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An Abstract Separation Logic
for Interlinked Extensible Records

Martin Bodin, Thomas Jensen & Alan Schmitt

Inria, France

Résumé

The memory manipulated by JavaScript programs can be seen as a heap of extensible records
storing values and pointers. We define a separation logic for describing such structures. In order to
scale up to full-fledged languages such as JavaScript, this logic must be integrated with existing
abstract domains from abstract interpretation. However, the frame rule—which is a central notion
in separation logic—does not easily mix with abstract interpretation. We present a domain of
heaps of interlinked extensible records based on both separation logic and abstract interpretation.
The domain features spatial conjunction and uses summary nodes from shape analyses. We show
how this domain can accommodate an abstract interpretation including a frame rule.

1. Introduction
The memory of a JavaScript program is a dynamic and complex heap of extensible records storing
values and pointers. Fields can be added and removed from records dynamically, and their presence can
be tested. Moreover, records are not constrained by a static type structure, which further complicates
the analysis of the shapes that these interlinked objects may form. Obtaining a good approximation
of the memory structure of a JavaScript program is a challenge for static analysis, even if we restrict
other features of the language such as computed field names and dynamic code generation.

In this paper, we present a solution to this challenge, by mixing elements of separation logic and
shape analysis, and integrating them into an abstract interpretation framework. Separation logic in
itself is not adequate for describing the inter-connected heaps of JavaScript. First, separation logic
is based on some additional structures, such as lists or trees. For JavaScript, such structures can be
difficult to identify, as illustrated by Gardner et al. [?]. Second, JavaScript native structures tend
to not separate nicely. Gardner et al. propose to remedy this through a partial separation operator
⊔⋆ (“seppish”). The formula 𝑃 ⊔⋆ 𝑄 describes a heap which can be split in two heaps, one satisfying
𝑃 and the other 𝑄; but these two heaps do not need to be disjoint. Here, we pursue this idea, but
instead of introducing a new operator in separation logic, we inject ideas from shape analyses, and
use summary nodes for modelling the portion of memory that may be shared. In this way, we move
the approximation into the shape structures while keeping a precise separation operator ⋆.

The work described here is part of a larger project on certified static analyses in which static analysis
tools are developed an proved correct based on a mechanised formalisation of the semantics of the
underlying language. More precisely, the aim is to build on the JSCert [?] semantics for JavaScript,
a pretty-big step operational semantics [?] entirely written in Coq. The size of the JavaScript’s
semantics imposes that we take an approach that is both principled and mechanisable. We base the
development on the theory of abstract interpretation. Abstract interpretation [?] provides a powerful
theory for finding and proving loop invariants within a program, assuming minimal structure on the
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space of abstract domains. For the mechanisation, certification in proof assistants such as Coq is
needed. We have previously built a Coq library [?] providing the building blocks for constructing
an abstract interpretation from a pretty-big step operational semantics, following initial ideas of
Schmidt [?]. In that paper, we showed how to derive abstract rules from concrete ones in such a way
that abstract derivations are correct by construction. Here, we show how to extend this approach
with abstractions of heaps using techniques from both separation logic and shape analysis, in order
to give reasonable results for JavaScript.

The abstract domains arising from separation logic do not have the rich structure of lattices
encountered in many abstract interpretations. The theory of abstract interpretation, however, does
generalise to the setting where the underlying structure is that of only a subset of a pre-order. We
shall hence use this more general framework, which provides the same correctness guarantees but does
not explain how to compute a best analysis result.

Separation logic provides useful notions for the analysis of heap-manipulating programs. In
separation logic, abstract rules are only given locally: they only state what is changed by a given
program, assuming that everything not mentioned is left unchanged. The frame rule then allows to
add an unchanged partial heap to the analysed result. This mechanism is very powerful to locally
reason about programs. However JavaScript introduces some new issues about the frame rule:
Reynolds [?, Section 3.5] stated that the frame rule can not be applied as-is if the language allows
constructions similar to JavaScript’s delete operator. We address this issue using a special value ⊠.

The main contributions of this paper are as follows.

• A combination of separation logic and shape analysis, which allows to use the separation ⋆ for
disjoint domains, and shapes for complex domains with potential sharing.

• An alternative to the ⊔⋆ operator that better fits the frame rule.

• An integration of separation logic into an abstract interpretation framework based on pre-orders
and big-step operational semantics, extending our previous work [?].

The paper is organised as follows. We first present our toy language OWhile. Our logic is
presented in two steps: first, a logic over abstract domains is built in Section ??; its structure should
not be surprising to a reader familiar with separation logic. A crucial step of the approach is the
addition of membranes, in Section ??, to deal with the frame rule. Second, we add the summary nodes
from shape analyses to the domain in Section ??. Section ?? presents how we build our program logic
for OWhile, leading in Section ?? to the correctness of our abstract semantics. Section ?? examines
related work and Section ?? concludes.

2. The OWhile Language
We define our analyses on a small imperative language with interlinked records, called OWhile. This
language is inspired from JavaScript’s memory model but we shall disregard all aspects related to
prototype inheritance or type conversion. We can create new records (which we call objects), and read,
write, and delete their fields (also called properties in JavaScript). Records are interlinked because
their fields may contain pointers to other objects.

The syntax of our language is presented in Figure ??. A detailed version of the concrete semantics
can be found in Appendix ??, but it comes with no surprises for a pretty-big-step semantics [?].
There are only numbers in the language, so for the purpose of branching (instructions if and while),
the number 0 behaves as false, and any other number as true. The operation ? non-deterministically
returns a number. Fresh objects are created by the {} expression. We can access the field f of an
object computed by 𝑒 through 𝑒.f. We can check the presence or absence of a given field f in an
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𝑠 ∶∶= skip | 𝑠1; 𝑠2 | if 𝑒 𝑠1 𝑠2
| while 𝑒 𝑠 | throw | x ∶= 𝑒
| 𝑒1.f ∶= 𝑒2 | delete 𝑒.f

(a) Statements

𝑒 ∶∶= 𝑛 ∈ ℤ | ? | x ∈ Var | nil
| {} | 𝑒.f | f in 𝑒 | ¬ 𝑒
| = 𝑒1 𝑒2 | 1 𝑒1 𝑒2 (1 ∈ {>,+,−})

(b) Expressions

Figure 1: The syntax of the OWhile language

object computed by 𝑒 through f in 𝑒, which returns 1 if the field is present and 0 otherwise. As in
JavaScript, writing to the field f of an object adds the field if it is not already present, and deleting
an object’s field succeeds even if the field is absent. There is no explicit declaration of variables: as
for fields, writing a variable which is not defined creates it. A program may abort for the following
reasons: explicitly running throw, reading a variable or a field that is not assigned, or accessing the
field of a value that is not an object. The state 𝑆 of a program is composed of two components.

• An environment (also called store in JavaScript parlance) 𝐸 ∶ Var ⇀ Val, where Var is the
set of variable names and Val is the set of values. A value 𝑣 ∈ Val can either be a location 𝑙𝑖
(including the special null location 𝑙0, always out of the domain of 𝑆), or a basic value 𝑛 ∈ ℤ.

• A heap 𝐻 ∶ Loc ⇀ 𝔉 ⇀ Val, where Loc = {𝑙𝑖 ∣ 𝑖 ∈ ℕ⋆} is the set of non-null locations, and 𝔉 the
set of field names. We assume 𝔉 to be infinite.

We define dom (𝑆) to be dom (𝐸) ∪ dom (𝐻) where 𝐸 and 𝐻 are the respective environment and
heap of 𝑆. The function fresh takes a state 𝑆 and returns a location fresh in 𝑆, i.e., 𝑙𝑗 ∉ dom (𝐻).

3. Abstract Domains

3.1. Abstract State Formulae
In this section we build a separation logic over an abstract domain of base values. There are various
ways of representing separation logic; our logic is based on the work of [?]. Abstract state formulae
𝜙 ∈ State♯ model pairs of concrete heaps and stores. These formulae are defined as follows.

𝜙 ∶∶= emp | 𝜙1 ⋆ 𝜙2 | x =̇ 𝑣♯ | 𝑙 ↦ {𝑜} 𝑜 ∶∶= f ∶ 𝑣♯, 𝑜 | _ ∶ 𝑣♯

These formulae make use of abstract locations 𝑙 ∈ LLoc♯. These locations are identifiers which
are meant to represent one concrete (non-null) location. In the concretisation of formulae, abstract
locations are related to concrete locations by a valuation 𝜌 ∶ LLoc♯ ⇀inj Loc (where ⇀inj denotes a
partial injection). Concrete locations in Loc are written with an exponent 𝑙𝑖 whilst abstract locations
use indexes or primes: 𝑙, 𝑙𝑖, or 𝑙′.

The structure of the abstract domain for values 𝑣♯ ∈ Val♯ is described in detail in Section ??. For
now, we just note that this abstract domain contains abstract locations (detailed below) and abstract
properties of numeric values (sign, parity, intervals, …). The concretisation function 𝛾𝜌 of abstract
values relates them to sets of concrete values.

The formula emp describes the empty heap and empty environment. The spatial conjunction 𝜙1⋆𝜙2
describes the set of all heaps and environments which we can separate into two smaller heaps and
environments, each respecting one of the two sub-formulae 𝜙1 and 𝜙2. The ⋆ operator is commutative,
associative, and has emp as neutral element. The formula x =̇ 𝑣♯ states that the value of the variable
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x satisfies the property 𝑣♯. We follow the tracks of [?] and do not consider this formula pure. As we
are not interested in concurrency in this paper, we use a simpler version than [?] where we either have
full permission over x if x =̇ 𝑣♯ is present, and no permission otherwise. The construction 𝑙 ↦ {𝑜}
describes the set of heaps whose only defined location 𝜌 (𝑙) points to an object abstracted by {𝑜}.

Objects are abstracted as a list associating fields to abstract values, with an additional default
abstract value for the other fields present in the object.1 All the specified field names of an object
are supposed to be different. An abstract object {f1 ∶ 𝑣♯1, … , f𝑛 ∶ 𝑣♯𝑛, _ ∶ 𝑣♯𝑟} represents the set
of objects whose respective fields f1, …, f𝑛 are abstracted by respectively 𝑣♯1, …, 𝑣♯𝑛, and all the
other fields are abstracted by 𝑣♯𝑟. Abstract values also include the possibility to state that a field is
undefined. This is expressed through the special value ⊠. The abstract object {f ∶ ⊠, g ∶ 𝑣♯, _ ∶ ⊤}
thus describes the set of objects such that each object has no field f and its field g can be abstracted
by 𝑣♯. Similarly, {_ ∶ ⊠} describes the singleton of the empty object, which is returned by {}.

An alternative approach to model heaps and objects is to allow the separation of fields themselves,
as in 𝑙 f7−→ 𝑣♯1 ⋆ 𝑙 g

7−→ 𝑣♯2, in a way similar to [?]. We experimented with this approach and discovered
that it results in complex interactions with the frame rule. We thus follow a simpler approach here.

3.2. Abstract Values and Abstract Object

Our separation logic formulae are parameterized over an abstract domain describing the base values
which variables and fields can contain. In line with the dynamic typing of JavaScript, we shall
consider an abstract domain containing both numerical values and locations. Hence, a variable may
contain both types of values depending on the flow of control, and the abstract domain has to be able
to join such values together.

