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Abstract

We examined the effect of surface water acidification on rates of decomposition, ergosterol concentrations (as a

measure of fungal biomass), and palatability to shredders of common beech leaves (Fagus sylvatica L.) in five mountain

streams (pH 4.7–7.1). Leaf decomposition was significantly faster in the circumneutral streams (pH 6.4–7.1;

kX0:00175 dÿ1), when compared to acidic streams (pH 4.7–4.9; kp0:00100 dÿ1). Fungal biomass showed no particular

trend along the acidification gradient except that it peaked earlier in the stream closest to neutrality. Leaf palatability,

measured as the feeding activity of the leaf-shredding amphipod Gammarus fossarum Koch, varied with the exposure

time in the streams. Except for the higher palatability of leaves exposed during 6 weeks at the highest pH, patterns

among streams were mostly similar. These results suggest that reduced processing rates in the most acidic streams were

not related to differences in fungal biomass associated with decomposing leaves and that microbial conditioning was

only slightly delayed by acidification. Possible effects of low pH and related variables (Ca, Al) on microbial

decomposition and detritivorous macroinvertebrates are discussed to clarify the inhibition of beech leaf decomposition

in the studied systems.
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1. Introduction

During the last decades, acid precipitation has been

demonstrated to induce deleterious effects on both

structure and function of headwater streams [1,2]. One

of the major changes in ecosystem functioning is the

alteration of leaf litter decomposition, a key process in

woodland streams [1,3]. In the Vosges Mountains (N–E

France), the forest floor of the valleys is covered with

autumn-shed beech leaves (Fagus sylvatica L.) through-

out the year. Except when the leaves are immobilized on

the ground by snow, they are sporadically blown into

the stream beds where they accumulate either against

stones or in detrital pools. Beech leaves provide the bulk

of particulate organic matter for these streams. The

study of the agents involved in their decomposition thus

appears of primary importance in understanding the

energy flow in acidified ecosystems. A recent study

which compared breakdown rates of beech leaves in

coarse- and fine-mesh bags indicated that direct micro-

bial contribution to leaf mass loss was small, i.e. less

than 20% in the circumneutral streams [1]. However,

microbes may indirectly account for the lower decom-

position rates observed in acidic streams since effects on

microbial species composition or microbial metabolism

may alter leaf palatability for invertebrate detritivores

[4].

Much research has been devoted to the impact of

freshwater acidification on leaf litter quality, and it
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indicates that acidification reduces the nutritional value

of detrital food through alterations of the associated

microbial communities and changes in leaf nutrient

content [3,4]. Most of these studies relied on indicators

of total microbial biomass or activity such as ATP

content [5] and respiration rate [6] from fungi, bacteria,

algae and Protozoa. More specific measurements include

conidial and bacterial counts [3] and bacterial produc-

tion rate [2]. Some studies have been specifically

performed on aquatic hyphomycetes because of their

role in conditioning leaves for consumption by inverte-

brate detritivores [3,4,7].

These studies do not allow an unequivocal conclusion

concerning the effects of low pH on aquatic fungal

communities. On one hand, several studies showed

these fungi to prefer strongly or slightly acidic to neutral

conditions [8,9]. On the other hand, low pH are reported

to have deleterious effects on aquatic hyphomycetes, in

terms of species richness [10,11], leaf maceration

activity [12] or conidial production [4]. Last, some

authors concluded that aquatic hyphomycetes were

neither especially favored nor negatively affected, and

were even remarkably resistant to the effects of

acidification [13]. These equivocal results may be

partly explained by the highly variable protocols

used, both in terms of exposure (natural vs. artificial

acid waters) and fungi-related methodology (e.g. micro-

scopic scanning of leaf surface vs. whole leaf measure-

ments).

In this context, we think that the ecological relevance

of many laboratory studies may be questioned due to the

divergence of the experimental conditions from natural

situations (see Ref. [14]) and that the biomass and

implication of leaf-colonizing fungi must be specifically

evaluated using appropriate methods.

The objective of the present study was to investigate

the influence of stream water acidity on fungal

colonization of leaf litter and litter palatability to one

invertebrate detritivore species Gammarus fossarum

(Koch). This species and its congeners are frequently

used in laboratory studies because they are often very

abundant in streams, available throughout the year and

easy to keep in laboratory conditions. Furthermore, G.

fossarum is always and typically present in neutral

streams of the Vosges Mountains where it dominates

detritivore assemblages but it is eradicated when water

pH drops below 6.2 [1]. We selected five headwater

streams subject to atmospheric acidic deposition differ-

ing in pH and concentrations of aluminium, calcium and

nitrates. Although some of these elements have been

implicated in the toxicity of acidic waters towards

aquatic life [15], very little is known about their specific

effects on fungi associated with leaf litter.

