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Bilinear control of high frequencies for a 1D

Schrödinger equation

K. Beauchard ∗, C. Laurent †, ‡

Abstract

In this article, we consider a 1D linear Schrödinger equation with po-

tential V and bilinear control. Under appropriate assumptions on V , we

prove the exact controllability of high frequencies, in H3, locally around

any H3-trajectory of the free system. In particular, any initial state in

H3 can be steered to a regular state, for instance a �nite sum of eigen-

functions of (−∆ + V ). This fact, coupled with a previous result due to

Nersesyan, proves the global exact controllability of the system in H3,

with smooth controls, under appropriate assumptions.

1 Introduction

1.1 Main result

In this article, we consider the 1D Schrödinger equation
i∂tψ(t, x) =

(
− ∂2x + V (x)− u(t)µ(x)

)
ψ(t, x) , (t, x) ∈ (0, T )× (0, 1) ,

ψ(t, 0) = ψ(t, 1) = 0 , t ∈ (0, T ) ,
ψ(0, x) = ψ0(x) , x ∈ (0, 1) ,

(1)
where V, µ ∈ L∞((0, 1),R) and u : (0, T )→ R. It is a bilinear control system in
which the state is ψ and the control is u.

To state our results, we �rst need to introduce few notations and recall well
posedness results. We denote by 〈., .〉 the L2((0, 1),C)-scalar product,

〈f, g〉 := <
(∫ 1

0

f(x)g(x)dx

)
,

by AV the operator

D(AV ) := H2 ∩H1
0 ((0, 1),C) , AV := −∂2x + V ,
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(which is assumed to be positive: replacing V (x) by V (x) + C which only
a�ects the global phase of ψ) by (λk,V )k∈N∗ the nondecreasing sequence of its
eigenvalues, by (ϕk,V )k∈N∗ associated eigenfunctions,

−ϕ′′k,V (x) + V (x)ϕk,V (x) = λk,V ϕk,V (x) , x ∈ (0, 1) ,

ϕk,V (0) = ϕk,V (1) = 0 ,
‖ϕk,V ‖L2(0,1) = 1 ,

(2)

by PK,V , for K ∈ N∗, the projection

PK,V : L2((0, 1),C) → SpanC(ϕk,V ; k > K) ,

ξ 7→ ξ −
K−1∑
k=1

〈ξ, ϕk,V 〉ϕk,V

by Hs
(V )(0, 1), for s > 0, the Sobolev spaces

Hs
(V )(0, 1) := D(A

s/2
V ) , ‖ξ‖Hs

(V )
:=

( ∞∑
k=1

λsk,V |〈ξ, ϕk,V 〉|2
)1/2

, (3)

which satisfy, in particular,

H3
(V )(0, 1) = H3

(0)(0, 1) = {ξ ∈ H3((0, 1),C); ξ = ξ′′ = 0 at x = 0 , 1} ,

and by S the unitary L2((0, 1),C)-sphere. The following well-posedness result
is a consequence of [3, Lemma 1] and the usual �xed point strategy (see [3,
Proposition 3] for a the proof with V = 0).

Proposition 1. Let T > 0, V , µ ∈ H3((0, 1),R), ψ0 ∈ H3
(0)((0, 1),C) and

u ∈ L2((0, T ),R). There exists a unique solution ψ ∈ C0([0, T ], H3
(0)(0, 1)) of

(1). Moreover ‖ψ(t)‖L2(0,1) = ‖ψ0‖L2 for every t ∈ [0, T ].

The goal of this article is the proof of the following result.