In addition, when analyzing JavaScript’s heap, we must take into account expressions like f in 𝑒
whose result depends on the absence of a field. We thus have to track whether fields can be undefined.2
To this mean, we attach a boolean to the abstract values to indicate whether the concrete value can
be undefined, as illustrated before with the value ⊠. We use this boolean at two different places: to
indicate that a field is possibly undefined, but also to indicate that a variable is possibly undefined.

Suppose a lattice domain ℤ♯ carrying abstract properties of numeric, or basic, values (sign, parity,
intervals, …). Such a domain must store information about the different instances of values: basic
values, locations, the possibility of being the special location 𝑙0, and the possibility of being undefined.
We define abstract values to be tuples of the form (𝑛♯,nil?, 𝐿, 𝑑), where 𝑛♯ ∈ ℤ♯ denotes the possible
basic values which can be represented by this abstract value; nil? is a boolean stating whether the
value can be 𝑙0 (denoted by nil) or not (denoted by nil); 𝐿 ∈ 𝒫𝑓 (LLoc♯)⊤ denotes the possible location
values (𝒫𝑓 (LLoc♯)⊤ denotes the set of finite subsets of LLoc♯ augmented with a ⊤ element); and the
boolean 𝑑 ∈ {⊠,□} denotes whether the value can be undefined (denoted by ⊠) or can not (denoted
by □). Each part of these tuples carries the information about a kind of value.

For the sake of readability, we will identify the projections of an abstract value 𝑣♯ with 𝑣♯ itself if
all the other projections are bottoms elements of their respective lattice. For instance we will write 𝑛♯

to mean (𝑛♯,nil, ∅,□), nil to mean (⊥,nil, ∅,□), and ⊠ to mean (⊥,nil, ∅, ⊠). We will also identify 𝑙
with (⊥,nil, {𝑙} ,□). To avoid the cumbersome tuple notation, we will use the natural join operation
on this domain and write values such as 𝑙 ⊔ ⊠.

The order on the tuple is the usual product order: a tuple is less than another if all its projections
are less than the others. Sets of locations are ordered using the usual set lattice. The definition part

1This default field is sometimes called a summary node in the literature; we do not use this name as summary nodes
denote a different concept in this paper.

2This abstract value is different from the JavaScript value undefined.
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𝑑 is ordered by □ ⊑ ⊠ as □ forces the value to be defined while ⊠ allows (without forcing) it to be
undefined. We similarly define nil ⊑ nil. We use the symbol ⊑ to denote the order within a lattice,
that is over abstract values and abstract objects.

We can now define an order on abstract objects as follows: two objects are ordered, {𝑜1} ⊑ {𝑜2}
if all the fields of {𝑜1} are associated with a value which is smaller than the value of the same field in
{𝑜2}. To check the order relation between two objects, we rely on the default value for all fields not
explicitly mentioned in the object. With this value, we can rewrite the two objects so that they refer
to the same fields, using the following rewriting equality,

{f1 ∶ 𝑣♯1, … , f𝑛 ∶ 𝑣♯𝑛, _ ∶ 𝑣♯𝑟} = {f1 ∶ 𝑣♯1, … , f𝑛 ∶ 𝑣♯𝑛, g ∶ 𝑣♯𝑟, _ ∶ 𝑣♯𝑟}

which holds provided that g is not one of the f1, …, f𝑛. This order equips abstract objects with
a lattice structure, with ⊔ and ⊓ computing the abstract object whose fields are associated to the
results of the corresponding operator ⊔ or ⊓ applied on the corresponding fields of the two operands
(completed such that they have the same fields):

{f1 ∶ 𝑣♯1, … , f𝑛 ∶ 𝑣♯𝑛, _ ∶ 𝑣♯𝑟} ⊔ {f1 ∶ 𝑣′♯1, … , f𝑛 ∶ 𝑣′♯𝑛, _ ∶ 𝑣′♯𝑟}

= {f1 ∶ 𝑣♯1 ⊔ 𝑣′♯1, … , f𝑛 ∶ 𝑣♯𝑛 ⊔ 𝑣′♯𝑛, _ ∶ 𝑣♯𝑟 ⊔ 𝑣′♯𝑟}

4. The Frame Rule
Our main contribution deals with the interaction between formulae and the frame rule. In order to
introduce it, we first detail how this rule typically works. The frame rule defines how to extend Hoare
triples using the separation operator ⋆. A Hoare triple 𝜙1, 𝑡 ⇓♯ 𝜙2 states that the term 𝑡 changes any
heap that satisfies formula 𝜙1 in a heap that satisfies formula 𝜙2. In our setting, a heap satisfies a
formula if it belongs to its concretisation. A heap ℎ belongs to the concretisation of a formula 𝜙1 ⋆ 𝜙2
if it can be split in disjoint heaps ℎ1 and ℎ2 such that ℎ1 satisfies 𝜙1 and ℎ2 satisfies 𝜙2.

Frame
𝜙1, 𝑡 ⇓♯ 𝜙2

𝜙1 ⋆ 𝜙𝑐, 𝑡 ⇓♯ 𝜙2 ⋆ 𝜙𝑐

For the frame rule to be correct, it is crucial that if 𝜙1 ⋆ 𝜙𝑐 is defined (the set of concrete heaps
it denotes is not empty), then 𝜙2 ⋆ 𝜙𝑐 is defined. In our setting, this may not be the case when new
abstract locations are introduced in 𝜙2. For instance, consider the abstract rule NewObj, which
builds the Hoare triple emp, {} ⇓♯ 𝑙 ↦ {_ ∶ ⊠}. The result contains an additional location 𝑙 which we
would like to keep fresh from the initial abstract heap emp. However, the frame rule applied as-is can
add a new fact about 𝑙 and generate the Hoare triple 𝑙 ↦ {_ ∶ ⊠} , {} ⇓♯ 𝑙 ↦ {_ ∶ ⊠} ⋆ 𝑙 ↦ {_ ∶ ⊠},
which is wrong as the result formula has an empty concretisation (because 𝑙 is not separated) whilst
a concrete derivation tree can easily be derived. This problem also occurs when renaming abstract
locations, as is described in Section ??.

To ensure the soundness of the frame rule, we have to introduce scopes for identifiers in a formula.
For instance, the scope of a newly created location 𝑙 should be restricted to the result formula, as
in emp, {} ⇓♯ (𝜈𝑙 | 𝑙 ↦ {_ ∶ ⊠}): this states that any mention of 𝑙 outside the formula is actually a
different identifier. Since we not only need to restrict the scope of identifiers, but also relate names
inside a scope to names outside the scope, we introduce the notion of membrane. A membrane 𝑀
traces the links between these two scopes. Each context added by the frame rule has to be converted
when entering a membrane. Membranes behave like substitutions: we can compose them through ∘
and apply them to a formula 𝜙 to update its identifiers. Our version of the frame rule, defined in
below, relies on membranes for its soundness.
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4.1. Membranes

Membranes 𝑀 are defined as a set of scope changes 𝑚, which can be caused either because a location
has been renamed, or because a new location has been allocated. The abstraction Φ of heap and
environment is now a couple of a formula 𝜙 and a rewriting membrane 𝑀 , written (𝑀 | 𝜙). We call
the simple formulae 𝜙 inner formulae and the membraned formulae Φ formulae.

𝑚 ∈ 𝔐 ∶∶= 𝑙 → 𝑙′ | 𝜈𝑙 Φ ∶∶= (𝑀 | 𝜙) 𝑀 ∈ 𝒫𝑓 (𝔐)

We impose left-hand sides of scope changes to only appear once in a given membrane. We also impose
that in a formula Φ = (𝑀 |𝜙), any location 𝑙 in 𝜙 is present on the right-hand side of a scope change
or as a new name 𝜈𝑙 in 𝑀 . We define the domain dom (𝑀) of a membrane 𝑀 as the set of left-
hand sides of its rewritings, and the codomain codom (𝑀) as the union of the set of right-hand sides
of its rewritings and the set of newly allocated locations. The interface interface (Φ) of a formula
Φ = (𝑀 |𝜙) is the domain of its membrane dom (𝑀): these locations are accessible from the outside
of the formula. The substitution 𝑀 (𝜙) applied to inner formulae works as expected: it renames every
abstract locations either as values or as memory cells. Trivial rewritings such as 𝑙 → 𝑙 are allowed and
sometimes required: an abstract location 𝑙 may be unchanged by the membrane, but it still has to be
in the interface; the domain names of the inner and scope scopes are independent.

Let us consider a simple example: Φ = (𝑙0 → 𝑙| x =̇ 𝑙 ⋆ 𝑙 ↦ {f ∶ 𝑙, _ ∶ ⊠}). The membrane {𝑙0 → 𝑙}
renames the outer location identifier 𝑙0 to the inner location 𝑙. If the frame rule introduces a context
𝜙𝑐 = 𝑙1 ↦ {f ∶ 𝑙0, _ ∶ ⊠} referring to 𝑙0, the integration of 𝜙𝑐 in the membrane leads to the
renaming of 𝑙0 into 𝑙 for a final formula (𝑙0 → 𝑙| x =̇ 𝑙 ⋆ 𝑙 ↦ {f ∶ 𝑙, _ ∶ ⊠} ⋆ 𝑙1 ↦ {f ∶ 𝑙, _ ∶ ⊠}). On
the other hand, if the frame rule introduces a context with a 𝑙 such as 𝜙𝑐 = 𝑙1 ↦ {f ∶ 𝑙, _ ∶ ⊠},
this 𝑙 is actually different from the one in Φ. In this case, Φ is 𝛼-renamed, for instance to
Φ = (𝑙0 → 𝑙′ ∣ x =̇ 𝑙′ ⋆ 𝑙′ ↦ {f ∶ 𝑙′, _ ∶ ⊠}), to avoid the capture of 𝑙 when 𝜙𝑐 enters the membrane.
Note that 𝛼-renaming does not change the interface of a formula: only its codomain is modified.

Formulae are used to abstract states (environment and heap), but there are places in our semantics
where additional values are carried. In pretty-big-step, we use intermediate terms along the execution,
which require to carry additional values. For example, the assignment x ∶= 𝑒 involves two steps
(evaluating the expression and updating the state) so we introduce an intermediate term x ∶=1 whose
semantic context consists of a state and a value to assign to x and whose result is the update state.
These values can contain locations and must be placed inside membranes: we shall thus sometimes
manipulate formulae of the form (𝑀 ∣ 𝑙 ↦ {𝑜} , 𝑙 ⊔ 𝑙′) where the value 𝑙 ⊔ 𝑙′ represents the value of the
intermediate semantic context. All operations defined on usual formulae can be extended to extended
formulae. We do not show the details here for space reasons.

