω ,

ψ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
ψ(0, x) = ψ0(x) x ∈ Ω ,
(−∆ + 1)v(t, x) = 0 , (t, x) ∈ (0, T )× Ω ,
∂νv(t, x) = g(t)µ(x)1Γc(x) (t, x) ∈ (0, T )× ∂Ω ,

(45)

where the control g ∈ L2(0, T ) only depends on time and µ ∈ L∞(∂Ω) is
�xed.

This is very close to the con�guration studied in several papers described
in the introduction (except that we impose that the potential v = g(t)Vµ is
harmonic).

31



If we followed the framework described in the previous section, we would
obtain that the observability estimate necessary to obtain the controllability of
the linearized system, would be of the form

‖φT ‖2H1
0 (Ω) 6 C2

∫ T

0

∣∣∣∣∫
∂Ω

2=(µ(x)∂νϕR∂νφ) +K∗(iφ)dσ(x)

∣∣∣∣2 dt , (46)

instead of the classical observability estimate (38), where K would be another
(but similar) compact operator.

Then, it becomes quite clear that (46) is really not likely to be true in general.
Indeed, to contradict (46), it su�ces to �nd a sequence of solutions with H1

0

norm equals to 1 but whose Neumann trace on the boundary weakly converges
to zero. This can be easily done for instance

• on the square (0, π)2: with the normalized initial data
φn(x, y) = cn sin(nx) sin(ny)

• on the disk: with some initial data φn(r, θ) = einθgn(r) where gn are
appropriate normalized Bessel functions.

Also, this analysis can also help to identify some class of initial data that could
be observable. It is necessary that there is no oscillation of the trace on the
boundary. This could be true for instance

• on square: with some initial data that would depend only on x or y.

• on the disk: with some radial initial data.

Also, from a microlocal point of view, we can see that (46) can only be true
for sequences of solutions whose trace do not weakly converge to zero. That
means some data whose Neumann trace on the boundary is concentrated in
the frequency ξ′ = 0. Yet, the theorems of propagation of microlocal defect
measure (described for example for the wave equation in [14]) could suggest
that it implies that the data are concentrated close to some rays that intersect
the boundary orthogonally.

6 Schrödinger equation with real-valued bound-

ary controls

The goal of this section is to prove Theorem 3. The arguments have already
been developped in the Step 1 of the proof of Proposition 14 but here, we give
a simpler proof in this simpler case.

Proposition 17. Let Ω be an open subet of R2, Γ be an open subset of ∂Ω and
0 < T̃ < T < ∞. If the Schrödinger equation on Ω is weakly observable on
(0, T̃ )× Γ then, there exists C1 > 0 such that

‖φ0‖H1
0 (Ω) 6 C1

(
‖=(∂νφ)‖L2((0,T )×Γ) + ‖φ0‖H−1(Ω)

)
, ∀φ0 ∈ H1

0 (Ω,C) (47)

where φ(t) := eit∆Dφ0.
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Proof. Let T ′, T ′′ ∈ (0, T ) and ρ ∈ C∞c (R,R+) be such that T ′′−T ′ > T̃ , ρ ≡ 1
on (T ′, T ′′) and Supp(ρ) ⊂ (0, T ). The assumption and conservation of the
norm give

‖φ0‖2H1
0 (Ω) 6 C0

(
‖ρ∂νφ‖2L2(Rt×Γ) + ‖φ0‖2H−1(Ω)

)
, ∀φ0 ∈ H1

0 (Ω,C) (48)

Since |=(∂νφ)|2 = |∂νφ|2
2 +

<[(∂νφ)2]
2 , it is enough to prove∣∣∣∣∫

Rt

∫
Γ

ρ2(∂νφ)2

∣∣∣∣ ≤ C‖φ0‖2H−1(Ω).

This inequality is obviously false if (∂νφ)2 is replaced by |∂νφ|2. It is actually
true because (∂νφ)2 is the product of two terms that oscillate in the same
direction, which is false for |∂νφ|2.

More precisely, write φ0 =
∑
k ϕkφ0,k where (ϕk)k∈N∗ is an orthonormal ba-

sis of eigenfunctions for ∆D with eigenvalues −λk. We have φ =
∑
k e
−iλkϕkφ0,k∫

Rt

∫
Γ

ρ2(∂νφ)2 =
∑
k,l

φ0,lφ0,k

(∫
Rt
e−i(λk+λl)ρ2

)(∫
Γ

(∂νϕk)(∂νϕl)

)

The boundary term can be bounded for instance by trace estimates (actually,

�nner estimates would give a better exponent λ
1/2
k )∫

Γ
|(∂νϕk)(∂νϕl)| ≤ ‖∂νϕk‖L2(Γ) ‖∂νϕl‖L2(Γ) ≤ C ‖ϕk‖H2(Ω) ‖ϕl‖H2(Ω)

≤ Cλkλl ≤ C(λk + λl)
2.

The function ρ is C∞c (R) thus, for every N ∈ N∗, there exists CN > 0 such that∣∣∣∣∫
R
ρ(t)2e−i[λk+λl]tdt

∣∣∣∣ 6 CN
(λk + λl)N

≤ C̃N
(λkλl)N/2

,∀k, l ∈ N∗

So, choosing N large enough (and replacing N/2−2 by N), we obtain the bound∣∣∣∣∫
Rt

∫
Γ

ρ2(∂νφ)2

∣∣∣∣ ≤∑
k,l

|φ0,lφ0,k|
CN

(λkλl)N
≤ CN

(∑
k

|φ0,k|
λNk

)2

≤ C‖φ0‖2H−1(Ω)

when N is chosen large enough so that λ
1/2−N
k is summable, which is always

possible (for instance using Weyl law).