Theorem 1. Let T > 0, ψ0 ∈ H3
(0)((0, 1),C) ∩ S, ψref (t) := e−iAV tψ0, and

V, µ ∈ H3((0, 1),R) be such that

AV has a simple spectrum , (4)

µ′(1)ϕ′k,V (1) + µ′(0)ϕ′k,V (0) 6= 0 and

µ′(1)ϕ′k,V (1)− µ′(0)ϕ′k,V (0) 6= 0 , for every k ∈ N∗ . (5)

1. There exists K ∈ N∗, δ > 0 and a C1-map

Γ : V → L2((0, T ),R)

where

V := {ψf ∈ PK,V [H3
(0)(0, 1)]; ‖ψf − PK,V [ψref (T )]‖H3

(0)
< δ}

such that

• Γ (PK,V [ψref (T )]) = 0,
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• for every ψf ∈ V the solution of (1) with control u = Γ[ψf ] satis�es
PK,V [ψ(T )] = ψf .

2. As a consequence, there exists K ′ > K and u ∈ L2((0, T ),R) such that
the solution of (1) satis�es PK′,V [ψ(T )] = 0; in particular, ψ(T, .) ∈
H4

(V )((0, 1),C).

This result allows to prove the global exact controllability of (1) inH3
(V )((0, 1),C),

instead of H4
(V )((0, 1),C) in [13] (orH3+

(V )((0, 1),C) as can be proved by following

the original proof [15]).

Corollary 1. Let V, µ ∈ H4((0, 1),R) that satisfy (5) and

∃C > 0 such that |〈µϕ1,V , ϕk,V 〉| >
C

k3
,∀k ∈ N∗ , (6)

λk,V − λ1,V 6= λp,V − λq,V ,∀k, p, q ∈ N∗ such that {1, k} 6= {p, q} . (7)

For every ψ0 , ψf ∈ H3
(V )((0, 1),C)∩S, there exists T > 0 and u ∈ L2((0, T ),R)

such that the solution of (1) satis�es ψ(T ) = ψf .

1.2 Bibliographical comments

The Schrödinger equation with bilinear control has been widely studied in the
litterature. The multi-d model writes{

(i∂t + ∆− V )ψ(t, x) = u(t)µ(x)ψ(t, x) , (t, x) ∈ (0, T )× Ω ,
ψ(t, x) = 0 , (t, x) ∈ (0, T )× ∂Ω ,

(8)

where Ω is a bounded open subset of RN , N ∈ N∗, V, µ : Ω → R are given
functions, the state ψ lives in the L2(Ω,C)-sphere, denoted S and the control
is the real valued function u : (0, T )→ R.

A negative result A negative control result was proved by Turinici in [18],
as a consequence of a general result by Ball, Marsden and Slemrod in [1]. It
states that, for V = 0, for a given function µ ∈ C2(Ω,R), for a given initial
condition ψ0 ∈ (H2 ∩H1

0 )(Ω,C) ∩ S, and by using controls u ∈ Lrloc((0,∞),R)
with r > 1, one may only reach a subset of (H2∩H1

0 )(Ω)∩S that has an empty
interior in (H2 ∩H1

0 )(Ω,C)∩S. Recently, Boussaid, Caponigro and Chambrion
extended this negative result to the case of controls in L1

loc((0,∞),R), see [7].
However, this negative result is actually due to a bad choice of functional setting,
as emphasized in the next paragraph.

Local exact results in 1-d Beauchard proved in [2] the exact controlla-
bility of equation (8), locally around the ground state in H7, with controls
u ∈ H1((0, T ),R) in large time T , in the case N = 1, Ω = (−1/2, 1/2), µ(x) = x
and V = 0. The proof of [2] relies on Coron's return method and Nash-Moser
theorem.

Reference [3] improves this result and establishes the exact controllability
of equation (8), locally around the ground state in H3, with controls u ∈
L2((0, T ),R), in arbitrary time T > 0, and with generic functions µ whenN = 1,
Ω = (0, 1), V = 0. This result can be extended to an arbitrary potential V , as
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explained in [13]. The proof relies on a smoothing e�ect, that allows to conclude
with the inverse mapping theorem (instead of Nash-Moser's one).