4.2. Separating Formulae

To express the frame rule in our formalism, the frame has to manipulate membranes; we define the
operator ..⋆ (read “in frame”) taking two formulae Φ𝑜 = (𝑀𝑜 | 𝜙𝑜) and Φ𝑖 = (𝑀𝑖 | 𝜙𝑖)—𝑖 stands
for “inner” and 𝑜 for “outer”—which intuitively builds (𝑀𝑜 | 𝜙𝑜 ⋆ (𝜙𝑖 |𝑀𝑖)) (this formula does not
fit the grammar of formulae as-is): the inner formula is considered in the context of the outer
one. This operation is associative, but not commutative. It performs an 𝛼-renaming of the inner
identifiers of 𝜙𝑖 to prevent conflicts with 𝑀𝑖, then pushes 𝜙𝑜 through the membrane 𝑀𝑖. For instance
for Φ𝑜 = (𝑙0 → 𝑙, 𝑘0 → 𝑘| 𝑘 ↦ {g ∶ 𝑘, h ∶ 𝑙, _ ∶ ⊠}) and Φ𝑖 = (𝑙 → 𝑘 | 𝑘 ↦ {f ∶ 𝑘 ⊔ nil, _ ∶ ⊠}), the
identifier 𝑘 is used both in 𝜙𝑖 and in 𝜙𝑜, but because of the membranes, it represent a different set of
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concrete locations in both formulae. We thus 𝛼-rename 𝑘 into 𝑘′ to avoid name conflict:

(𝑙0 → 𝑙, 𝑘0 → 𝑘| 𝑘 ↦ {g ∶ 𝑘, h ∶ 𝑙, _ ∶ ⊠}) ..⋆ (𝑙 → 𝑘 | 𝑘 ↦ {f ∶ 𝑘 ⊔ nil, _ ∶ ⊠})
= (𝑙0 → 𝑙, 𝑘0 → 𝑘| 𝑘 ↦ {g ∶ 𝑘, h ∶ 𝑙, _ ∶ ⊠}) ..⋆ (𝑙 → 𝑘′ ∣ 𝑘′ ↦ {f ∶ 𝑘′ ⊔ nil, _ ∶ ⊠})
= (𝑙0 → 𝑘′, 𝑘0 → 𝑘∣ 𝑘 ↦ {g ∶ 𝑘, h ∶ 𝑘′, _ ∶ ⊠} ⋆ 𝑘′ ↦ {f ∶ 𝑘′ ⊔ nil, _ ∶ ⊠})

Because of the composition of membranes, 𝑙, which was an identifier introduced by 𝑀𝑜 but substituted
by 𝑀𝑖, was removed. Membranes are meant to be composed by the ..⋆ operator, and the domain of
the inner membrane should thus be in the codomain of the outer one: dom (𝑀𝑖) ⊆ codom (𝑀𝑜).

We define ..⋆ as follows. Given and Φ𝑜 = (𝑀𝑜 | 𝜙𝑜) Φ𝑖 = (𝑀𝑖 | 𝜙𝑖) such that dom (𝑀𝑖) ⊆
codom (𝑀𝑜), we 𝛼-rename Φ𝑖 into Φ′

𝑖 = (𝑀′
𝑖 ∣ 𝜙′

𝑖) such that codom (𝑀′
𝑖) ∩ codom (𝑀𝑜) = ∅. We

then make the formula 𝜙𝑜 enter the membrane 𝑀𝑖:

Φ𝑜 ..⋆ Φ𝑖 = Φ𝑜 ..⋆ Φ′
𝑖 = (𝑀′

𝑖 ∘ 𝑀𝑜 ∣𝑀′
𝑖 (𝜙𝑜) ⋆ 𝜙′

𝑖)

We are now ready to state our frame rule.

Frame
Φ, 𝑡 ⇓♯ Φ′

Φ𝑐 ..⋆ Φ, 𝑡 ⇓♯ Φ𝑐 ..⋆ Φ′

Although our program logic is not introduced until Section ??, here is an example of how the frame
rule can be used. Consider the program if ? skip (x ∶= ?) where the branch is chosen randomly, one
branch does nothing while the other assigns a random value to x. The empty branch of the if can be
given the Hoare triple emp, skip ⇓♯ emp, and the other branch the Hoare triple x =̇ ⊠, x ∶= ? ⇓♯ x =̇ ⊤ℤ.
The first branch can then be extended using the frame rule to the triple x =̇ ⊠, skip ⇓♯ x =̇ ⊠. Since
both branches now have the same assumption, they may be merged together for the whole conditional:
x =̇ ⊠, if ? skip (x ∶= ?) ⇓♯ x =̇ ⊠ ⊔ ⊤ℤ.

5. Adding Summary Nodes
Up to this point, the formulae which we have defined reflect precisely the structure of the concrete
heap. However, this approach is not viable in the presence of loops. We need a way to forget about
some information of the structure, in particular its size. To this end, we reuse the idea of summary
nodes from shape analysis, by adding a new kind of abstract locations 𝑘 ∈ KLoc♯ which represent a
set (finite and possibly empty) of concrete locations. We call them summary locations. As with LLoc♯,
this new set of abstract locations KLoc♯ is supposed to be a new, infinite, set of identifiers. We note
abstract locations as ℎ ∈ KLoc♯ ⊎ LLoc♯.

Abstract values have been defined in Section ?? as tuples (𝑛♯,nil?, 𝐿, 𝑑), where 𝐿 ∈ 𝒫𝑓 (LLoc♯)⊤.
We update them to track summary nodes by changing their projection 𝐿 to 𝐿 ∈ 𝒫𝑓 (LLoc♯ ⊎ KLoc♯)⊤.
Values are thus abstracted by Val♯ = ℤ♯ × {nil,nil} × 𝒫𝑓 (LLoc♯ ⊎ KLoc♯)⊤ × {□, ⊠}.

In formulae, summary locations may occur on the left-hand side of heaps 𝑘 ↦ {𝑜}, denoting heaps
where every concrete location in the concretion of 𝑘 maps to a concretion of 𝑜. When 𝑘 occurs as a
value, its concretion is any single location denoted by 𝑘. Note the asymmetry in 𝑘 ↦ {f ∶ 𝑘, _ ∶ ⊠},
which means that every concrete location represented by 𝑘 has a field f pointing to a concrete location
in the set represented by 𝑘, but there is no relation between these two concrete locations. In particular,
they need not be the same.

The set of formulae with summary nodes is defined as follows.
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...𝑘1. 𝑘2.

{𝑜1}

.

{𝑜2}

... 𝑘.

{𝑜1} ⊔ {𝑜2}

. ⇝

(a) Summarizing two summary nodes

...•.𝑙.

{𝑜}

. 𝑘.

{𝑜}

. ⇝

(b) Summarizing an ab-
stract location

....
𝑘
..

•
.

𝑙

.
{𝑜}

.f ...
𝑘

..

•
.

𝑙

.
{𝑜}

. f. ⇝.. •. 𝑙′

(c) Materialisation

Figure 2: Picturisation of membrane operations

𝜙 ∶∶= emp | 𝜙1 ⋆ 𝜙2
| x =̇ 𝑣♯
| ℎ ↦ {𝑜}

ℎ ∶∶= 𝑙 | 𝑘
𝑜 ∶∶= f ∶ 𝑣♯, 𝑜

| _ ∶ 𝑣♯

𝑚 ∈ 𝔐 ∶∶= ℎ → ℎ1 +…+ ℎ𝑛
| 𝜈ℎ

Φ ∶∶= (𝑀 | 𝜙) 𝑀 ∈ 𝒫𝑓 (𝔐)

Abstract values 𝑣♯ can now contain basic values, abstract locations ℎ (which can be summary
nodes 𝑘 or precise abstract locations 𝑙), the special nil, and the special abstraction ⊠. We update the
definition of domain and codomain of membranes as expected:

dom (ℎ → ℎ1 +…+ ℎ𝑛) = {ℎ} codom (ℎ → ℎ1 +…+ ℎ𝑛) = {ℎ1,… , ℎ𝑛}
dom (𝜈ℎ) = ∅ codom (𝜈ℎ) = {ℎ}
dom (𝑀) = ⋃

𝑚∈𝑀
dom (𝑚) codom (𝑀) = ⋃

𝑚∈𝑀
codom (𝑚)

As renamings can now map an abstract location to several abstract locations, substitutions 𝑀 (𝜙) can
now duplicate memory cells: {𝑘 → 𝑘1 + 𝑘2} (𝑘 ↦ {𝑜}) = 𝑘1 ↦ {𝑜 [𝑘1 ⊔ 𝑘2/𝑘]}⋆ 𝑘2 ↦ {𝑜 [𝑘1 ⊔ 𝑘2/𝑘]}.

There are two basic operations on summary locations: summarizations and materializations. These
two operations rename abstract locations, thus changing the scope of formulae: membranes are a
crucial point for their soundness in accordance to their interaction with the frame rule. Let us first
only consider an inner formula 𝜙.

The summarization consists in merging abstract locations ℎ1, …, ℎ𝑛 into a single new summary
node 𝑘. Figures ?? and ?? picture two examples of summarizations, respectively of two summary
nodes, and of an abstract location. It allows to loose information about the structure of ℎ1, …,
ℎ𝑛; typically to get a loop invariant. In order to perform a summarization, we need to have in the
considered inner formula 𝜙 the explicit definition of all these abstract locations: it is not possible
to summarize 𝑙 and 𝑙′ in the formula 𝑙 ↦ {f ∶ 𝑙′, _ ∶ ⊠} as we do not have access to the resource
𝑙′. Let us thus suppose that the formula 𝜙 is of the form ℎ1 ↦ {𝑜1} ⋆ … ⋆ ℎ𝑛 ↦ {𝑜𝑛} ⋆ 𝜙′. The
summarization of ℎ1, …, ℎ𝑛 into 𝑘, provided that 𝑘 does not appear in 𝜙, is the following formula.

(ℎ1 → 𝑘,… , ℎ𝑛 → 𝑘∣ (𝑘 ↦ {𝑜1} ⊔ … ⊔ {𝑜𝑛} ⋆ 𝜙′) [𝑘/ℎ1]… [𝑘/ℎ𝑛])

We have merged all the statements about ℎ1, …, ℎ𝑛, replaced in the current context 𝜙′ and the
merged abstract object these abstract locations by 𝑘, and left a notice in the form of a membrane for
additionnal contexts added by the frame rule about the operation which took place.

The materialization follows the same scheme, pictured in figure ??. Given an entry point to a
summary node 𝑘—either on the form of a variable x =̇ 𝑘 or a location 𝑙 ↦ {f ∶ 𝑘, …}—we can
rewrite a summary location into a single location (pointed by the entry point) and another summary
node, representing the rest of the concrete locations previously present. Indeed, we know that 𝑘
cannot represent an empty set of locations, and we would like to split it into the exact location
𝑙′ accessed by our entry point, and the rest 𝑘′ of the other locations. This operation allows to
perform strong updates on these precise values. The materialization of 𝑘 into 𝑙′ and 𝑘′ through
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𝑙.f (or a variable x) transforms an inner formula of the form 𝑘 ↦ {𝑜} ⋆ 𝑙 ↦ {f ∶ 𝑘, …} ⋆ 𝜙′ into the
formula (𝑘 → 𝑙′ + 𝑘′ ∣ (𝑙′ ↦ {𝑜} ⋆ 𝑘′ ↦ {𝑜} ⋆ 𝑙 ↦ {f ∶ 𝑙′, …} ⋆ 𝜙′) [𝑙′ ⊔ 𝑘′/𝑘]): the entry point have
been replaced by the precise location 𝑙′ at the cost of replacing every occurence of 𝑘 by 𝑙′ ⊔ 𝑘′.
The membrane is for now only partial as there might be uncaught locations in 𝜙′ or in {𝑜}. The
materialization can only be performed if the entry point is precise: to perform a materialization over
x =̇ 𝑙 ⊔ 𝑘 for instance, we would have to first summarize 𝑙 and 𝑘 into the same summary node. Note
that materialization can always be reversed using a well-chosen summarization.