The following result can be proved thanks to the arguments developped in
the proof of Proposition 16 (in a simpler way, because K∗ does not appear
anymore), together with Proposition 17 and the time-oscillation of ∂νφ.

Proposition 18. Let Ω be an open subet of R2, Γ be an open subset of ∂Ω and
0 < T̃ < T < ∞. If the Schrödinger equation on Ω is weakly observable on
(0, T̃ )× Γ then, for every non zero φ0 ∈ H1

0 (Ω) ∩ TSϕR,

=(∂νφ) 6= 0 on (0, T )× Γc ,

where φ(t) := eit∆Dφ0.
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Proof. Since the method is classical and was already performed in a more com-
plicated case, we only detail the di�erence with Proposition 16. We de�ne
similarly

NT :=
{
φ0 ∈ H1

0 (Ω);=(∂νφ) = 0 in L2((0, T )× Γc)
}

where φ(t) := ei∆Dtφ0.
Following Step 1, we obtain that if NT 6= {0}, NT only contains one eigen-

function. Assume ϕ ∈ NT \ {0} is an eigenfunction of ∆D. Then, eit∆Dϕ =
e−itλϕ. Note that the Dirichlet boundary condition implies λ 6= 0 and therefore
ϕ ∈ NT implies ∂νϕ = 0 on Γc. By unique continuation for eigenfunctions, we
get ϕ = 0, a contradiction.

Remark 3. This result would be false if we considered Neumann boundary
conditions. The real constants solutions Φ(t) = c with c ∈ R create a zero
observation. The system is therefore not controllable with a real control. Yet,
the space of not controllable data is only one dimensional.

Then, arguing by contradiction as in the proof of Proposition 15, we obtain
the following observability Proposition which directly implies Theorem 3 by the
HUM method (a variant with R linear vector space).

Proposition 19. Let Ω be an open subet of R2, Γ be an open subset of ∂Ω and
0 < T̃ < T < ∞. If the Schrödinger equation on Ω is weakly observable on
(0, T̃ )× Γ then, there exists C1 > 0 such that

‖φ0‖H1
0 (Ω) 6 C1‖=(∂νφ)‖L2((0,T )×Γ) , ∀φ0 ∈ H1

0 (Ω,C) (49)

where φ(t) := eit∆Dφ0.

7 Nonlinear equation on a rectangle

The goal of this section is to prove Theorem 4. Note that system (4) may be
written

i∂tψ = −∆ψ + (−∆N + 1)−1[ε|ψ|2]ψ + vψ , (t, x) ∈ (0, T )× Ω ,
∂νψ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
ψ(0, x) = ψ0(x) , x ∈ Ω ,
(−∆ + 1)v = 0 , (t, x) ∈ (0, T )× Ω ,
∂νv(t, x) = g(t, x)1Γc(x) , (t, x) ∈ (0, T )× ∂Ω .

(50)

In Section 7.1, we prove a smoothing e�ect. In Section 7.2, we prove the well
posedness of system (50) in functional spaces appropriate for the controllability
problem. In Section 7.3, we prove the C1-regularity of the end point map. In
Section 7.4, we prove the controllability of the linearized system. In Section 7.5,
we prove Theorem 4 by applying the inverse mapping theorem.

7.1 Smoothing e�ect on the source term

We introduce the operator A de�ned by

D(A) := H2
N (Ω,C) , Aφ := −∆φ+

2ε

πL
(−∆N + 1)−1[<(φ)] .
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On H2
N (Ω,C), we use the norm

‖ϕ‖H2
N

:= ‖(−∆ + 1)ϕ‖L2(Ω) =

 ∑
p,n∈N

∣∣∣∣(p2 +
(nπ
L

)2

+ 1

)
〈ϕ, ξp,n〉

∣∣∣∣2
1/2

where 〈., .〉 is the usual L2(Ω)-scalar product and

ξp,n(x1, x2) = ζp(x1)φn(x2) (51)

ζp(x1) =

{ 1√
π
if p = 0 ,√

2
π cos(px1) if p ∈ N∗ ,

φn(x2) =

{ 1√
L
if n = 0 ,√

2
L cos

(
nπx2

L

)
if n 6= 0 .

The goal of this section is the proof of the following result.

Theorem 7. Let T > 0, L > 0, Ω = (0, π) × (0, L) and Γc be an open subset
of ∂Ω such that Γc does not contain any vertex of Ω. For every ψ0 ∈ H2

N (Ω),
µ1 ∈ L2((0, T ), H3/2(Ω)) and µ2 ∈ L1((0, T ), H2

N (Ω)) such that

(−∆ + 1)µ1 ≡ 0 , ∂νµ1 ∈ L2((0, T )× ∂Ω) , Supp(∂νµ1) ⊂ Γc , (52)

the solution of
(
i∂t −A

)
ψ(t, x) =

(
µ1 + µ2

)
(t, x) , (t, x) ∈ (0, T )× Ω ,

∂νψ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
ψ(0, x) = ψ0(x) , x ∈ Ω ,

satis�es ψ ∈ C0([0, T ], H2
N (Ω)). Moreover, there exists a constant C > 0 (inde-

pendent of ψ0, µ1, µ2) such that

‖ψ‖L0([0,T ],H2
N (Ω)) 6 C

(
‖ψ0‖H2

N (Ω) +‖∂νµ1‖L2((0,T )×Γc) +‖µ2‖L1((0,T ),H2
N (Ω))

)
.