Then, Morancey and Nersesyan developped this stategy to control a Schrödinger
equation with a polarizability term [12] and a �nite number of Schrödinger equa-
tions with one control [11, 13].

Global approximate results in N-d Three strategies have been developed
to study approximate controllability for equation (8)

The �rst strategy is a variationnal argument introduced by Nesesyan in [14].
It proves, under appropriate assumptions on (V, µ), that any initial condition in
H3+

(0) (Ω,C) ∩ S can be steered to the ground state, approximately in H3, with

smooth controls u ∈ C∞c ((0, T ),R), in large time T , in arbitrary dimension N .
Note that, in 1D, this result can be coupled with the previous local exact

controllability results. Then, under appropriate assumptions on (V, µ), we get
that any initial condition in H3+

(0) ((0, 1),C) ∩ S can be steered to the ground

state, exactly, in large time T > 0, with controls u ∈ L2((0, T ),R). See [15] for
one equation (8), [12] for a Schrödinger equation with a polarizability term, [13]
for a �nite number of Schrödinger equations with the same control.

A second strategy consists in deducing approximate controllability in regular
spaces (containing H3) from exact controllability results in in�nite time by
Nersesyan and Nersisyan [9]

A third strategy, due to Chambrion, Mason, Sigalotti, and Boscain [8], relies
on geometric techniques for the controllability of the Galerkin approximations.
It proves (under appropriate assumptions on V and µ) the approximate con-
trollability of (8) in L2, with piece-wise constant controls. The hypotheses of
this result were re�ned by Boscain, Caponigro, Chambrion, and Sigalotti in [4].
The approximate controllability is proved in higher Sobolev norms in [7] for one
equation, and in [6] for a �nite number of equations with one control. For more
details and more references about the geometric techniques, we refer the reader
to the recent survey [5].

1.3 Structure of this article

In Section 2, we give the main steps of the proof of Theorem 1. Two intermediary
results are stated and used in this proof, but proved later, in Sections 3 and 4.
Finally, in Section 5, we prove Corollary 1.

2 Proof of the main result

In this section V, µ, T, ψ0, ψref are �xed and satisfy the assumptions of Theorem
1. The �rst statement of this theorem comes by applying the inverse mapping
theorem to the map

ΘK : L2((0, T ),R) → PK,V [H3
(0)(0, 1)]

u 7→ PK,V [ψ(T )]

where ψ solves (1). Adapting the proof of [3, Proposition 3] to the case V 6= 0,
we see that ΘK is a C1-map and

dΘK(0) : L2((0, T ),R) → PK,V [H3
(0)(0, 1)]

v 7→ PK,V [Ψ(T )]
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where Ψ solves the linearized system
i∂tΨ(t, x) =

(
− ∂2x + V (x)

)
Ψ(t, x)− v(t)µ(x)ψref (t, x) , (t, x) ∈ (0, T )× (0, 1) ,

Ψ(t, 0) = Ψ(t, 1) , t ∈ (0, T ) ,
Ψ(0, x) = 0 , x ∈ (0, 1) .

(9)
Thus, to prove Theorem 1.1, it su�ces to prove that, forK large enough, dΘK(0)
has a continuous right-inverse between the following spaces

dΘK(0)−1 : PK,V [H3
(0)(0, 1)]→ L2((0, T ),R) .

To this aim, we introduce the decomposition µ(x)ψref (t, x) = (µ1 + µ2)(t, x)
where µ2 ∈ C0([0, T ], H3

(0)(0, 1)) solves{
(−∂2x + V )2µ2 = (−∂2x + V )2[µψref ] , (t, x) ∈ (0, T )× (0, 1) ,
µ2(t, σ) = ∂2xµ2(t, σ) = 0 , (t, σ) ∈ (0, T )× {0, 1} , (10)

and
µ1(t, x) := µ(x)ψref (t, x)− µ2(t, x) , ∀(t, x) ∈ (0, T )× (0, 1) , (11)

i.e.  (−∂2x + V )2µ1 = 0 , (t, x) ∈ (0, T )× (0, 1) ,
µ1(t, σ) = 0 , (t, σ) ∈ (0, T )× {0, 1} ,
∂2xµ1(t, σ) = 2µ′(σ)∂xψref (t, σ) (t, σ) ∈ (0, T )× {0, 1} .