These two processes of summarization and materialization have been shown on inner formulae.
For formulae, we have to merge the new rewriting to the membrane. For instance, let us consider a
summarization of 𝑙 and 𝑘 to 𝑘′ on the following formula:

Φ = (𝑘0 → 𝑘, 𝑙0 → 𝑙| x =̇ 𝑙 ⋆ 𝑙 ↦ {f ∶ 𝑘, _ ∶ ⊠} ⋆ 𝑘 ↦ {g ∶ 𝑘, _ ∶ ⊠})
We first forget about the membrane and perform the summarization on its inner formula, getting a new
inner formula and the partial membrane {𝑘 → 𝑘′, 𝑙 → 𝑘′}; we then compose this partial membrane
with the old membrane to get Φ′: {𝑘 → 𝑘′, 𝑙 → 𝑘′} ∘ {𝑘0 → 𝑘, 𝑙0 → 𝑙} = {𝑘0 → 𝑘′, 𝑙0 → 𝑘′}.

Φ′ = (𝑘0 → 𝑘′, 𝑙0 → 𝑘′ ∣ x =̇ 𝑘′ ⋆ 𝑘′ ↦ {f ∶ 𝑘′ ⊔ ⊠, g ∶ 𝑘′ ⊔ ⊠, _ ∶ ⊠})

For the sake of example, let us continue by materializing 𝑘′ in Φ′ through x. As before, we focus
on the inner formula, then compose the generated rewriting 𝑘′ → 𝑙″+𝑘″ to the membrane to get Φ″:
{𝑘′ → 𝑙″ + 𝑘″} ∘ {𝑘0 → 𝑘′, 𝑙0 → 𝑘′} = {𝑘0 → 𝑙″ + 𝑘″, 𝑙0 → 𝑙″ + 𝑘″}.

Φ″ = (𝑘0 → 𝑙″ + 𝑘″, 𝑙0 → 𝑙″ + 𝑘″ ∣ x =̇ 𝑙″ ⋆ 𝑙″ ↦ {f ∶ 𝑙″ ⊔ 𝑘″ ⊔ ⊠, g ∶ 𝑙″ ⊔ 𝑘″ ⊔ ⊠, _ ∶ ⊠}
⋆ 𝑘″ ↦ {f ∶ 𝑙″ ⊔ 𝑘″ ⊔ ⊠, g ∶ 𝑙″ ⊔ 𝑘″ ⊔ ⊠, _ ∶ ⊠})

These transformations are permitted by a relation ≼ compatible with them: if Φ becomes Φ′

through one of these transformations, then Φ ≼ Φ′. Intuitively, Φ ≼ Φ′ means that Φ is more precise
than Φ′. The soundness of these transformations is then implied by the soundness of ≼. In contrary
to usual abstract interpretation, the relation ≼ is not required to form a lattice, but only to be sound
with respect to the concretisation in any context, as shown in Section ??. The pre-order ≼ is defined
in Appendix ??, but understanding its heavy definition is not needed to follow the rest of this paper.

Materializations and summarizations are the usual manipulations defined in shape analysis, but
our formalism allows to define other similar operations. For instance, we could define a filtering op-
eration which partitions locations depending on the values of their fields: the filtering of 𝑘 relative
to field f and the values 𝑙1 and 𝑙2 in the formula (𝑘0 → 𝑘 + 𝑙1 + 𝑙2 | 𝑘 → {f ∶ 𝑙1 ⊔ 𝑙2, _ ∶ ⊠} ⋆ x =̇ 𝑘)
is (𝑘0 → 𝑘1 + 𝑘2 + 𝑙1 + 𝑙2 | 𝑘1 → {f ∶ 𝑙1, _ ∶ ⊠} ⋆ 𝑘2 → {f ∶ 𝑙2, _ ∶ ⊠} ⋆ x =̇ 𝑘1 ⊔ 𝑘2); we have sepa-
rated the summary node 𝑘 into two nodes depending on the value of f. To add this operation into
the formalism, the relation ≼ would have to be updated, as well as its correctness proof.

6. A Program Logic for OWhile
Given the abstract domain of formulae defined in the previous sections, we define a program logic for
OWhile to reason about these. We shall derive the program logic in a systematic fashion from the
concrete semantics, extending an abstraction technique developed by the authors [?] to cover spatial
conjunctions and the frame rule. We explain this technique in Section ??, then present how to abstract
rules in Section ??. Section ?? presents the changes to accommodate the frame rule.

6.1. Abstract Interpretation of Pretty-big-step Semantics
Motivated by the JSCert operational semantics for JavaScript, we have defined an abstract
interpretation framework for semantics written in pretty-big-step style [?]. Pretty-big-step semantics [?]
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is a particular form of big-step semantics where intermediate evaluation steps are brought out explicitly
via intermediate terms that mix syntax and semantics. Following a proposal by Schmidt [?] for
abstract interpretation of big-step semantics, we have shown how the inference rules in JSCert can
each be interpreted over an abstract domain such that the ensuing derivations are correct analyses of
the original program. More precisely, we have exactly one abstract rule for each concrete rule, and
the correctness proof is simplified to proving that each concrete and abstract rules are related in a
one-to-one manner. For example, the abstract versions of the rules Add2 and If (𝑒, 𝑠1, 𝑠2) follow.

Add2

(𝑣♯1, val♯ 𝑣♯2),+2 ⇓♯ add♯ (𝑣♯1, 𝑣♯2)

If(𝑒, 𝑠1, 𝑠2)
Φ, 𝑒 ⇓♯ Φ′ Φ′, if1 𝑠1 𝑠2 ⇓♯ Φ″

Φ, if 𝑒 𝑠1 𝑠2 ⇓♯ Φ″

However, as explained in [?], this approach implies that the abstract rules can no longer be
interpreted inductively. Each rule describes how to build a new Hoare triple Φ, 𝑡 ⇓♯ Φ′ given a semantic
relation ⇓♯

0 but such a triple is not correct by itself. Instead, we must consider all the applicable rules,
i.e., rules 𝑖 that match the term (𝑡 = 𝔩𝑖) and may be applied according to the semantic context
(cond♯

𝑖 (Φ) holds), and merge their results in order to obtain a valid result. Formally, the abstract
evaluation relation ⇓♯ is defined as in Schmidt as the greatest fixed point of the iterator ℱ♯; the relation
ℱ♯ (⇓♯

0) extends the relation ⇓♯
0 by adding the triples (Φ𝜎, 𝑡, Φ𝑟) valid for all applicable rules. It uses

the function glue♯𝑖 (⇓♯
0) which computes all triples obtainable from the application of the 𝑖th rule:

ℱ♯ (⇓♯
0) = {(Φ𝜎, 𝑡, Φ𝑟) ∣ ∀𝑖. 𝑡 = 𝔩𝑖 ⇒ cond♯

𝑖 (Φ𝜎) ⇒ (Φ𝜎, 𝑡, Φ𝑟) ∈ glue♯𝑖 (⇓
♯
0)}

Program logics usually include a rule to weaken a results. In our formalism, it would look like this:

Weaken
Φ′

𝜎 ≼ Φ𝜎 Φ𝜎, 𝑡 ⇓♯ Φ𝑟 Φ𝑟 ≼ Φ′
𝑟

Φ′
𝜎, 𝑡 ⇓♯ Φ′

𝑟

In our previous work [?], this rule is encoded in the above-mentioned glue♯ function. It allows the
analyser to perform some approximations before and after applying rules. The function glue♯𝑖 was
then defined as follows, where apply𝑖 (⇓

♯
0) is the set of all triples that can be directly derived from ⇓♯

0
by applying rule 𝑖 once.

glue♯𝑖 (⇓
♯
0) = {(Φ𝜎, 𝑡, Φ𝑟) ∣ ∃Φ′

𝜎, Φ′
𝑟. Φ𝜎 ≼ Φ′

𝜎 ∧ Φ′
𝑟 ≼ Φ𝑟 ∧ (Φ′

𝜎, 𝑡, Φ′
𝑟) ∈ apply𝑖 (⇓

♯
0)}

6.2. Abstract Rules
Rules give semantics to expressions, statements, and intermediate terms of the OWhile language.
Each concrete rule is translated into exactly one abstract rule. Due to this one-to-one concrete-abstract
rule correspondence, abstract and concrete rules share the same names.

In general, the rules fall into four informal categories, measuring the difficulty to abstract them:

• Administrative rules, which push states around; their abstract translation is straightforward.

• Condition rules, which are similar to administrative rules, but with non-trivial side conditions
(cond). When translating them into the abstract world, their side condition has to be updated
(cond♯). Such a translation usually do not give further difficulties.

• Error rules, like condition rules, have a non-trivial side condition. Their result is always an
error: they require in practise the same amount of work than condition rules to translate.
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• Computational rules, where results are produced. The language operations (summing numbers,
writing a variable, creating a field, etc.) take place in these rules and their abstract translations
are usually more complex.

Figure ?? in Appendix ?? classifies the different rules of OWhile. As can be seen, very few rules fall
into the computational category, which is the category yielding most of the abstraction effort. These
categories are arbitrary and debatable as they just serve as a rough estimate on the amount of work
needed to build the abstract semantics; for instance the third category of error rules has been added
because a lot of rule falls into it, but they require the same amount of work to abstract than the
condition rules. For instance, let us consider the two concrete rules for assignments:

Asgn(x, 𝑒)
𝑆, 𝑒 ⇓ 𝑟 𝑟, x ∶=1 ⇓ 𝑟′

𝑆, x ∶= 𝑒 ⇓ 𝑟′
Asgn1(x)

(𝑆, 𝑣), x ∶=1 ⇓ write (𝑆, 𝑥, 𝑣)

The first rule Asgn (x, 𝑒) is an administrative rule: its definition does not depend on the
implementation of states and its abstract version is identical. On the other hand, the rule Asgn1 (x)
uses the concrete write operation, which does not straightforwardly translate into the abstract world:
we do so by exhibiting its footprint. This leads to the following two abstract rules for assignment.
In contrary to [?], we only give a local version of the rules: the abstract rules work with the frame
rule (see next section). Note how compact the rule Asng1 (x) is, its context being implicit. Also note
that although the concrete rule Asng1 (x) applies even if x is not defined in the state, we require it
to be present in the abstract formula—eventually with the value ⊠. This solves the problem stated
by Reynolds [?, Section 3.5], as the frame rule can no longer interfere with the resource x.

Asgn(x, 𝑒)
Φ, 𝑒 ⇓♯ Φ′ Φ′, x ∶=1 ⇓♯ Φ″

Φ, x ∶= 𝑒 ⇓♯ Φ″

Asgn1(x)

(𝑀 ∣ x =̇ 𝑣♯0, 𝑣♯) , x ∶=1 ⇓♯ (𝑀 ∣ x =̇ 𝑣♯)

The only abstract rule of OWhile whose footprint updates the membrane is the rule NewObj,
whose concrete and abstract rules follow. The concrete rule exhibit a fresh concrete location which
has no associated reference 𝑙fresh(𝑆).f in the current state 𝑆. In the abstract rule, we create a new
location 𝑙 and declare it as fresh in the membrane: this ensures it to be different from anything present
in the context. We also claim that we have write permission over this new location 𝑙 by adding a
memory cell into the formula, leaving its fields undefined as in the concrete rule.

NewObj

𝑆, {} ⇓ (𝑆, 𝑙fresh(𝑆))
NewObj

(∅ | emp) , {} ⇓ (𝜈𝑙 | 𝑙 ↦ {_ ∶ ⊠} , 𝑙)

6.3. Interfering with the Frame Rule

The version of the frame rule which we use is recalled below.