(53)

Remark 4. By Proposition 7, ∂νµ1|Γj is well de�ned in L2((0, T ), H−
3
2−ε(Γj)),

for j = 1, ..., 4. This gives a sense to the second assumption in (52) i.e.
∂νµ1|Γj ∈ L2((0, T )× Γj) for j = 1, ..., 4.

To prove Theorem 7, we need the following preliminary result.

Proposition 20. Under the assumptions of the previous statement, the map

H : t 7→
∫ t

0

e−i∆Nsµ1(s)ds

belongs to C0([0, T ], H2
N (Ω)) and

‖H‖L∞((0,T ),H2
N (Ω)) 6 C‖∂νµ1‖L2((0,T )×Γc) , (54)

for some constant C = C(T ) > 0 independent of µ1.
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Proof of Proposition 20: The proof is quite close to the one of Theorem 5 on
the rectangle. We only perform Step 1, since the Step 2 of regularization is very
similar. Actually, following similar arguments as Step 2, we can �rst assume
∂νµ1|∂Ω ∈ C∞0 ((0, T )× Γc) which gives by elliptic regularity µ1 ∈ C∞((0, T )×
Ω). The inequality (54) that we obtain for smooth functions will then allow us
to get the same result under the above regularity assumptions.

So, up to now, we assume that µ1 is regular enough.
By linearity, we may assume that Γc ⊂ (a, b)× {0} with 0 < a < b < π. We

have

S = ‖H(t)‖2
H2
N (Ω)

=
∑

p,n∈N

∣∣∣∣(p2 +
(
nπ
L

)2
+ 1
) t∫

0

〈µ1(s), ξp,n〉e
−i
(
p2+(nπL )

2
)
s
ds

∣∣∣∣2
=

∑
p,n∈N

∣∣∣∣ t∫
0

〈µ1(s), (−∆ + 1)ξp,n〉e
−i
(
p2+(nπL )

2
)
s
ds

∣∣∣∣2
We can apply the Green formula because µ1 and ξp,n are smooth. This leads to

S =
∞∑

p,n=0

∣∣∣∣∣ t∫0 e−i
(
p2+(nπL )

2
)
s ∫

Γc

∂νµ1(s, x)ξp,n(x)dσ(x)ds

∣∣∣∣∣
2

6 C
∞∑
p=0

∞∑
n=0

∣∣∣ T0∫
0

1(0,t)(s)e
−ip2s

π∫
0

∂x2
µ1(s, x1, 0) cos(px1)dx1e

−i(nπL )
2
sds
∣∣∣2

6 C
∞∑
p=0

T0∫
0

∣∣∣1(0,t)(s)e
−ip2s

π∫
0

∂x2µ1(s, x1, 0) cos(px1)dx1

∣∣∣2ds
thanks to the Bessel Parseval inequality in L2(0, T0) with T0 > T of the form
2mL2

π with m ∈ N∗. Thus, we have

S 6 C
∞∑
p=0

t∫
0

∣∣∣ π∫
0

∂x2µ1(s, x1, 0) cos(px1)dx1

∣∣∣2ds
6 C

t∫
0

∞∑
p=0

∣∣∣ π∫
0

∂x2
µ1(s, x1, 0) cos(px1)dx1

∣∣∣2ds
6 C

t∫
0

‖∂x2µ1(s, ., 0)‖2L2(0,π)ds

thanks to the orthogonality of the functions (cos(px1))p∈N in L2(0, π).
Note that µ1 can be computed explicitly in terms of ∂νµ1|Γc thanks to the

rectangular form of the domain Ω. This explicit expression shows the existence
of a constant C = C(Ω) > 0 such that

‖µ1‖2L2((0,t),H1(Ω)) 6 C‖∂νµ1‖L2((0,t)×∂Γc) , ∀t ∈ (0, T ) .

Therefore,

‖H(t)‖2H2
N (Ω) 6 C(T )‖∂νµ1‖L2((0,t)×∂Γc) , ∀t ∈ (0, T ) .

This inequality proves that the map H takes values in H2
N (Ω) on [0, T ] and that

H : [0, T ] → H2
N (Ω) is continuous at t = 0. The same proof shows that H is

continuous at any t ∈ (0, T ]. 2
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Proof of Theorem 7: By the Duhamel formula, we have

ψ(t) = ei∆N tψ0 − i
t∫

0

ei∆N (t−s)
(
µ̃2(s) + µ1(s)

)
ds , (55)

where

µ̃2(t) := µ2(t)− 2ε

πL
(−∆N + 1)−1(<ψ) .

In particular, µ̃2 ∈ L1((0, T ), H2
N (Ω)) and

‖µ̃2‖L1((0,T ),H2
N (Ω)) 6 ‖µ2‖L1((0,T ),H2

N (Ω)) +
2εT

πL
‖ψ‖L∞((0,T ),L2(Ω)) . (56)

For every τ ∈ R, the operator ei∆Nτ is an isometry of H2
N (Ω) thus the �rst

2 terms in the right hand side of (55) belong to C0([0, T ], H2
N (Ω)). The third

term also does, by Proposition 20, thus ψ ∈ C0([0, T ], H2
N (Ω)).

Step 1: Proof of (53) when T is small enough so that

2εT

πL
6

1

2
. (57)

We deduce from (55) that, for every t ∈ (0, T )

‖ψ(t)‖H2
N (Ω) 6 ‖ψ0‖H2

N (Ω) +

∫ t

0

‖µ̃2(s)‖H2
N (Ω)ds+

∥∥∥∥∥∥
t∫

0

e−i∆Nsµ1(s)ds

∥∥∥∥∥∥
H2
N (Ω)

.