(12)

This decomposition is inspired by [17]. Then,

dΘK(0).v =
(
LK +KK

)
(v)

where
LK : L2((0, T ),R) → PK,V [H3

(0)(0, 1)]

v 7→ PK,V [Ψ1(T )]

KK : L2((0, T ),R) → PK,V [H3
(0)(0, 1)]

v 7→ PK,V [Ψ2(T )]

and, for j = 1, 2,
i∂tΨj(t, x) =

(
− ∂2x + V (x)

)
Ψj(t, x)− v(t)µj(t, x) , (t, x) ∈ (0, T )× (0, 1) ,

Ψj(t, 0) = Ψj(t, 1) , t ∈ (0, T ) ,
Ψj(0, x) = 0 , x ∈ (0, 1) .

(13)
By [3, Lemma 1], for every v ∈ L2((0, T ),R), Ψj ∈ C0([0, T ], H3

(0)(0, 1)) and
thus LK ,KK are continuous operators. The following 2 results will be proved
in Sections 3 and 4.

Proposition 2. There exists K∗ ∈ N∗, C > 0 and a decreasing sequence
(HK)K>K∗ of closed vector subspaces of L2((0, T ),R) satisfying

∩
K>K∗

HK = {0} , (14)

such that for every K > K∗, the operator LK : HK → PK [H3
(0)(0, 1)] is an

isomorphism and
‖L−1K ‖PK,V [H3

(0)
]→L2 6 C . (15)
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Proposition 3. For every K ∈ N∗, the operator KK : L2((0, T ),R)→ PK [H3
(0)(0, 1)]

is compact.

To end the proof of Theorem 1.1, it su�ces to prove the existence of K > K∗
such that dΘK(0) = (LK+KK) is an isomorphism from HK to PK,V [H3

(0)(0, 1)].

Working by contradiction, we assume that, for every K > K∗, (LK +KK) :

HK → PK [H3
(0)(0, 1)] is not an isomorphism. By Fredholm aternative, there

exists a sequence (vK)K>K∗ such that

vK ∈ HK , ‖vK‖L2 = 1 , (LK +KK)(vK) = 0 , ∀K > K∗ .

Then, by (14)
vK ⇀ 0 in L2((0, T ),R) (16)

and

1 = ‖vK‖L2(0,T ) = ‖L−1K ◦ LK(vK)‖L2(0,T ) because vK ∈ HK
6 C‖LK(vK)‖H3

(0)
(0,1) by (15)

6 C‖KK(vK)‖H3
(0)

(0,1)

6 C‖K1(vK)‖H3
(0)

(0,1) −→
K→∞

0

because K1 is compact. This is a contradiction.

To prove the second statement of Theorem 1, one considers K ′ > K such
that ‖PK′,V (ψref (T ))‖H3

(0)
< δ and applies statement 1 to ψf := (PK,V −

PK′,V )[ψref (T )].

3 Ingham inequality

The goal of this section is to prove Proposition 2, by reducing the problem to
an Ingham inequality. First, we recall useful estimates (see [16, Theorem 4]).