Frame
Φ, 𝑡 ⇓♯ Φ′

Φ𝑐 ..⋆ Φ, 𝑡 ⇓♯ Φ𝑐 ..⋆ Φ′

To make sense, the abstract semantics has to keep interface (Φ) constant along the derivation. It
would otherwise be possible to exhibit a context Φ𝑐 with a different behaviour in both sides. For
instance, although Φ1 = (𝑙 → 𝑙 | 𝑙 ↦ {_ ∶ ⊠}) and Φ2 = (𝑙′ → 𝑙∣ 𝑙 ↦ {_ ∶ ⊠}) represent the same
concrete states (they have the same concretisation), in the context of Φ𝑐 = (𝑘 → 𝑙 + 𝑙′ ∣ 𝑙 ↦ {_ ∶ ⊠}),
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Φ𝑐 ..⋆ Φ1 has an empty concretisation but not Φ𝑐 ..⋆ Φ2. Because of the frame rule, we can no longer
replace a formula Φ by another Φ′ just because they represent the same concrete states.

In contrary to usual abstract interpretation, the subset ≼ of a pre-order which we consider is
requested to be sound in any context Φ𝑐. The fact that this pre-order does not form a lattice—or that
it is only a subset of a pre-order—can be surprising; but building a full-fledged lattice can be difficult.
Furthermore, we actually do not need such hypotheses to prove the soundness of our approach: we
have quotiented the formulae by the equivalent relation built from ≼, and we can complete the order
≼ by taking its transitive closure. The lattice usually requested by abstract interpretation only greatly
helps in building analysers, but we are here only interested in building an abstract semantics.

Φ1 ≼ Φ2 ⟹ ∀Φ𝑐. 𝛾 (Φ𝑐 ..⋆ Φ1) ⊆ 𝛾 (Φ𝑐 ..⋆ Φ2)

Following Schmidt [?], meta rules are not mixed with abstract rules. We thus force the frame rule
into the glue between rules by updating the function glue♯, as we did when adding the Weaken rule:

glue♯𝑖 (⇓♯
0) = {(Φ𝜎, 𝑡, Φ𝑟) ∣ ∃Φ′

𝜎, Φ𝑐, Φ′
𝑟. Φ𝜎 ≼ Φ𝑐 ..⋆ Φ′

𝜎 ∧ Φ𝑐 ..⋆ Φ′
𝑟 ≼ Φ𝑟 ∧ (Φ′

𝜎, 𝑡, Φ′
𝑟) ∈ apply𝑖 (⇓

♯
0)}

Given a semantic context Φ𝜎, we are allowed to approximate it, then split it into the formula Φ′
𝜎

which matches the rule application and a context Φ𝑐. We then run the rule on Φ′
𝜎 to get Φ′

𝑟, which
we consider in the frame Φ𝑐. We allow a final approximation to get Φ𝑟. The abstract states are not
always formulae, but can be extended formulae (see Section ??). Fortunately the operator ..⋆ and the
pre-order ≼ can be adapted for extended formulae. We do not show the details here for space reasons.

Let us consider the example of Asng1 (x): it is the rule taking care of the assignment just after the
assigned expression has been computed; It takes an extended semantic context as argument, carrying
the computed expression. It requires the variable x to stand in the input formula:

Asgn1(x)

(𝑀 ∣ x =̇ 𝑣♯0, 𝑣♯) , x ∶=1 ⇓♯ (𝑀 ∣ x =̇ 𝑣♯)

Given a semantic context Φ = (𝑀 ∣𝜙, 𝑣♯), there are two cases, whether x appears in 𝜙. If it does not
appear, then the rule does not apply. Otherwise 𝜙 is on the form x =̇ 𝑣♯0 ⋆ 𝜙′: we isolate x into Φ =
(𝑀 ∣𝜙′) ..⋆ (𝑀′ ∣ x =̇ 𝑣♯0, 𝑣♯), where 𝑀′ = {ℎ → ℎ|ℎ ∈ codom (𝑀)} is neutral with 𝑀 . The application
of the rule then returns after reapplying the context (𝑀 ∣ 𝜙′) ..⋆ (𝑀′ ∣ x =̇ 𝑣♯) = 𝜙′ ..⋆ (𝑀 ∣ x =̇ 𝑣♯).

Let us now consider the example of Delete1 (f). This extended rule receives a location and
updates its referenced object. Let us see how it behaves when received a summary node 𝑘 instead of
a precise abstract location 𝑙 by giving it the semantic context Φ = (𝑘 → 𝑘 | 𝑘 ↦ {f ∶ nil, _ ∶ ⊠} , 𝑘).

Delete1(f)

(𝑀 | 𝑙 ↦ {𝑜} , 𝑙) , delete1 .f ⇓♯ (𝑀 ∣ 𝑙 ↦ remove♯ (f, {𝑜}))
The abstract operation remove♯ writes ⊠ in the field f of the abstract object {𝑜}. Using a
materialization—the carried value being its entry point—we can build the following formula Φ′.

Φ ≼ Φ′ = (𝑘 → 𝑙′ + 𝑘′ ∣ 𝑙′ ↦ {f ∶ nil, _ ∶ ⊠} ⋆ 𝑘′ ↦ {f ∶ nil, _ ∶ ⊠} , 𝑙′)
= (𝑘 → 𝑙′ + 𝑘′ ∣ 𝑘′ ↦ {f ∶ nil, _ ∶ ⊠}) ..⋆ (𝑙′ → 𝑙′ ∣ 𝑙′ ↦ {f ∶ nil, _ ∶ ⊠} , 𝑙′)

We can now apply the abstract rule Delete1 (f) on the first part to get the following.

Φ″ = (𝑘 → 𝑙′ + 𝑘′ ∣ 𝑘′ ↦ {f ∶ nil, _ ∶ ⊠}) ..⋆ (𝑙′ → 𝑙′ ∣ 𝑙′ ↦ {_ ∶ ⊠} , 𝑙′)
= (𝑘 → 𝑙′ + 𝑘′ ∣ 𝑙′ ↦ {_ ∶ ⊠} ⋆ 𝑘′ ↦ {f ∶ nil, _ ∶ ⊠} , 𝑙′)

We can now either continue with this result, which is a strong update over a local location identifier
𝑙′. But we might want to diminish the size of the membrane: let us see what happen if we summarize
𝑙′ and 𝑘′ back to 𝑘: Φ″ ≼ (𝑘 → 𝑘 | 𝑘 ↦ {f ∶ nil ⊔ ⊠, _ ∶ ⊠} , 𝑘). We recognize a weak update over 𝑘.
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6.4. Correctness
The correctness relies on the concretisation 𝛾 of formulae. Concretisation of formula is defined
through a predicate ⊨ shown in Figure ??; this predicate is parametrized by a valuation 𝜌 ∶ LLoc♯ ⇀
Loc ∧ KLoc♯ ⇀ 𝒫(Loc) of abstract locations to concrete locations. The difficult part stands in the
concretisation of objects, where abstract values 𝑣♯ can represent an undefined concrete value if ⊠ ⊑ 𝑣♯.
We do not show the definition of the concretisation function of objects, but it comes with no surprise.
The set 𝑅 is used to store the reserved variables: x =̇ ⊠ states that the variable x is not in the
environment, but it still reserves the resource x to be sound with the frame rule; this fact is stored by
𝑅. The concretisation 𝛾 (Φ) of a formula Φ is then a projection of this predicate:

(𝐸,𝐻) ∈ 𝛾 ((𝑀 | 𝜙)) ⟺ ∃𝜌,𝑅. (𝐸,𝑅,𝐻) ⊨𝜌 𝜙

(𝐸,𝑅,𝐻) ⊨𝜌 emp ⟺ 𝐸 = 𝑅 = 𝐻 = ∅
(𝐸,𝑅,𝐻) ⊨𝜌 𝜙1 ⋆ 𝜙2 ⟺ ∃𝐸1, 𝑅1,𝐻1, 𝐸2, 𝑅2,𝐻2. 𝐸 = 𝐸1 ⊎ 𝐸2 ∧ 𝑅 = 𝑅1 ⊎ 𝑅2

∧ dom (𝐸1), dom (𝐸2), 𝑅1, and 𝑅2 are disjoint pairwise
∧𝐻 = 𝐻1 ⊎𝐻2 ∧ dom (𝐻1) ∩ dom (𝐻2) = ∅
∧ ∀𝑖. (𝐸𝑖, 𝑅𝑖, 𝐻𝑖) ⊨𝜌 𝜙𝑖

(𝐸,𝑅,𝐻) ⊨𝜌 x =̇ 𝑣♯ ⟺ 𝐻 = ∅ ∧ (⊠ ⊑ 𝑣♯ ∧ 𝐸 = ∅ ∧ 𝑅 = {x}
∨ ∃𝑣 ∈ 𝛾𝜌 (𝑣♯) ∧ 𝐸 = {(x, 𝑣)} ∧ 𝑅 = ∅)

(𝐸,𝑅,𝐻) ⊨𝜌 𝑙 ↦ {𝑜} ⟺ 𝐸 = 𝑅 = ∅ ∧ ∃𝑜0 ∈ 𝛾𝜌 ({𝑜}) . 𝐻 = {(𝜌 (𝑙) , f, 𝑜0)}
(𝐸,𝑅,𝐻) ⊨𝜌 𝑘 ↦ {𝑜} ⟺ 𝐸 = 𝑅 = ∅ ∧ ∃ (𝑜𝑖) ∈ (𝛾𝜌 ({𝑜}))𝜌(𝑘) . 𝐻 = ⋃

𝑙𝑖∈𝜌(𝑘)
{(𝜌 (𝑙) , f, 𝑜𝑖)}

Figure 3: Definition of the entailment predicate ⊨𝜌.

The approach for correctness is the same than in [?]: we require every abstract rule to be locally
correct, i.e., their transfer functions (noted for axioms ax and ax♯ in the respective concrete and
abstract semantics) and side conditions (noted cond and cond♯) follow the corresponding concrete
rules, taking into account a potential context. The local correctness conditions over transfer functions
and side conditions of axiom rules follow—the correctness of other types of rule is very similar. Because
of the context in the side condition, it is possible to have a rule whose side condition holds, but whose
semantic context does not match the transfer function: this amounts to say that the construction of
a derivation can be blocked if some resources are lacking in the original semantic context. We shall
not extend on this technical matter. We can infer from these local properties the global correctness.

∀𝑆,Φ,Φ𝑐. 𝑆 ∈ 𝛾 (Φ𝑐 ..⋆ Φ) ⟹ ax (𝑆) ∈ 𝛾 (Φ𝑐 ..⋆ ax♯ (Φ))
∀𝑖, 𝑆, Φ,Φ𝑐. 𝑆 ∈ 𝛾 (Φ𝑐 ..⋆ Φ) ⟹ cond𝑖 (𝑆) ⟹ cond♯

𝑖 (Φ)

Property 1 (Global Correctness) Let 𝑡 be a term, 𝑆 and 𝑆′ be states, and Φ and Φ′ formulae.
Given the local correctness, if 𝑆 ∈ 𝛾 (Φ), 𝑆, 𝑡 ⇓ 𝑆′, and Φ, 𝑡 ⇓♯ Φ′ then 𝑆′ ∈ 𝛾 (Φ′).

In other words, abstract derivations can not miss concrete executions: our abstract semantics is sound.