2. Material and methods

2.1. Site description

The experiment was conducted in the Vosges Moun-

tains (N–E France), a massif composed of sandstone

and granite with forested catchments dominated by

silver fir (Abies alba Karst.), Norway spruce (Picea abies

Karst.), and common beech (F. sylvatica). An important

characteristic of the study area is that small-scale

differences (sometimes between even adjacent streams)

in mineral composition of the underlying bedrock

produce marked differences in buffering capacities, ion

content and, consequently, degrees of acidification and

mineralization sometimes of even adjacent streams [16].

Table 1

Mean values of the water temperature and physico–chemical of the five streams from November 1999 to April 2000 (n ¼ 7)

Streams GS BR MR HR LM

pH 4.7 4.9 5.7 6.4 7.1

(4.3/4.9) (4.6/5.3) (5.1/6.1) (5.8/6.5) (6.8/7.2)

Temperature (1C) 4.5 2.9 3.1 3.3 4.6

(2.1/6.0) (0.2/5.0) (0.2/5.0) (0.3/5.2) (2.3/6.1)

Conductivity (mS/cm) 31 17 18 23 70

(30/35) (14/19) (15/21) (18/29) (50/91)

ANC (mEq/L) ÿ17 ÿ7 20 70 444

(ÿ29/ÿ6) (ÿ26/0) (0/36) (27/116) (225/603)

Total Al (mg/L) 765 262 153 121 31

(720/900) (250/400) (130/200) (60/160) (20/30)

Ca2+ (mg/L) 1.3 1.0 1.3 1.7 7.6

(1.3/1.4) (0.9/1.0) (1.1/1.3) (1.6/1.8) (7.3/8.0)

NO3
ÿ (mg/L) 6.7 1.6 1.5 0.9 4.0

(6.6/6.8) (1.5/1.7) (1.4/1.7) (0.8/1.1) (3.8/4.1)

Range is given in brackets. ANC=acid neutralizing capacity.



On the basis of previous results [1], we selected five first-

and second-order streams contrasting in acidification

levels and concentrations of aluminium, calcium and

nitrates (Table 1). Gentil Sapin (GS) and Bas-Rupts

(BR) were the most acidified streams. They had rather

similar pH and calcium contents, but total aluminium

concentrations in GS were three times higher than in BR

due to the alumine-rich sandstone bedrock of GS and

the granitic bedrock of BR. Moyens-Rupts (MR) was a

moderately acidic stream which mainly differed from

BR by its higher pH. Two non-acidified streams, Hauts-

Rupts (HR) and La Maix (LM), showed a circumneutral

pH but strongly differed with respect to their acid

neutralising capacities (ANC) and calcium concentra-

tions (70 vs. 444mEq/L and 1.7 vs. 7.6mg/L, respec-

tively) which were much higher in LM. Water

temperature patterns in the five streams were similar

(0.2–6.11C, [1]). Physical characteristics of the streams

are detailed in Dangles et al. [17]. Briefly, the five

streams had very similar geomorphologic characteris-

tics, especially in terms of water depth (p0.60m),

stream width (p3.30m) and gradient (>9%). Stream

bed was mainly composed by cobble/boulder riffles.

2.2. Leaf bag samples and fungal biomass

In November 1999, leaves of common beech were

collected on the trees just before abscission. Three grams

of air-dried leaves were enclosed in 5-mm mesh plastic

bags (15� 10 cm2), 18 of which were submerged at each

site on 27 November 1999. The bags were placed in a

submerged polyethylene cage (5� 5 cm2 openings) an-

chored to the bottom with large stones. Three replicate

leaf bags were recovered after 2, 6, 10, 14, 18 and 22

weeks of exposure. In the laboratory, 2-cm diameter

discs were cut from leaves soaked in the corresponding

stream water, and used for leaf consumption experi-

ments (see below). The remaining material was frozen

(ÿ721C), later freeze-dried and crushed into small

fragments for subsequent analysis. The organic matter

content of leaves was determined by ignition at 5501C

for 4 h. Ergosterol, a membrane sterol largely restricted

to eumycotic fungi, was used as an indicator of

metabolically active fungal biomass [18]. It was ex-

tracted from 180 to 200mg leaf samples by 30min

refluxing in alcoholic base, purified by solid-phase

extraction and quantified by High Pressure Liquid

Chromatography [18].

2.3. Leaf consumption experiments

To determine the effect of pH and associated variables

(Ca, Al and NO3) on leaf palatability for invertebrate

detritivores, feeding experiments were conducted using

beech leaves recovered at each sampling date. Palat-

ability was defined as leaf consumption by the shredding

amphipod, G. fossarum. Animals were collected with a

hand net from LM stream. The animals were then

carried to the laboratory and acclimated to laboratory

conditions (8711C and natural daylight period) during

24 h in aquaria containing oxygenated water from LM.