Using (56), Proposition 20 and (57) we obtain

‖ψ‖L∞((0,T ),H2
N (Ω)) 6 2

(
‖ψ0‖H2

N (Ω) + ‖µ2‖L1((0,T ),H2
N (Ω)) + C‖∂νµ1‖L2((0,T )×Γc)

)
.

Step 2: Proof of (53) when T is arbitrary. Let 0 = T1 < T2 < ... < Tm = T be

a subdivision of [0, T ] such that 2ε(Tk+1−Tk)
πL 6 1

2 for k = 1, ...m − 1. Applying
Step 1 on each subinterval (Tk, Tk+1) we obtain (53). 2

7.2 Wellposedness of the nonlinear Schrödinger-Poisson
system

The goal of this section is the proof of the following result.

Proposition 21. Let T > 0. There exists ρ, δ > 0 such that, for every ψ0 ∈
H2
N (Ω), g ∈ L2((0, T )× ∂Ω) with ‖ψ0 − ψref (0)‖H2

N
< ρ and ‖g‖L2((0,T )×∂Ω) <

δ, there exists a unique solution ψ ∈ C0([0, T ], H2
N (Ω)) of (50). Moreover

‖ψ(t)‖L2(Ω) = ‖ψ0‖L2(Ω) for every t ∈ [0, T ].

We search ψ in the form

ψ(t, x, y) =
e−

iεt
πL

√
πL

[1 + ζ(t, x, y)]
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where ζ is the solution of

(
i∂t −A

)
ζ = Φ(ζ) + v(1 + ζ) , (t, x) ∈ (0, T )× Ω ,

∂νζ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
ζ(0, x) = ζ0(x) , x ∈ Ω ,
(−∆ + 1)v(t, x) = 0 , (t, x) ∈ (0, T )× Ω ,
∂νv(t, x) = g(t, x)1Γ(x) , (t, x) ∈ (0, T )× ∂Ω ,

(58)

and

Φ(ζ) :=
2ε

πL
(−∆N + 1)−1 [<(ζ)] ζ +

ε

πL
(−∆N + 1)−1

[
|ζ|2
]

(1 + ζ) . (59)

Proposition 21 is a consequence of the following result.

Proposition 22. Let T > 0. There exists ρ, δ > 0 such that, for every ζ0 ∈
H2
N (Ω), g ∈ L2((0, T )× ∂Ω,R) with ‖ζ0‖H2

N
< ρ and ‖g‖L2((0,T )×∂Ω) < δ, there

exists a unique weak solution ζ ∈ C0([0, T ], H2
N (Ω)) of (58).

Proof of Proposition 22: Let T > 0.

Step 1: We prove the existence of C0 > 0 such that, for every ζ ∈ H2
N (Ω) and

v ∈ H 3
2 (Ω) satisfying (−∆ + 1)v = 0 in Ω, then (−∆ + v)(vζ) ∈ L2(Ω) and

‖(−∆ + v)(vζ)‖L2(Ω) 6 C0‖v‖
H

3
2 (Ω)
‖ζ‖H2

N (Ω) .

We have
(−∆ + 1)[vζ] = −2∇v · ∇ζ − v∆ζ .

• We have ∆ζ ∈ L2(Ω) and v ∈ L∞(Ω), by the Sobolev embedding (11),
thus v∆ζ ∈ L2(Ω).

• We have ∇v ∈ H1/2(Ω) and ∇ζ ∈ H1(Ω). >From the Sobolev embedding
(12), we deduce that ∇v and ∇ζ belong to L4(Ω). Thus ∇v ·∇ζ ∈ L2(Ω).

Step 2: Choice of R, δ, ρ. Let C > 0 be as in Proposition 20 and C ′ > 0 be the
constant of the third statement of Proposition 7. Let C1, C2, C3 > 0 be such
that

‖Φ(ζ)‖H2
N (Ω) 6 C1‖ζ‖2H2

N (Ω) , ∀ζ ∈ H2
N (Ω) such that ‖ζ‖H2

N (Ω) 6 1 ,

‖ζ‖L∞(Ω) 6 C2‖ζ‖H2
N (Ω) , ∀ζ ∈ H2

N (Ω) ,

‖Φ(ζ)− Φ(ζ̃)‖H2
N (Ω) 6 C3‖ζ − ζ̃‖H2

N (Ω) max
{
‖ζ‖H2

N (Ω); ‖ζ̃‖H2
N (Ω)

}
,

∀ζ , ζ̃ ∈ H2
N (Ω) such that ‖ζ‖H2

N (Ω) , ‖ζ̃‖H2
N (Ω) 6 1 ,

where Φ(ζ) is de�ned in (59). Let

R := min
{

1; 1
4C1T

; 1
4C3T

}
, ρ := R

2

δ := min
{

R
4[C(1+C2)+C0C′

√
T ]

; 1
4(CC2+C0C′T )

}
,

(60)

and ζ0 ∈ H2
N (Ω) be such that ‖ζ0‖H2

N (Ω) < ρ.
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We consider the map

F : BR[C0([0, T ], H2
N (Ω))] → BR[C0([0, T ], H2

N (Ω))]
ζ 7→ ξ

where ξ := F (ζ) is the solution of
(
i∂t −A

)
ξ = Φ(ζ) + v(1 + ζ) , (t, x, y) ∈ (0, T )× Ω ,

∂νξ(t, x, y) = 0 , (t, x, y) ∈ (0, T )× ∂Ω ,
ξ(0, x, y) = ζ0(x, y) , (x, y) ∈ Ω .

The end of the proof consists in applying the Banach �xed point theorem to the
map F .

Step 3: We prove that F takes values in BR[C0([0, T ], H2
N )].