7. Related Work
This work directly follows from [?], which only focussed on abstract interpretation and how to make
a Coq development scale up to big operational semantics such as JavaScript’s. This previous work
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came with a Coq development containing some generic analysers, while the current work only focuses
at building an abstract domain compatible with the frame rule. There have been works aiming at
providing formally verified analysers on languages other than JavaScript such as [?], but these
involve a lot of Coq development and we hope to get to a comparatively lighter development for
JavaScript. We aim at diving the work of [?] to a fully Coq-verified abstract interpreter.

There have been some work about mixing abstract interpretation and separation logic, such as [?]
or [?], but few provide an abstract semantics compatible with the frame rule able to express the
abstractions of shape analysis. The lattices constructed by these works are based on a disjunctive
completion of a formula order, which can easily explode in size. Our mechanism provides a protection
against these explosions through summarizations, with the cost of potentially big imprecision.

The logic of [?] is very close to this work; their domain is a disjunctive completion of formulae
separated at the field level of objects as we did. Locations and fields are both abstracted by either
singletons or summary nodes. However, the frame rule is not mentioned, which removes the need of
membranes. They carry a set of formulae storing information about the respective inclusion of the
concretisations of summary nodes. Their domain is ordered and equipped with a join and a widening
operator with an algorithm compatible with the concretisation function.

The same authors previously developped [?] based on separation logic; this work focusses on
inductively defined shapes and is able to express and analyse complex structures such as red-black
trees. To increase the efficiency of the analyse, they developed a way to change the point of view of
these shapes: for instance, a doubly linked list can be defined either by following next or previous
fields. As with this work, the order relation, are defined through an algorithm compatible with the
concretisation function, and they similarly defined joins and widenings by an algorithm.

Inductively defined structures have also been examined in [?], which uses abduction to determine
the weakest precondition wielding safety or termination of the analysed program. They provide
heuristics to infer how to generalize predicates, as well as a running tool. However, their heuristics
rely on the syntax of their toy language (comparable to OWhile): scaling such an analyser up to
JavaScript might require to look for much complex heuristics, and we think that an approach guided
directly by the language semantics can reduce the amount of work to get a certified analyser.

8. Conclusion and Future Works
We have presented a program logic for JavaScript heaps, based on separation logic and integrating
ideas from shape analysis. We have expressed this logic within a framework of certified abstract
interpretation. The goal is to scale up the logic to the size of JavaScript’s semantics, resulting
in an abstract semantics for JavaScript of reasonable size, and eventually certified analysers for
JavaScript. The particular problem addressed in this paper is that of integrating the frame rule to
existing abstract interpretation framework, which is known to be a difficult problem.

Our approach is precise enough to get interesting results on real-world programs, whilst being
simple enough to be able to scale it up to a certified abstract semantics of JavaScript. This work
is part of a larger project which aims at building certified static analyses based on the JSCert [?]
formal semantics of JavaScript.

We have focussed on how to build an abstract semantics, and not on how to build analysers.
The abstract domains that arise from our logic are less structured than usual abstract domains,
which means that an analyser will be less guided by the abstract interpretation framework. There
is thus room for further research into the construction of efficient join and widening operators for
abstract domains combining separation and summarization. Furthermore, the frame rule allows to
individually analyse functions or recurrent programs; it is thus natural to look for strategies to choose
and separately analyse these programs. We have observed that analysing a program without starting
from the right resources can lead to big approximations, or to the inability to analyse. Techniques

30



An Abstract Separation Logic for Interlinked Extensible Records

𝑠 ∶∶= skip | 𝑠1; 𝑠2 | if 𝑒 𝑠1 𝑠2
| while 𝑒 𝑠 | throw | x ∶= 𝑒
| 𝑒1.f ∶= 𝑒2 | delete 𝑒.f

(a) Statements

𝑒 ∶∶= 𝑛 ∈ ℤ | ? | x ∈ Var | nil
| {} | 𝑒.f | f in 𝑒 | ¬ 𝑒
| = 𝑒1 𝑒2 | 1 𝑒1 𝑒2 (1 ∈ {>,+,−})

(b) Expressions

𝑠𝑒 ∶∶= ;1 𝑠2 | if1 𝑠1 𝑠2 | while1 𝑒𝑠
| while2 𝑒𝑠 | x ∶=1 | .f ∶=1 𝑒2
| .f ∶=2 | delete1 .f

(c) Extended statements

𝑒𝑒 ∶∶= .f | f in1 | 11 𝑒2
| 12 | ¬1 | =1 𝑒2
| =2

(d) Extended expressions

Figure 4: Complete syntax of the OWhile language

like bi-abduction may be relevant to build efficient oracles for our certified analysers.

A. Concrete Semantics

Figure ?? presents the complete syntax of OWhile, which includes extended terms. These extended
terms carry intermediary results, and are thus associated with specific kinds of extended semantic
contexts, carrying additional values. The concrete rules follow. These rules makes use of functions
such as read and write which perform some semantic manipulation; their semantics is usual and we do
not explicit them. Section ?? categorizes rules into four different kinds of categories; Figure ?? shows
where all the rules of this semantics fall. As can be seen, the categories are more or less identical in
size, with the notable exception of the computational rules, which are the most difficult to abstract.

AbortExtExpr(𝑒𝑒)

𝜎, 𝑒𝑒 ⇓ Err
𝜎 = Err

AbortExtStat(𝑠𝑒)

𝜎, 𝑠𝑒 ⇓ Err
𝜎 = Err

Cst(𝑛)

𝑆, 𝑛 ⇓ (𝑆, 𝑛)
Random(𝑛)

𝑆, ? ⇓ (𝑆, 𝑛)
Var(x)

𝑆, x ⇓ (𝑆, read (𝑆, x)) x ∈ dom (𝑆)
VarUndef(x)

𝑆, x ⇓ Err
x ∉ dom (𝑆)
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Nil

𝑆,nil ⇓ (𝑆, 𝑙0)
NewObj

𝑆, {} ⇓ (𝑆, 𝑙fresh(𝑆))

Property(𝑒, f)
𝑆, 𝑒 ⇓ 𝑟 𝑟, .f ⇓ 𝑟′

𝑆, 𝑒.f ⇓ 𝑟′

Property1(f)

(𝑆, 𝑙𝑖), .f ⇓ (𝑆, read (𝑆, 𝑙𝑖.f)) 𝑙𝑖.f ∈ dom (𝑆)
Property1NoLoc(f)

(𝑆, 𝑛), .f ⇓ Err

Property1Undef(f)

(𝑆, 𝑙𝑖), .f ⇓ Err
𝑙𝑖.f ∉ dom (𝑆)

In(f, 𝑒)
𝑆, 𝑒 ⇓ 𝑟 𝑟, f in1 ⇓ 𝑟′

𝑆, e in 𝑓 ⇓ 𝑟′

In1True(f)

(𝑆, 𝑙𝑖), f in1 ⇓ (𝑆, 1) 𝑙𝑖.f ∈ dom (𝑆)
In1NoLoc(f)

(𝑆, 𝑛), f in1 ⇓ Err

In1False(f)

(𝑆, 𝑙𝑖), f in1 ⇓ (𝑆, 0) 𝑙𝑖.f ∉ dom (𝑆)

Op(1, 𝑒1, 𝑒2)
𝑆, 𝑒1 ⇓ 𝑟 𝑟,11 𝑒2 ⇓ 𝑟′

𝑆,1 𝑒1 𝑒2 ⇓ 𝑟′

Op1(1, 𝑒2)
𝑆, 𝑒2 ⇓ 𝑟 (𝑛1, 𝑟),12 ⇓ 𝑟′

(𝑆, 𝑛1),11 𝑒2 ⇓ 𝑟′
Op1Error(1, 𝑒2)

(𝑆, 𝑙𝑖),11 𝑒2 ⇓ Err

Op2Error(1)

(𝑛1, (𝑆, 𝑙𝑗)),12 ⇓ Err

Add2

(𝑛1, (𝑆, 𝑛2)),+2 ⇓ (𝑆, 𝑛1 + 𝑛2)
Sub2

(𝑛1, (𝑆, 𝑛2)),−2 ⇓ (𝑆, 𝑛1 − 𝑛2)

Greater2Greater

(𝑛1, (𝑆, 𝑛2)), >2 ⇓ (𝑆, 1) 𝑛1 > 𝑛2

Greater2LesserEq

(𝑛1, (𝑆, 𝑛2)),>2 ⇓ (𝑆, 0) 𝑛1 ≤ 𝑛2

Not(𝑒)
𝑆, 𝑒 ⇓ 𝑟 𝑟, ¬1 ⇓ 𝑟′

𝑆, ¬ 𝑒 ⇓ 𝑟′

Not1True

(𝑆, 𝑛), ¬1 ⇓ (𝑆, 0) 𝑛 ≠ 0
Not1False

(𝑆, 𝑛), ¬1 ⇓ (𝑆, 1) 𝑛 = 0
Not1Error

(𝑆, 𝑙), ¬1 ⇓ Err

Eq(𝑒1, 𝑒2)
𝑆, 𝑒1 ⇓ 𝑟 𝑟,=1 𝑒2 ⇓ 𝑟′

𝑆,= 𝑒1 𝑒2 ⇓ 𝑟′

Eq1(𝑒2)
𝑆, 𝑒2 ⇓ 𝑟 (𝑣1, 𝑟), =2 ⇓ 𝑟′

(𝑆, 𝑣1),=1 𝑒2 ⇓ 𝑟′
Eq2BasicValEq

(𝑛1, (𝑆, 𝑛2)),=2 ⇓ (𝑆, 1) 𝑛1 = 𝑛2

Eq2BasicValNeq

(𝑛1, (𝑆, 𝑛2)),=2 ⇓ (𝑆, 0) 𝑛1 ≠ 𝑛2

Eq2LocEq

(𝑙𝑖, (𝑆, 𝑙𝑗)),=2 ⇓ (𝑆, 1) 𝑙𝑖 = 𝑙𝑗

Eq2LocNeq

(𝑙𝑖, (𝑆, 𝑙𝑗)),=2 ⇓ (𝑆, 0) 𝑙𝑖 ≠ 𝑙𝑗
Eq2MistypeBasicValLoc

(𝑛1, (𝑆, 𝑙𝑗)),=2 ⇓ Err

Eq2MistypeLocBasicVal

(𝑙𝑖, (𝑆, 𝑛2)),=2 ⇓ Err

Skip

𝑆, skip ⇓ 𝑆

Seq(𝑠1, 𝑠2)
𝑆, 𝑠1 ⇓ 𝑟 𝑟, ;1 𝑠2 ⇓ 𝑟′

𝑆, 𝑠1; 𝑠2 ⇓ 𝑟′

Seq1(𝑠2)
𝑆, 𝑠2 ⇓ 𝑟

𝑆, ;1 𝑠2 ⇓ 𝑟
Throw

𝑆, throw ⇓ Err
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If(𝑒, 𝑠1, 𝑠2)
𝑆, 𝑒 ⇓ 𝑟 𝑟, if1 𝑠1 𝑠2 ⇓ 𝑟′

𝑆, if 𝑒 𝑠1 𝑠2 ⇓ 𝑟′

If1True(𝑠1, 𝑠2)
𝑆, 𝑠1 ⇓ 𝑟

(𝑆, 𝑛), if1 𝑠1 𝑠2 ⇓ 𝑟 𝑛 ≠ 0

If1False(𝑠1, 𝑠2)
𝑆, 𝑠2 ⇓ 𝑟

(𝑆, 𝑛), if1 𝑠1 𝑠2 ⇓ 𝑟 𝑛 = 0

If1Error(𝑠1, 𝑠2)