Five gammarids and five leaf discs previously cut (see

above) were then placed in plastic cylinders (f=6cm,

h ¼ 5 cm) covered with a 0.3-mm mesh screen on both

ends. The initial AFDM of the leaf material was

determined on five additional discs. Three replicate

cylinders with animals, each corresponding to a different

leaf bag, and one control without animals were used for

each of the five treatments. All cylinders were placed

together in an aquarium filled with filtered water from

LM and aerated with an aquarium pump. After 6 days,

the remaining leaf fragments were removed, oven-dried

(1051C, 24 h) and ashed (5501C, 4 h) separately. Con-

sumed leaf mass was calculated as the difference between

the initial and remaining AFDM. This protocol was

repeated at each leaf bag recovering date (i.e. after 2, 6,

10, 14, 18 and 22 weeks).

2.4. Statistical analysis

Daily breakdown rates (k) were estimated by fitting

data to the exponential model: Yt ¼ Y0 e
ÿkt

; where Yt is

the amount of AFDM remaining at time t in days and

Y0 the initial amount [19]. The k values were determined

by using linear regression in the log-transformed

relationship. An analysis of covariance (ANCOVA)

was used to compare k values among the five streams.

An analysis of variance (ANOVA) on log-transformed

data followed by Bonferroni’s correction was performed

to test between-stream differences in peak values of

ergosterol and leaf consumption by gammarids.

3. Results

3.1. Leaf breakdown

In the stream closest to neutrality LM, breakdown of

leaf material was significantly faster than in the other

streams (ANCOVA, Po0:05; Table 2). After 22 weeks,

percentages of remaining AFDM were 56.0% in LM,

71.2% in the circumneutral HR and more than 83.0% in

the most acidic streams (GS, BR and MR). Covariance

analysis showed that breakdown rates were lower and

not different from one another in the three acidic

streams (kp0:00100 dÿ1) when compared to the neutral

ones (kX0:00175 dÿ1).

3.2. Fungal biomass

Fig. 1 shows that ergosterol content of beech leaves

increased rapidly within the first 6 weeks of the study in



the five streams. Ergosterol content declined after 6

weeks in LM but remained high in GS, WA and HR for

the remainder of the experiment. Beech leaves exposed

in MR differed from this general pattern in that

ergosterol concentrations increased after 18 weeks. The

five streams did not show any significant differences in

the maximum concentration of ergosterol attained

during the course of the experiment (ANOVA,

F=2.95, P ¼ 0:08).

3.3. Laboratory consumption experiments

The results of the consumption experiments did not

give any clear evidence that stream acidification affects

the palatability of beech leaves for G. fossarum (Fig. 2).

In all streams, leaf consumption by gammarids increased

with increasing exposure time and levelled off after 10
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Fig. 1. Dynamics of ergosterol concentrations of aquatic fungi associated with decomposing beech leaves in five headwater streams.

All values are means of 3 replicate leaf bags. Vertical bars represent 71SD.

Table 2

Exponential breakdown rates of beech leaves exposed in five

headwater streams

Streams pH Leaf

breakdown

rate (dÿ1)

Estimated

initial leaf

mass (%)

R2

GS 4.7 0.00082a 97.3 0.79

BR 4.9 0.00100a 96.8 0.73

MR 5.7 0.00105a 96.7 0.81

HR 6.4 0.00175b 97.2 0.73

LM 7.1 0.00358c 97.3 0.95

GS=Gentil Sapin, BR=Bas-Rupts, MR=Moyens-Rupts,

HR=Hauts-Rupts, LM=La Maix. Breakdown rates with

different superscript letters are significantly different (ANCO-

VA, Po0.05). R2=coefficient of determination (n=18).

Fig. 2. Mean consumption of beech leaves conditioned in five

headwater streams (GS, BR, MR, HR, LM), by G. fossarum.

All values are means of 3 replicates71SD. * Means significant

differences between streams (ANOVA, Po0:05).



weeks’ exposure to a mean value 10 times higher than

the initial consumption value. The only significant

difference between streams occurred by the sixth week

of conditioning when gammarids consumed more leaf

material from the most neutral stream than from the

other streams (ANOVA, F=27.8, P ¼ 0:00002). Con-

sumption rates were generally highly variable within

single experiments with standard deviation often

approaching 40%.

4. Discussion

As the dominant microbial group involved in leaf

conditioning, aquatic hyphomycetes are of central

importance in the energetics of low-order forest streams

[20,21]. Conditioning of substrates exhibiting low

palatability and low nutritional values for detritivores,

as is the case for beech leaves, is especially important [7].