Let ζ ∈ BR[C0([0, T ], H2
N )]. We introduce the solution µ3 of{

(−∆ + 1)µ3(t, x1, x2) = (−∆ + 1)[vζ](t, x1, x2) , (t, x1, x2) ∈ (0, T )× Ω ,
∂νµ3(t, x1, x2) = 0 , (t, x1, x2) ∈ (0, T )× ∂Ω

and the functions

µ1 := v + vζ − µ3 , µ2 := µ3 + Φ(ζ) .

By Step 1, (−∆ + 1)(vζ) ∈ L2((0, T ) × Ω) and thus µ3 ∈ L2((0, T ), H2
N (Ω)).

Therefore µ1 and µ2 satisfy the assumptions of Theorem 7 and ξ := F (ζ) ∈
C0([0, T ], H2

N (Ω)). By Proposition 20 and (60)

‖ξ‖L∞((0,T ),H2
N ) 6 ‖ζ0‖H2

N
+ C‖∂νµ1‖L2((0,T )×Γc) +

∫ T
0

(
‖µ3(s)‖H2

N
+ ‖Φ[ζ(s)]‖H2

N

)
ds

6 R
2 + C‖g(1 + ζ)‖L2((0,T )×Γc) +

√
T‖(−∆ + 1)[vζ]‖L2((0,T )×Ω) + TC1R

2

6 3R
4 + Cδ(1 + C2) +

√
TC0C

′δR
6 R .

Step 4: We prove that F is a contraction. Let ζ , ζ̃ ∈ BR[C0([0, T ], H2
N )]. By

Proposition 20 and (60),

‖ξ − ξ̃‖L∞((0,T ),H2
N )

6 C‖∂ν(µ1 − µ̃1)‖L2((0,T )×Γc) +
∫ T

0

(
‖(µ3 − µ̃3)(s)‖H2

N
+ ‖Φ(ζ(s))− Φ(ζ̃(s))‖H2

N

)
ds

6 C‖g(ζ − ζ̃)‖L2((0,T )×Γc) +
√
T‖(−∆ + 1)[v(ζ − ζ̃)]‖L2((0,T )×Ω) + TC3R‖ζ − ζ̃‖L∞((0,T ),H2

N )

6
(
CδC2 + C0C

′δ + TC3R
)
‖ζ − ζ̃‖L∞((0,T ),H2

N )

6 1
2‖ζ − ζ̃‖L∞((0,T ),H2

N ) . 2

7.3 C1-regularity of the end-point map

The end point map is de�ned by

ΘT : [S ∩H2
N (Ω,C)] × L2((0, T )× ∂Ω,R) → [S ∩H2

N (Ω,C)]2

(ψ0 , g) 7→ (ψ(0), ψ(T )) ,
(61)

where ψ is the solution of (50). The goal of this section is to state the following
result, which is a consequence of estimate (53).
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Proposition 23. Let T > 0 and ρ , δ > 0 be as in Proposition 21. The end-point
map ΘT de�ned by (61) is C1 on

{(ψ0, g) ∈ H2
N×L2((0, T )×∂Ω); ‖ψ0−ψref (0)‖H2

N
< ρ and ‖g‖L2((0,T )×∂Ω) < δ}

and

dΘT (ψref (0), 0).(Ψ0, G) =

(
Ψ0,

e
−i εT√

πL

√
πL

Ψ(T )

)
where Ψ is the solution of

(
i∂t −A

)
Ψ = V , (t, x) ∈ (0, T )× Ω ,

∂νΨ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
Ψ(0, x, y) = Ψ0(x) , x ∈ Ω ,
(−∆ + 1)V = 0 , (t, x) ∈ (0, T )× Ω ,
∂νV (t, x) = G(t, x)1Γc(x) , (t, x) ∈ (0, T )× ∂Ω .

(62)

7.4 Controllability of the linearized system

Let

TS :=

{
ϕ ∈ L2(Ω,C);<

(∫
Ω

ϕ(x, y)dxdy

)
= 0

}
.

The goal of this section is the proof of the following result.

Proposition 24. Let T > 0. There exists a continuous map

L :
(
TS ∩H2

N (Ω,C)
)2

→ L2((0, T )× ∂Ω)

(Ψ0,Ψf ) 7→ G

such that, for every (Ψ0,Ψf ) ∈
(
TS ∩H2

N (Ω,C)
)2

the solution of (62) satis�es

Ψ(T ) = Ψf .

7.4.1 Hilbert Uniqueness Method

The proof of Proposition 24 requires the following observability result, where B
is de�ned by

D(B) := H2
N (Ω,C) , Bφ := −∆φ+ i

2ε

πL
(−∆N + 1)−1[=(φ)] .

Proposition 25. Let T > 0. There exists C > 0 such that, for every φT ∈
L2(Ω), the solution of

(
i∂t − B

)
φ = 0 , (t, x) ∈ (0, T )× Ω ,

∂νφ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,
φ(T, x) = φT (x) , x ∈ Ω ,

(63)

satis�es
‖φT ‖L2(Ω) 6 C‖=(φ)‖L2((0,T )×Γc) . (64)
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Note that the solution of (63) can be computed explicitly (as in the case
ε = 0) because B preserves Cξp,n. The boundary condition in (63) has to be
understood in the sense of the semi-group. The proof of Proposition 25 relies
on 2 intermediate results:

• the weak observability of (63), proved in Section 7.4.2 below,

• a unique continuation property, proved in Section 7.4.3.

Note that the trace =(φ)|∂Ω is well de�ned in L2((0, T ) × ∂Ω) (see Lemma 1
below).