λk,V = (kπ)2 +

∫ 1

0

V (x)dx+ rk where

∞∑
k=1

r2k <∞ , (17)

∃C = C(V ) > 0 such that ‖ϕ′k,V − ϕ′k,0‖L∞(0,1) 6 C , ∀k ∈ N∗ . (18)

By the Duhamel formula, we have

Ψj(T ) = i

∞∑
k=1

∫ T

0

v(t)〈µj(t), ϕk,V 〉e−iλk,V (T−t)dt ϕk,V . (19)

For every t ∈ (0, T ), the function x 7→ µ1(t, x) solves a ordinary di�erential
equation of order 4 with continuous coe�cients, because V ∈ H3((0, 1),R) (see
(12)), thus µ1(t, .) ∈ C4([0, 1],C) and the following integrations by parts are
legitimate

〈µ1(t), ϕk〉 = 1
λ2
k,V

∫ 1

0
µ1(t, x)

(
− ∂2x + V (x)

)2
ϕk,V (x)dx

= 2
λ2
k,V

(
µ′(1)∂xψref (t, 1)ϕ′k,V (1)− µ′(0)∂xψref (t, 0)ϕ′k,V (0)

)
.
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Thus, for a given target Ψf ∈ PK [H3
(0)(0, 1)] and a fonction v ∈ L2((0, T ),R),

the equality LK(v) = Ψf is equivalent to the moment problem∫ T

0

v(t)fk,V (t)dt =
λ2k,V
2kπ
〈Ψf , ϕk,V 〉eiλk,V T , ∀k > K , (20)

where

fk,V (t) :=
(
µ′(1)∂xψref (t, 1)ϕ′k,V (1)−µ′(0)∂xψref (t, 0)ϕ′k,V (0)

)eiλk,V t

kπ
,∀k ∈ N∗ .

Note that the right hand side of (20) belongs to l2 thanks to (17) and (3). Let

HC
K := AdhL2((0,T ),C)

(
Vect{fk; |k| > K

)
and HK := HC

K ∩ L2((0, T ),R) (21)

where fk(t) := f−k(t) ,∀k 6 −1. Clearly, (14) is satis�ed. The following Ingham
inequality - that will be proved later on - proves that, for K large enough,
(fk)|k|>K is a Riesz basis of HC

K .

Proposition 4. There exists K∗ ∈ N∗ and C1, C2 > 0 such that

C1‖b‖l2 6

∫ T

0

∣∣∣∣∣∣
∑
|k|>K∗

bkfk(t)

∣∣∣∣∣∣
2

dt


1/2

6 C2‖b‖l2 , ∀b ∈ l2(ZK∗ ,C) , (22)

where ZK∗ := {k ∈ Z; |k| > K∗}.

This proposition has 3 consequences: for every K > K∗

• for every (dk)|k|>K ∈ l2(ZK ,C), there exists a unique function v ∈ HC
K

such that ∫ T

0

v(t)fk(t)dt = dk , ∀|k| > K , (23)

• in particular, if d−k = dk for every k then v is real valued (consequence of
uniqueness); this proves that LK : HK → PK,V [H3

(0)(0, 1)] is bijective,

• moreover, this candidate is the unique solution in L2((0, T ),R) of the
moment problem (23) with minimal L2(0, T )-norm; this proves that the

sequence
(
‖L−1K ‖PK,V [H3

(0)
]→HK

)
K>K∗

is decreasing and thus (15) holds.

which ends the proof of Proposition 2.

Proof of Proposition 4:

Step 1: We prove that the 2 functions g± : (0, T )→ C de�ned by

g±(t) := µ′(1)∂xψref (t, 1)± µ′(0)∂xψref (t, 0)

do not vanish on (0, T ). It is a consequence of (4), (5) and the explicit expression

g±(t) =

∞∑
k=1

(
µ′(1)ϕ′k,V (1)± µ′(0)ϕ′k,V (0)

)
eiλk,V t .