Fungal biomass determined through ergosterol concen-

trations has generally been shown to increase to a

maximum and then decline during leaf breakdown [22].

In the present study, ergosterol concentration increased

and levelled off (GS, BR, HR) or even increased further

in the slightly acidic stream (MR). A significant decline

only occurred in LM, i.e., the stream least affected by

acidic deposition and exhibiting the highest processing

rates. Gessner and Chauvet [22] observed a similar

pattern of fungal biomass in beech leaves exposed in a

Pyrenean softwater stream unaffected by acidic deposi-

tion. The absence of a marked peak of fungal biomass

within the present 6-month experiment in the four most

acidic streams might be partly explained by the very low

rates of leaf breakdown (0:00082pkp0:00175 dÿ1). In

these streams, the end of the breakdown experiment

coincided with a time by which leaves had lost o20% of

their initial mass whereas peaks of fungal biomass on the

same or similarly refractory leaf species have been

shown to occur later, i.e. when leaf mass loss attained

25–75% [22].

Although we observed a significant decrease in

decomposition rates of beech leaves under acidic

conditions, our results do not show any comparable

effect on the associated fungal biomass. This is in

contrast with previous findings which tend to demon-

strate that fungal activity, which governs leaf break-

down to a large extent, is strongly controlled by both

internal and external variables, i.e., the nutritional

quality of the leaves and the riparian environment,

respectively [20]. As examples, low pH [3,23], high

aluminium concentrations [24] and low nutrient levels

[25] are known to have a negative effect on fungal

communities associated with decaying leaves under

natural conditions. In particular, Griffith and Perry

[25], whose study was comparable to ours, found

significantly reduced fungal biomass associated with

decomposing oak leaves (Quercus alba L.) in a strongly

acidified West Virginia stream (pH=4.3). In the present

study, even leaves exposed in the most acidified stream

(GS) which had low pH (down to 4.3) and high total

aluminium concentrations (up to 900 mg/L) did not show

lower fungal biomass concentrations. This might be

partly explained by the relatively high concentrations of

atmospheric-derived nitrates in GS (6.7mg/L) which

provided inorganic N usable for fungal production [21]

and thus compensated for the unfavorable acidic

conditions prevailing in this stream.

An alternative explanation may be that acidic condi-

tions affected the metabolism of aquatic hyphomycetes

but not their biomass. Kok et al. [23] showed that aerial

fungi associated with floating Nymphaea alba L. could

develop at low pH (4.0), but that maceration was only

observed at pH 5.5 or 7.5. The authors supposed that

inhibition of pectin degradation, a key process in leaf

decomposition [26] could be an important factor causing

the suppression of leaf decomposition at low pH. This is

in agreement with the fact that pectinases have neutral

to alkaline optima [26]. On the other hand, Thompson

and B.arlocher [14] observed maximum leaf mass loss

due to the microbial activity at pH 6.0 compared to that

occurring at lower or higher pH, and argued that fungal

polygalacturonases, cellulases and hemicellulases are

generally more active under slightly acidic conditions.

Moreover, peaks of decompositional activity of aquatic

hyphomycetes in relation to pH appear to be largely

species-specific and changes in pH also influence the

composition of the fungal community [14]. Whatever the

involved process(es), no leaf maceration could lead to a

decrease in leaf palatability for detritivores, which was

not observed in the present study except for one date, i.e.

after 6 weeks’ exposure. Even if the leaf consumption

experiment was weakened by the substantial variability

in response between groups of individuals, it provides no

strong evidence that leaf conditioning by aquatic fungi

was affected by water acidification. We thus believe that

stream acidification greatly affected neither direct nor

indirect contribution of aquatic hyphomycetes to leaf

decomposition in the present study. This is in agreement

with previous results from the same streams, which

suggested that the inhibition of leaf decomposition in

acidic streams was mainly due to an alteration of the

detritivore communities [1]. Especially, the absence of

the acid-sensitive species G. fossarum from the acidic

streams, mainly explains the different breakdown rates

observed (see Ref. [1] or further discussion).

This study provides some indications that the reduced

decomposition of beech leaves in acidified streams of the

Vosges Mountains was not primarily due to changes in

fungal biomass. As the relative importance of the

different variables (pH, Al and nutrients) related to the

toxicity of acidified waters is still not well established,

further manipulations including a large set of streams



are needed to clarify the complex effects of acidification

on fungal communities. For this purpose, studies at

different levels of organization or process (e.g. fungal

community; fungal biomass production, fungal enzy-

matic activity, invertebrate consumption) are essential.
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