Proof of Proposition 24 thanks to Proposition 25: We want to prove the
existence of a continuous right inverse for the continuous operator

F : L2((0, T )× Γc,R) → TS
G 7→ (−∆ + 1)Ψ(T )

where Ψ is the solution of (62) with Ψ0 = 0. By [12, Theorems II.10 and II.19],
it is equivalent to prove the existence of a constant C > 0 such that

‖φT ‖L2(Ω) 6 C‖F ∗(φT )‖L2((0,T )×Γc) , ∀φT ∈ TS .

Thus, to deduce Proposition 24 from Proposition 25, it is su�cient to prove
that

F ∗(φT ) = −=(φ)|Γc , ∀φT ∈ TS ,
where φ is associated to φT by (63). The trace =(φ)|Γc is de�ned as an extension,
thus, it is su�cient to prove that

F ∗(φT ) = −=(φ)|Γc , ∀φT ∈ TS ∩ C∞c (Ω) . (65)

Let φT ∈ TS ∩ C∞c (Ω). Then φ ∈ C∞([0, T ], Hs
N (Ω)) for every s > 0, thus

φ̃ := (−∆ + 1)φ ∈ C∞([0, T ], Hs
N (Ω)) for every s > 0 and

(
i∂t + B

)
φ̃ = 0 , (t, x) ∈ (0, T )× Ω ,

∂ν φ̃(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,

φ̃(T, x) = (−∆ + 1)φT (x) , x ∈ Ω ,

because B and (−∆ + 1) commute. The functions Ψ and φ̃ are solutions in the
sense of the semi-group, thus

<〈Ψ(T ), φ̃(T )〉 = =
(∫ T

0

∫
Ω
V (t, x)φ̃(t, x)dxdt

)
= =

(∫ T
0

∫
Ω
V (t, x)(−∆ + 1)φ(t, x)dxdt

)
Therefore,

<〈F (G), φT 〉 = <〈(−∆ + 1)Ψ(T ), φT 〉
= <〈Ψ(T ), (−∆ + 1)φT 〉 because Ψ(T ) , φT ∈ H2

N (Ω)

= =
(∫ T

0

∫
Ω
V (t, x)(−∆ + 1)φ(t, x)dxdt

)
= −

∫ T
0

∫
Γc
G(t, x)=[φ(t, x)]dσ(x)dt .

This proves (65). 2
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Lemma 1. Let T > 0. There exists C = C(T ) > 0 such that, for every
φ0 ∈ L2(Ω), the solution φ ∈ C0([0, T ], L2(Ω)) of (63) satis�es∫ T

0

∫
∂Ω

|φ(t, x)|2dσ(x)dt 6 C‖φ0‖2L2(Ω) .

Proof of Lemma 1:

Step 1: Proof when ε = 0. The following equality holds in C0([0, T ], L2(Ω))

φ(t, x1, x2) =

∞∑
p,n=0

〈φ0, ξp,n〉e
−i
[
p2+(nπL )

2
]
t
ξp,n(x1, x2) .

Using (51) and the orthogonality of (ζp)p∈N in L2(0, π), we get

T∫
0

π∫
0

|φ(t, x1, 0)|2dx1dt =
T∫
0

π∫
0

∣∣∣∣∣ ∞∑p=0

( ∞∑
n=0
〈φ0, ξp,n〉e

−i
[
p2+(nπL )

2
]
t
)
ζp(x1)

∣∣∣∣∣
2

dx1dt

=
T∫
0

∞∑
p=0

∣∣∣∣ ∞∑
n=0
〈φ0, ξp,n〉e

−i
[
p2+(nπL )

2
]
t

∣∣∣∣2 dt
=
∞∑
p=0

T∫
0

∣∣∣∣ ∞∑
n=0
〈φ0, ξp,n〉e−i(

nπ
L )

2
t

∣∣∣∣2 dt
6
∞∑
p=0

CIng

∞∑
n=0
|〈φ0, ξp,n〉|2 = CIng‖φ0‖2L2(Ω) ,

where CIng(T ) > 0 is the Ingham constant associated to the familly
(
e−i(

nπ
L )

2
t
)
n∈N

in L2(0, T ) (see [19]).

Step 2: Proof when ε 6= 0. The following equality holds in L2(Ω).

φ(t) = e−i∆N tφ0 +
2ε

πL

∫ t

0

e−i∆N (t−s)(−∆N + 1)−1[=(φ(s))]ds , ∀t ∈ [0, T ] .

By step 1, the �rst term of the right hand side has a trace on ∂Ω with an
L2((0, T ) × ∂Ω)-norm bounded by

√
CIng‖φ0‖L2(Ω). The second term of the

right hand side belongs to C0([0, T ], H2
N (Ω)) and its L∞((0, T ), H2

N (Ω))-norm
is bounded by

2ε

πL

∫ T

0

‖φ(s)‖L2(Ω) =
2εT

πL
‖φ0‖L2(Ω) .

Thus, this term as a trace on ∂Ω with an L2((0, T )× ∂Ω)-norm that satis�es a
similar estimate. 2

7.4.2 Weak observability

The goal of this section is the proof of the following result.