(𝑆, 𝑙𝑖), if1 𝑠1 𝑠2 ⇓ Err

While(𝑒, 𝑠)
𝑆,while1 𝑒𝑠 ⇓ 𝑟
𝑆,while 𝑒 𝑠 ⇓ 𝑟

While1(𝑒, 𝑠)
𝑆, 𝑒 ⇓ 𝑟 𝑟,while1 𝑒𝑠 ⇓ 𝑟′

𝑆,while1 𝑒𝑠 ⇓ 𝑟′

While2True(𝑒, 𝑠)
𝑆, 𝑠 ⇓ 𝑟 𝑟,while1 𝑒𝑠 ⇓ 𝑟′

(𝑆, 𝑛),while2 𝑒𝑠 ⇓ 𝑟′ 𝑛 ≠ 0
While2False(𝑒, 𝑠)

(𝑆, 𝑛),while2 𝑒𝑠 ⇓ 𝑆 𝑛 = 0
While2Error(𝑒, 𝑠)

(𝑆, 𝑙𝑖),while2 𝑒𝑠 ⇓ Err

Asgn(x, 𝑒)
𝑆, 𝑒 ⇓ 𝑟 𝑟, x ∶=1 ⇓ 𝑟′

𝑆, x ∶= 𝑒 ⇓ 𝑟′
Asgn1(x)

(𝑆, 𝑣), x ∶=1 ⇓ write (𝑆, 𝑥, 𝑣)

PropertyAsgn(𝑒1, f, 𝑒2)
𝑆, 𝑒1 ⇓ 𝑟 𝑟, .f ∶=1 𝑒2 ⇓ 𝑟′

𝑆, 𝑒1.f ∶= 𝑒2 ⇓ 𝑟′

PropertyAsgn1(f, 𝑒2)
𝑆, 𝑒2 ⇓ 𝑟 (𝑙𝑖, 𝑟), .f ∶=2 ⇓ 𝑟′

(𝑆, 𝑙𝑖), .f ∶=1 𝑒2 ⇓ 𝑟′
PropertyAsgn1Error(f, 𝑒2)

(𝑆, 𝑛), .f ∶=1 𝑒2 ⇓ Err

PropertyAsgn1Nil(f, 𝑒2)

(𝑆, 𝑙0), .f ∶=1 𝑒2 ⇓ Err

PropertyAsgn2(f)

(𝑙𝑖, (𝑆, 𝑣)), .f ∶=2 ⇓ write (𝑆, 𝑙𝑖.f, 𝑣)

Delete(𝑒, f)
𝑆, 𝑒 ⇓ 𝑟 𝑟, delete1 .f ⇓ 𝑟′

𝑆, delete 𝑒.f ⇓ 𝑟′

Delete1(f)

(𝑆, 𝑙𝑖), delete1 .f ⇓ remove (𝑆, 𝑙𝑖.f)
Delete1Error(f)

(𝑆, 𝑛), delete1 .f ⇓ Err

Delete1Nil(f)

(𝑆, 𝑙0), delete1 .f ⇓ Err

B. Pre-order over Formulae
As said in Section ??, we are looking for a relation ≼ which respects the frame property:

Φ1 ≼ Φ2 ⟹ ∀Φ𝑐. 𝛾 (Φ𝑐 ..⋆ Φ1) ⊆ 𝛾 (Φ𝑐 ..⋆ Φ2)

The empty relation would be correct; however, it would not be useful as it allows no transformation
to the formulae: we would like to account for materializations and summarizations. We define our
relation ≼ by an algorithm taking two abstract heaps Φ1 = (𝑀1 | 𝜙1) and Φ2 = (𝑀2 | 𝜙2) and returning
true if it successfully proved the above property. However, the inclusion of the concretisations does
not necessarily yield the pre-order relation. We have not focused on the efficiency of this algorithm.

B.1. Example
To illustrate our comparison algorithm, let us consider the following two formulae to get Φ1 ≼ Φ2.

Φ1 = (𝑘0 → 𝑘, 𝑙0 → 𝑙| x =̇ 𝑙 ⊔ 𝑘 ⋆ 𝑘 ↦ {f ∶ ⊥, g ∶ 𝑙, _ ∶ ⊠} ⋆ 𝑙 ↦ {f ∶ 𝑙, _ ∶ ⊠})
Φ2 = (𝑘0 → 𝑘′ + 𝑙′, 𝑙0 → 𝑙′ + 𝑘′ ∣ x =̇ 𝑙′ ⋆ 𝑘′ ↦ {_ ∶ ⊠} ⋆ 𝑙′ ↦ {f ∶ 𝑙′ ⊔ 𝑘′ ⊔ nil, _ ∶ ⊠})
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Figure 5: Categories of rules

Administrative Conditions Error Computational

Property (𝑒, f)
In (f, 𝑒)

Op (1, 𝑒1, 𝑒2)
Op1 (1, 𝑒2)

Not (𝑒)
Eq (𝑒1, 𝑒2)
Eq1 (𝑒2)

Skip
Seq (𝑠1, 𝑠2)
Seq1 (𝑠2)

If (𝑒, 𝑠1, 𝑠2)
While (𝑒, 𝑠)
While1 (𝑒, 𝑠)
Asgn (x, 𝑒)

PropertyAsgn (𝑒1, f, 𝑒2)
Delete (𝑒, f)

AbortExtExpr (𝑒𝑒)
AbortExtStat (𝑠𝑒)

In1True (f)
In1False (f)

Greater2Greater
Greater2LesserEq

Not1True
Not1False

Eq2BasicValEq
Eq2BasicValNeq

Eq2LocEq
Eq2LocNeq

If1True (𝑠1, 𝑠2)
If1False (𝑠1, 𝑠2)

While2True (𝑒, 𝑠)
While2False (𝑒, 𝑠)

PropertyAsgn1 (f, 𝑒2)
Delete1Nil (f)

VarUndef (x)
Property1NoLoc (f)
Property1Undef (f)

In1NoLoc (f)
Op1Error (1, 𝑒2)

Op2Error (1)
Not1Error

Eq2MistypeBasicValLoc
Eq2MistypeLocBasicVal

If1Error (𝑠1, 𝑠2)
While2Error (𝑒, 𝑠)

Throw
PropertyAsgn1Error (f, 𝑒2)
PropertyAsgn1Nil (f, 𝑒2)

Delete1Error (f)

Cst (𝑛)
Random (𝑛)

Var (x)
Nil

NewObj
Property1 (f)

Add2
Sub2

Asgn1 (x)
PropertyAsgn2 (f)

Delete1 (f)

Our algorithm starts by splitting Φ1 to remove disjunctions in the values of variables and abstract
locations 𝑙. In the example x =̇ 𝑙 ⊔ 𝑘 can be split into x =̇ 𝑙 and x =̇ 𝑘 to get the two formulae
Φ1,𝑎 and Φ1,𝑏 below. This is sound as the disjunction ⊔ we chose for values does not loose precision:
∀Φ𝑐. 𝛾 (Φ𝑐 ..⋆ Φ1) = 𝛾 (Φ𝑐 ..⋆ Φ1,𝑎) ∪ 𝛾 (Φ𝑐 ..⋆ Φ1,𝑏).

Φ1,𝑎 = (𝑘0 → 𝑘, 𝑙0 → 𝑙| x =̇ 𝑙 ⋆ 𝑘 ↦ {f ∶ ⊥, g ∶ 𝑙, _ ∶ ⊠} ⋆ 𝑙 ↦ {f ∶ 𝑙 ⊔ 𝑘, _ ∶ ⊠})
Φ1,𝑏 = (𝑘0 → 𝑘, 𝑙0 → 𝑙| x =̇ 𝑘 ⋆ 𝑘 ↦ {f ∶ ⊥, g ∶ 𝑙, _ ∶ ⊠} ⋆ 𝑙 ↦ {f ∶ 𝑙 ⊔ 𝑘, _ ∶ ⊠})

Let us focus on Φ1,𝑎. We look for a function 𝜓 translating identifiers of the formula Φ1,𝑎 to those
of Φ2 in order to match Φ1,𝑎 with Φ2. Here the function 𝜓 mapping 𝑙 to 𝑙′ and 𝑘 to 𝑘′ is enough.
Applying the rewriting 𝜓 over Φ1,𝑎 follows the same rules as the 𝛼-renaming and the summarization
presented in Sections ?? and ??—which is why summarizations are compatible with this pre-order:

𝜓 (Φ1,𝑎) = (𝑘0 → 𝑘′, 𝑙0 → 𝑙′ ∣ x =̇ 𝑙′ ⋆ 𝑘′ ↦ {f ∶ ⊥, g ∶ 𝑙, _ ∶ ⊠} ⋆ 𝑙′ ↦ {f ∶ 𝑙′ ⊔ 𝑘′, _ ∶ ⊠})
The summary node 𝑘 has an incoherence: every concrete location represented by 𝑘 is supposed to
have a field f represented by ⊥, which is not possible: the only possible concretisation of 𝑘 is the
empty set. We can thus safely remove 𝑘 from the formula:

Φ′
1,𝑎 = (𝑘0 → ∅, 𝑙0 → 𝑙′ ∣ x =̇ 𝑙′ ⋆ 𝑙′ ↦ {f ∶ 𝑙′, _ ∶ ⊠})

At this point, we compare the inner scope of Φ′
1,𝑎 with the one of Φ2: the latter has

an additional summary node 𝑘′. We can easily ignore such a summary node as it can
represent an empty set of concrete locations; we thus rewrite 𝑘′ into ∅ in Φ2 to get Φ′

2 =
(𝑘0 → 𝑙′, 𝑙0 → 𝑙′ ∣ x =̇ 𝑙′ ⋆ 𝑙′ ↦ {f ∶ 𝑙′ ⊔ nil, _ ∶ ⊠}). We now compare the values in the membrane,
the variables, and the objects; which we can check are greater in Φ′

2 for any corresponding in Φ′
1,𝑎.

We have successfully found a 𝜓 leading to the conclusion ∀Φ𝑐. 𝛾 (Φ𝑐 ..⋆ Φ1,𝑎) ⊆ 𝛾 (Φ𝑐 ..⋆ Φ2).
In the case of Φ1,𝑏 we can perform a materialization, as the have an entry point to a summary node

x =̇ 𝑘. But this generates a subformula 𝑙′ ↦ {f ∶ ⊥, g ∶ 𝑙, _ ∶ ⊠}, which has an empty concretisation
as the reference 𝑙′.f should be ⊥. We can conclude that Φ1,𝑏 has an empty concretisation, and thus
Φ1,𝑏 ≼ Φ2. Overall, as both Φ1,𝑎 and Φ1,𝑏 are below Φ2 by the pre-order ≼, we have Φ1 ≼ Φ2.
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B.2. General Procedure

As we want to be able to perform summarizations and materializations, our algorithm has to take
these operations into account. Algorithm ?? shows its pseudo-code; it proceeds through two nested
loops. The first one splits the first formula Φ1 into more precise formulae Φ′

1 through materializations.
The second tries to match the more precise Φ′

1 with Φ2 by performing summarizations. We then look
for incoherences, then compare the variables and the objects of the two formulae. The two loops
could be removed without causing problems for the final theorem; however they are necessary to make
materializations and summarizations hold. Formulae with different interfaces are rejected, even if they
have the same concretisation in every context: the relation ≼ does not have to be complete.