7



Step 2: We prove the existence of K0, C01 , C02 > 0 such that

C01‖b‖l2 6

∫ T

0

∣∣∣∣∣∣
∑
|k|>K0

bkhk(t)

∣∣∣∣∣∣
2

dt


1/2

6 C02‖b‖l2 , ∀b ∈ l2(ZK0
,C) , (24)

where

hk(t) :=
(

(−1)kµ′(1)∂xψref (t, 1)− µ′(0)∂xψref (t, 0)
)
eiλk,V t , ∀k ∈ N∗ ,

Thanks to (4) and (17), for every 0 6 τ1 < τ2 <∞, there exists C′j = C′j(τ1, τ2) >
0 such that

C′1‖b‖l2 6

∫ τ2

τ1

∣∣∣∣∣∣
∑
|k|>1

bke
±iλk,V t

∣∣∣∣∣∣
2

dt


1/2

6 C′2‖b‖l2 , ∀b ∈ l2(Z− {0},C) ,

(25)
where λk,V := −λk,V ,∀k 6 −1 (see [10]).

Let (bk)|k|>K be a sequence of complex numbers with �nite support. We
have ∥∥∥∥∥ ∑|k|>K bkhk

∥∥∥∥∥
2

L2(0,T )

=

∥∥∥∥∥g+(t)
∑

|k|odd>K
bke

iλk,V t

∥∥∥∥∥
2

L2(0,T )

+

∥∥∥∥∥g−(t)
∑

|j|even>K
bje

iλj,V t

∥∥∥∥∥
2

L2(0,T )

−2<(TK)

(26)

where

TK :=
∑

|k|odd>K

∑
|j|even>K

bkbj

∫ T

0

g+(t)g−(t)ei(λk,V −λj,V )tdt .

For any x ∈ [0, 1], the map t 7→ ∂xψref (t, x) belongs to H1(0, T ); indeed,

∂t∂xψref (t, x) = −i
∞∑
k=1

λk,V 〈ψ0, ϕk,V 〉e−iλk,V tϕ′k,V (x)

thus, by (18) and (25)∫ T

0

|∂t∂xψref (t, x)|2dt 6 C′2(0, T )2
∞∑
k=1

|λk,V (kπ +C)〈ψ0, ϕk,V 〉|2 6 C ′‖ψ0‖2H3
(0)
.

Therefore, the maps g± belong to H1((0, T ),C), which is an algebra, thus there
exists C > 0 such that (integration by part)∣∣∣∣∣

∫ T

0

g+(t)g−(t)eiωtdt

∣∣∣∣∣ 6 C

|ω|
, ∀|ω| > 1 .

Then, by Cauchy-Schwarz inequality,

|TK | 6 C

 ∑
|k|odd>K

|bk|2
1/2 ∑

|j|even>K

|bj |2
1/2

√
εK

8



where

εK :=
∑

|k|odd>K

∑
|j|even>K

1

(λk,V − λj,V )2
.

is �nite and converges to zero when K → ∞. Indeed, by (17), there exists
C ,K ′ > 0 such that |λk,V − λj,V | > C|k2 − j2| for every odd integer k > K ′

and even integer j > K ′. Moreover, using the decomposition

1

(k2 − j2)2
=

1

4k2

(
1

(j − k)2
+

1

(j + k)2

)
− 1

4k3

(
1

j − k
− 1

j + k

)
we get ∑

kodd>K

∑
jeven>K

1

(k2 − j2)2
6 C ′

∑
kodd>K

1

k2
6
C ′′

K
.

By Step 1, there exists 0 6 τ±1 < τ±2 6 T and m > 0 such that |g±(t)| > m
for every t ∈ (τ±1 , τ

±
2 ) . We deduce from (26) and (25) that∥∥∥∥∥∥
∑
|k|>K

bkhk

∥∥∥∥∥∥
2

L2(0,T )

> (A− C
√
εK)

∑
|k|>K

|bk|2

where A := m2 min{C′1(τ+1 , τ
+
2 )2; C′1(τ−1 , τ

−
2 )2}. This gives the lower bound of

(24) with K0 large enough so that C01 :=
√
A− C√εK0

> 0. Let M > 0 be such
that g±(t) 6 M for every t ∈ (0, T ). We deduce from (26) and (25) that the

upper bound of (24) holds with C02 :=
√
MC′2(0, T ) + C

√
εK0

.