Proposition 26. Let T > 0. There exists C′ = C′(T ) > 0 such that, for every
φT ∈ L2(Ω), the solution of (63) satis�es

‖φT ‖L2(Ω) 6 C′
(
‖=(φ)‖L2((0,T )×Γc) + ‖φT ‖H−2(Ω)

)
. (66)
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Proof of Proposition 26: First, we recall Tenenbaum and Tucsnak's result:
for every T > 0 and every nonempty open subset Γ of ∂Ω, there exists C0 =
C0(T,Γ) > 0 such that, for every φT ∈ L2(Ω), the solution φ̃ of

(
i∂t + ∆

)
φ̃(t, x) = 0 , (t, x) ∈ (0, T )× Ω ,

∂ν φ̃(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,

φ̃(T, x) = φT (x) , x ∈ Ω ,

(67)

satis�es
‖φT ‖L2(Ω) 6 C0‖φ̃‖L2((0,T )×Γ) . (68)

Step 1: We prove that, for every T > 0, there exists C1 = C1(T ) > 0 such that

for every φT ∈ L2(Ω), the solution φ̃ of (67) satis�es

‖φT ‖L2(Ω) 6 C1
(
‖=(φ̃)‖L2((0,T )×Γc) + ‖φT ‖H−1(Ω)

)
. (69)

Let T > 0 and ρ ∈ C∞c (R,R+) be such that ρ ≡ 1 on (T/3, 2T/3) and Supp(ρ) ⊂
(0, T ). Let φT ∈ L2(Ω). We have

‖φT ‖2L2(Ω) 6 C2
0

∫ 2T/3

T/3

∫
Γc
|φ̃(t, x)|2dσ(x)dt with C0 = C0(T/3) by (68)

6 C2
0

∫
R
∫

Γc
|ρ(t)φ̃(t, x)|2dσ(x)dt

6 C2
0

2

∫
R
∫

Γc

(
|ρ(t)φ̃(t, x)|2 + |ρ(t)φ̃(t, x)|2

)
dσ(x)dt

6 C2
0

2

∫
R
∫

Γc

(
|ρ(t)=(φ̃(t, x))|2 + 2<[ρ(t)2φ̃(t, x)2]

)
dσ(x)dt .

In order to get (69), it su�ces to prove the existence of C > 0 such that∫
R

∫
Γc

<[ρ(t)2φ̃(t, x)2]dσ(x)dt 6 C‖φT ‖2H−1(Ω) .

The function ρ2 belongs to C∞c (R,R), thus, for every N ∈ N∗, there exists
CN > 0 such that ∣∣∣∣∫

R
ρ(t)2e−iωtdt

∣∣∣∣ 6 CN
(1 + ω)N

, ∀ω > 0 .

We have ∣∣∣∫R ∫Γc ρ(t)2φ̃(t, x)2dσ(x)dt
∣∣∣

=

∣∣∣∣∣ ∑j,J∈N∗ φT,jφT,J (∫R ρ(t)2e−(λj+λJ )tdt
) (∫

Γc
ϕj(x)ϕJ(x)dσ(x)

)∣∣∣∣∣
6

∑
j,J∈N∗

|φT,jφT,J | CN
(1+λj+λJ )N

Cλαj λ
α
J for some C,α > 0

6 CCN

( ∑
j∈N∗

|φT,j |
λαj

(1+λj)N

)2

6 CCN

( ∑
j∈N∗

|φT,j |2
1+λj

)2( ∑
j∈N∗

λ2α
j (1+λj)

(1+λj)2N

)2

6 C‖φT ‖2H−1(Ω) for N large enough.
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Step 2: Conclusion. Working by contradiction, we assume the existence of a
sequence (φnT )n∈N∗ such that the associated solutions φn of (63) satisfy

1 = ‖φnT ‖L2(Ω) > n
(
‖=(φn)‖L2((0,T )×Γc) + ‖φnT ‖H−2(Ω)

)
. (70)

We introduce the solutions φ̃n of (67) associated to �nal condition φ̃n(T ) = φnT .

Then ξn := φn − φ̃n solves
(
i∂t + ∆

)
ξn = i 2ε

πL (−∆N + 1)−1=(φn) , (t, x) ∈ (0, T )× Ω ,

∂νξ
n(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,

ξn(T, x) = 0 . x ∈ Ω ,

>From (70), we deduce that φnT −→n→∞ 0 in H−2(Ω). Moreover this sequence

is bounded in L2(Ω), thus, by interpolation φnT −→n→∞ 0 in H−1(Ω). Therefore,

(−∆N+1)−1=(φn) −→
n→∞

0 in L∞((0, T ), H1(Ω)) and ξn −→
n→∞

0 in L∞((0, T ), H1(Ω)).

As a consequence =(ξn)
∣∣∣
Γc
−→
n→∞

0 in L∞((0, T )×Γc). Moreover, =(φn)
∣∣∣
Γc
−→
n→∞

0 in L2((0, T ) × Γc) by (70), thus =(φ̃n)
∣∣∣
Γc
−→
n→∞

0 in L2((0, T ) × Γc). >From

Step 1, we get

1 = ‖φnT ‖L2(Ω) 6 C1
(
‖=(φ̃n)‖L2((0,T )×Γc) + ‖φnT ‖H−1(Ω)

)
−→
n→∞

0 ,

which is a contradiction. 2

7.4.3 Unique continuation

The goal of this section is to prove the following result.

Proposition 27. We assume that ε satis�es (6). Let T > 0, Γc be an open
subset of ∂Ω and φT ∈ TS \ {0} and φ be the solution of (63). Then =(φ)|Γc
does not identically vanish on (0, T )× Γc.

Proof of Proposition 27: To simplify, we assume that Γc = (a, b)×{0} where
0 < a < b < 1. We introduce

NT := {φ0 ∈ TS ;=(φ) = 0 on (0, T )× Γc}

where φ(t) := S(t)φ0 solves (63) with initial condition at t = 0: φ(0) = φ0.
NT is a R-vector subspace of L2(Ω). Working by contradiction, we assume that
NT 6= {0}.