The first step consists in splitting the formula Φ1 to remove the presence of join operators ⊔ in
the abstract values; as for the formulae Φ1,𝑎 and Φ1,𝑏 of the example above. Because of the way we
defined abstract values, we can split values of the form 𝑛♯ ⊔ nil? ⊔ 𝑙1 ⊔ … ⊔ 𝑙𝑛 ⊔ 𝑑 to their different
components without missing any concrete value. This splitting can only be done if the considered
abstract value represents only one concrete value; which is neither the case of the default abstract
values of objects3, as in the object {_ ∶ nil ⊔ ⊠}, nor of a field value pointed by a summary node 𝑘.

The splitting part also takes into account the materializations in Φ1. This explodes the number of
considered formulae Φ′

1 as this amounts to look for all possible aliases of Φ1. These materializations
are performed for each entry point to a summary node and performed as described in Section ??.
Unfortunately, this part can loop. For instance, consider the inner formula x =̇ 𝑘⋆𝑘 ↦ {f ∶ 𝑘, _ ∶ ⊤}:
we can materialize x to get x =̇ 𝑙1 ⋆ 𝑙1 ↦ {f ∶ 𝑙1 ⊔ 𝑘, _ ∶ ⊤}⋆𝑘 ↦ {f ∶ 𝑙1 ⊔ 𝑘, _ ∶ ⊤}, which splits into
x =̇ 𝑙1 ⋆ 𝑙1 ↦ {f ∶ 𝑘, _ ∶ ⊤} ⋆ 𝑘 ↦ {f ∶ 𝑙1 ⊔ 𝑘, _ ∶ ⊤}, which keeps materializing/splitting. But do we
need to split it indefinitely? The only goal of this algorithm is to compare the current formula with
Φ2: unfolding up to the size of Φ2 is enough. Unfoldings can significantly increase the complexity of
this algorithm; however, its correction still holds if we limit this unfolding to a given depth—at the
cost of the transitivity of ≼. This is the reason we say that ≼ is only the subset of a pre-order: it is
possible to compute it completely and get a complete pre-order, with the cost of efficiency.

This first step makes us consider every possible shape structure. The next step is run on each of
these exploded formulae Φ′

1 and succeeds if it succeeded for all instances (universal search). This step
accepts a formula Φ′

1 if it can prove that ∀Φ𝑐. 𝛾 (Φ𝑐 ..⋆ Φ′
1) ⊆ 𝛾 (Φ𝑐 ..⋆ Φ2). As ∀Φ𝑐. 𝛾 (Φ𝑐 ..⋆ Φ1) =

⋃𝛾 (Φ𝑐 ..⋆ Φ′
1), an acceptance yields the requested property ∀Φ𝑐. 𝛾 (Φ𝑐 ..⋆ Φ1) ⊆ 𝛾 (Φ𝑐 ..⋆ Φ2).

For each of these exploded formulae Φ′
1, we look for two functions 𝜓𝑙 ∶ LLoc♯ ⇀ (LLoc♯ ∪ KLoc♯)

and 𝜓𝑘 ∶ KLoc♯ ⇀ KLoc♯ translating identifiers of the formula Φ′
1 to those of Φ2; which we shall note

both 𝜓. The goal is to find a translation matching Φ′
1 with Φ2. Some restrictions applies to 𝜓:

• Only identifiers present in Φ′
1 and Φ2 can appear in 𝜓. This makes this step a finite search.

• For an abstract location 𝑙, at most one 𝑙0 reaches 𝑙: ∀𝑙, 𝑙1, 𝑙2. 𝜓 (𝑙1) = 𝜓 (𝑙2) = 𝑙 ⟹ 𝑙1 = 𝑙2.

We rewrite Φ′
1 into the formula Φ″

1 = 𝜓 (Φ′
1) = (𝜓 | emp) ..⋆ Φ′

1 where 𝜓 has been identified with
its graph. If two or more abstract locations are mapped through 𝜓 to the same summary node 𝑘,
then all their objects are merged; this step fails if one abstract location lacks a memory property in
Φ′

1. For instance, if 𝜓 (𝑙) = 𝜓 (𝑘) = 𝑘′ and that Φ′
1 = (𝑘0 → 𝑘, 𝑙0 → 𝑙| 𝑙 ↦ {𝑜1} ⋆ 𝑘 ↦ {𝑜2}), then

Φ″
1 = (𝑘0 → 𝑘′, 𝑙0 → 𝑘′ ∣ 𝑘′ ↦ {𝑜′1} ⊔ {𝑜′2}) where {𝑜′1} and {𝑜′2} received the renaming process of

𝜓. However, the same choice of 𝜓 fails if only 𝑙 ↦ {𝑜} appears in Φ′
1.

We execute the last step for all those 𝜓 and return true if at least one of these make the following
step returns true (existential choice). The research of a working 𝜓 can probably be performed more

3The default abstract value of the objects can actually be split to make the fields appearing in Φ2 appear, then
perform nevertheless splittings and later on materializations. For readability reasons, we shall not go into details about
this as the subset of pre-order we get if we do not make this step is still enough to get a correct abstract semantics.
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Data: Two abstract heaps Φ1 and Φ2.
Result: true iff Φ1 ≼ Φ2.
if interface (Φ1) ≠ interface (Φ2) then

return false; // Formulae with different interfaces are immediately rejected.
end
for Φ′

1 be a split/materialization of Φ1 do // Universal branching
for 𝜓 well-formed do // Existential choice

Φ″
1 ← 𝜓(Φ′

1);
Remove incoherent summary nodes from Φ″

1 ;
Let Φ′

2 be Φ2 where every summary node not present in Φ″
1 has been removed;

if Φ″
1 incoherent then
// The current 𝜓 is enough to show that Φ′

1 ≼ Φ2.
Continue on the next split Φ′

1 of Φ1;
end
if Φ′

2 incoherent then
Try another 𝜓;

end
for ℎ → ℎ1 +…+ ℎ𝑛 present in Φ′

2 and ℎ → ℎ′
1 +…+ ℎ′

𝑚 in Φ″
1 do

if {ℎ′
1,… , ℎ′

𝑚} ⊈ {ℎ1,… , ℎ𝑛} then
Try another 𝜓;

end
end
for x =̇ 𝑣♯2 present in Φ′

2 and x =̇ 𝑣♯1 present in Φ″
1 do

if 𝑣♯1 ⋢ 𝑣♯2 then
Try another 𝜓;

end
end
for ℎ ↦ {𝑜2} present in Φ′

2 and ℎ ↦ {𝑜1} present in Φ″
1 do

if {𝑜1} ⋢ {𝑜2} then
Try another 𝜓;

end
end
// The chosen 𝜓 succeeded in matching Φ′

1 with Φ′
2.

Continue on the next split Φ′
1 of Φ;

end
// No 𝜓 succeeded in matching Φ′

1 with Φ′
2.

return false;
end
// Φ2 correctly captures all the behaviours of Φ1.
return true;

Algorithm 1: Algorithm comparing formulae.
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efficiently, by only considering the possible ones in an iterative algorithm similar to the one of [?].
The last step consists at comparing the exploded and renamed formula Φ″

1 to Φ′
2, by checking for

incoherences, then comparing the membranes, variables, and objects defined.
We look for incoherences into the formula Φ″

1 . If any is found, then the concretisation of Φ″
1

is empty, and we immediately states that Φ″
1 ≼ Φ″

2 by returning true. There are two cases of
incoherences. First, spatial incoherences, when a location 𝑙 is referred several times in the formula in
a left-hand side; such as in 𝑙 ↦ {𝑜} ⋆ 𝑙 ↦ {𝑜}. Even if the two objects {𝑜} are identical, both sides
of the operator ⋆ refer to the same region of space, which is forbidden. Second, when a variable or
the field f of an abstract location 𝑙 has ⊥ as a value, which has an empty concretisation. Note that
⊥ found in summary nodes does not trigger incoherences for the whole abstract state. Consider for
instance the formula (𝑘0 → 𝑘| 𝑘 ↦ {f ∶ ⊥, _ ∶ ⊤}): 𝑘 can represent an empty set of location, which
solves the incoherence. Incoherent summary nodes are removed, which can lead to an incoherence
later on. For instance (𝑘0 → 𝑘| 𝑘 ↦ {f ∶ ⊥, _ ∶ ⊤} ⋆ x =̇ 𝑘) leads to (𝑘0 → ∅| x =̇ ⊥), which has an
empty concretisation. We also check for spatial incoherences in 𝜙2: if any, we stop and return false
(unless 𝜙1 already had an incoherence). At this stage, Φ2 may have more summary nodes than Φ″

1 ;
this is acceptable as summary nodes can represent empty sets of concrete locations. We thus remove
these additional summary nodes in Φ2 to get Φ′

2.
The last step is a direct comparison between the modified formulae Φ″

1 and Φ′
2. There are three

factors to take into account: membranes, environments (expressed through variables), and spatial
properties. For membranes, we check that every rewritings in Φ′

2 rewrites abstract locations to more
abstract locations than in Φ″

1 : these renamings represent the inner abstract locations under which
these outer abstract locations “hide”. For variables, we check that every variable has a lesser value in
Φ″

1 than in Φ′
2 in the lattice of abstract values. For spatial properties, we check that each abstract

locations ℎ of Φ″
1 is associated a lesser object than in Φ′

2. This step concludes the algorithm.
Note how we perform the splitting and materialization step of the formula Φ1 before trying to

match its locations with these of Φ2 through 𝜓. If we had reversed the order of these two operations,
the following comparison would not hold. In other words, we can choose in the following example
whether 𝑙′ represents 𝑙1 or 𝑙2 after choosing whether the reference 𝑙.f points to 𝑙1 or 𝑙2.

(𝑙0 → 𝑙, 𝑘 → 𝑙1 + 𝑙2 | 𝑙 ↦ {f ∶ 𝑙1 ⊔ 𝑙2, _ ∶ ⊠} ⋆ 𝑙1 ↦ {a ∶ nil, _ ∶ ⊠} ⋆ 𝑙2 ↦ {b ∶ nil, _ ∶ ⊠})
≼ (𝑙0 → 𝑙, 𝑘 → 𝑙′ + 𝑙″ ∣ 𝑙 ↦ {f ∶ 𝑙′, _ ∶ ⊠} ⋆ 𝑙′ ↦ {a ∶ nil ⊔ ⊠, b ∶ nil ⊔ ⊠, _ ∶ ⊠} ⋆ 𝑙″ ↦ {_ ∶ ⊤})

This comparison algorithm defines a relation ≼ with the property of being compatible with
the transformations we were looking for: 𝛼-conversion of inner locations, materializations, and
summarizations. Indeed, if Φ becomes Φ′ by one of these transformations, we get Φ ≼ Φ′, which
allows to rewrite from one to the other when passing through the glue♯𝑖 (⇓♯) function (see Section ??).
We now claim that this comparison algorithm can be used as a valid relation in this work.

Property 2 Algorithm ?? defines a suitable relation ≼:

∀Φ1, Φ2. Φ1 ≼ Φ2 ⟹ ∀Φ𝑐. 𝛾 (Φ𝑐 ..⋆ Φ1) ⊆ 𝛾 (Φ𝑐 ..⋆ Φ2)

This property takes as lemmae the similar results for the intermediate parts of the algorithm: it is
still valid if we remove the first or the second loop; this will just remove the ability we have to perform
materializations and summarizations.
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