Step 3: Conclusion. By (18), there exists C > 0 such that∥∥∥∥∥∥
∑
|k|>K

bk(fk − hk)

∥∥∥∥∥∥
L2(0,T )

6 C
∑
|k|>K

|bk|
k

6 C

 ∑
|k|>K

|bk|2
 ∑

|k|>K

1

k2

 .

We deduce from (24) that, for every K > K0,

(
C01 −

2

K − 1

)
‖b‖l2 6

∫ T

0

∣∣∣∣∣∣
∑
|k|>K]

bkfk

∣∣∣∣∣∣
2

dt


1/2

6

(
C02 +

2

K − 1

)
‖b‖l2

which gives the conclusion with any K∗ > K0 large enough so that C1 :=
C01 − 2

K−1 > 0.

4 Compactness property

The goal of this section is to prove Proposition 3. Let K ∈ N∗ and (vn)n∈N be
a sequence in L2((0, T ),R) that weakly converges to 0, and is bounded by 1.
Then,

‖KK(vn)‖2H3
(0)

=
∑
k>K

∣∣∣∣∣(kπ)3
∫ T

0

vn(t)〈µ2(t), ϕk,V 〉eiλk,V tdt

∣∣∣∣∣
2

.

9



Each term of this sum converges to zero when [n → ∞]. Moreover, using
the explicit expression ϕk,0(x) =

√
2 sin(kπx), integrations by part (note that

µ2 ∈ C0([0, T ], H3
(0)(0, 1))), Cauchy-Schwarz inequality and (18), we get∣∣∣(kπ)3

∫ T
0
vn(t)〈µ2(t), ϕk,V 〉eiλk,V tdt

∣∣∣
6 C

∣∣∣k3 ∫ T0 vn(t)〈µ2(t), ϕk,0〉eiλk,V tdt
∣∣∣+ C

∣∣∣k3 ∫ T0 vn(t)〈µ2(t), ϕk,V − ϕk,0〉eiλk,V tdt
∣∣∣

6 C
∣∣∣∫ T0 vn(t)〈∂3xµ2(t),

√
2 cos(kπx)〉eiλk,V tdt

∣∣∣+ C
k

∫ T
0
|vn(t)|‖µ2(t)‖H3

(0)
dt

6 C
(∫ T

0
|〈∂3xµ2(t),

√
2 cos(kπx)〉|2dt

)1/2
+ C

k

(∫ T
0
‖µ2(t)‖2

H3
(0)

dt

)1/2

.

This right-hand side belongs to l2(ZK) and does not depend on n, thus, by the
dominated convergence theorem KK(vn) −→

n→∞
0 in H3

(0)(0, 1).

5 Global exact controllability in H3
(0)(0, 1)

The following result is proved in [13, Theorem 5.1], by following the proof de-
velopped in the original article [15].

Proposition 5. Let V, µ ∈ H4((0, 1),R) that satisfy (6) and (7). Then for
every ψ0 , ψf ∈ H4

(V )((0, 1),C) ∩ S, there exists T > 0 and u ∈ L2((0, T ),R)

such that the solution of (1) satis�es ψ(T ) = ψf .

Proof of Corollary 1: Starting from an initial condition ψ0 ∈ H3
(0), we �rst

use a control u ∈ L2((0, T1),R) to reach a function ψ(T1) ∈ H4
(V )(0, 1), thanks

to the second statement of Theorem 1. Then, by the previous proposition,
there exists a control u ∈ L2((T1, T2),R) that steers the solution from ψ(T1) to
ψ(T2) = ϕ1,V .

Given a target ψf ∈ H3
(0), thanks to the previous result and the time-

reversibility of the Schrodinger equation (i.e. (ψ, u) is a trajectory ⇒ (ψ(T −
t), u(T − t)) is a trajectory) there exists u ∈ L2((T2, T3),R) that steers the
solution from ψ(T2) = ϕ1,V to ψ(T3) = ψf . 2
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