Step 1: We prove that NT is stable by (−iB) and has �nite dimension. Let

φ0 ∈ NT . Since φ0 ∈ L2(Ω), then φε := S(ε)φ0−φ0

ε is bounded in H−2
N (Ω) when

[ε→ 0]. Moreover, for ε < T/2, φε ∈ NT/2. Applying (66) to φε, we get

‖φε‖L2(Ω) 6 C (T/2) ‖φε‖H−2
N (Ω) , ∀ε ∈ (0, T/2) .
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Thus φε is bounded in L2(Ω) when [ε→ 0]. Therefore φ0 ∈ H2
N (Ω). Indeed, by

Fatou lemma,

‖φ0‖2H2
N (Ω)

=
∑∞
k=1 |λk〈φ0, ϕk〉|2

=
∑∞
k=1 lim infε→0

∣∣∣ e−iλkε−1
ε 〈φ0, ϕk〉

∣∣∣2
6 lim infε→0

∑∞
k=1

∣∣∣ e−iλkε−1
ε 〈φ0, ϕk〉

∣∣∣2
6 lim infε→0 ‖φε‖2L2(Ω) <∞ .

Let T ′ ∈ (0, T ). The map

JT ′ : L2(Ω) → L2((0, T ′)× Γc)

φ0 7→ =(φ)
∣∣∣
Γc

is continuous (see Lemma 1). Moreover, JT ′(φε) = 0 for every ε ∈ (0, T − T ′)
and φε−→− iBφ0 in L2(Ω) when [ε→ 0] thus JT ′(−iBφ0) = 0. This holds for
every T ′ ∈ (0, T ), therefore −iBφ0 ∈ NT . We have proved that NT is stable by
−iB and only contains smooth functions in D [Bs], ∀s ∈ N∗. Applying estimate
(66) to (−iBφ0), we get

‖Bφ0‖L2(Ω) 6 C′‖Bφ0‖H−2(Ω) .

This shows that the unit ball of NT is compact (for the L2(Ω)-topology), thus
NT has �nite dimension, by Riesz theorem.

Step 2: We prove that NT contains a �nite sum of functions ξp,n. The �nite
dimensional R-vector space NT is stable by the operator −iB, thus there exists
α, β ∈ R such that

Ker[P (−iB)] ∩NT 6= {0} where P (X) = X2 + αX + β .

Let φ0 ∈ Ker[P (−iB)] ∩NT . Let ap,n, bp,n ∈ R be such that

〈φ0, ξp,n〉 = ap,n + ibp,n , ∀p, n ∈ N .

Note that a0,0 = 0 because φ0 ∈ TS . Explicit computations show that the
relation P (−iB)φ0 = 0 writes

∞∑
p,n=0

(
P [−iλp,n]ap,n + iP

[
−i
(
λp,n +

2ε

πL(λp,n + 1)

)]
bp,n

)
ξp,n = 0

where λp,n := p2 +
(
nπ
L

)2
. Thus

P [−iλp,n]ap,n = P

[
−i
(
λp,n +

2ε

πL(λp,n + 1)

)]
bp,n = 0 , ∀p, n ∈ N .

The polynomial P has at most 2 roots and the 2 quantities λp,n and λp,n +
2ε

πL(λp,n+1) diverge when ‖(n, p)‖ → ∞, thus only a �nite number of coe�cients

〈φ0, ξp,n〉 can be di�erent from zero.
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Step 3: Conclusion. Let N ∈ N be such that φ0 =
∑N
n,p=0〈φ0, ξp,n〉ξn,p.

Step 3.1:
Assumption (6) implies that λp,n+ 2ε

πL(λp,n+1) > 0 for every n, p ∈ N. Explicit
computations show that

=[φ(t, x1, 0)] =

N∑
p,n=0

(bp,n cos(ωp,nt)− γp,nap,n sin(ωp,nt)〉)) ζp(x1)

where

ωp,n :=

√
λp,n

(
λp,n +

2ε

πL(λp,n + 1)

)
, ∀p, n ∈ N ,

γp,n :=

√
λn,p

λp,n + 2ε
πL(λp,n+1)

.

The continuous function (t, x) 7→ =[φ(t, x1, 0)] vanishes on (0, T )×(a, b) because
φ0 ∈ NT . In particular, for every t ∈ [0, T ], the function x1 7→ =[φ(t, x1, 0)]
vanishes on (a, b). But the functions (x1 7→ cos(px1))06p6N are linearly inde-
pendent on (a, b), thus

N∑
n=0

(bp,n cos(ωp,nt)− γp,nap,n sin(ωp,nt)) = 0 ,∀t ∈ (0, T ) , 1 6 p 6 N .

We notice that assumption (6) on ε imply

ω2
p,n 6= ω2

p,m , ∀p, n,m ∈ N such that n 6= m and (p, n) , (p,m) 6= (0, 0)

where

ω2
p,n :=

(
p2 +

(nπ
L

)2
)(

p2 +
(nπ
L

)2

+
2ε

πL
(
p2 + nπ

L + 1
)) , ∀p, n,m ∈ N .

Under assumption (6), the map f(s) := s
(
s+ 2ε

πL(s+1)

)
is strictly increasing on

[m,∞) and thus the above property holds.
So, the frequencies {ωp,n; 0 6 n 6 N} are all di�erent for every p ∈ N. Thus,

the previous relations imply that bp,n = ap,n = 0 for every 0 6 p, n 6 N , i.e.
φ0 = 0, which is a contradiction. 2

7.4.4 Observability

Proposition 25 results from Propositions 26 and 27, by working as in the proof
of Proposition 15.

7.5 Controllability of the nonlinear PDE

The proof of Theoorem 4 consists in applying the inverse mapping theorem to
the end-point map Θ de�ned in (61), as in Section 4.2.
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