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Bayesian Sparse Fourier Representation of Off-Grid Targets

We consider the problem of estimating a finite sum of cisoids via the use of a sparsifying Fourier dictionary (problem that may be of use in many radar applications). Numerous signal sparse representation (SSR) techniques can be found in the literature regarding this problem. However, they are usually very sensitive to grid mismatch. In this paper, we present a new Bayesian model robust towards grid mismatch. Synthetic and experimental radar data are used to assess the ability of the proposed approach to robustify the SSR towards grid mismatch.

I. INTRODUCTION

In many radar applications, the received signal is conventionally described by a linear model where the signal of interest, namely the target signal, is represented by a sum of cisoids embedded in additive noise, i.e., y = N n=1 α n a n + n with [a n ] m = exp{j2πf n m} [START_REF] Capon | High-resolution frequency-wavenumber spectrum analysis[END_REF] where y ∈ C M is the observation vector and M is the size of the observation space; α n , a n are respectively the complex amplitude and the steering vector with frequency f n of the nth target signal; n is the noise vector.

Several approaches can be used to estimate the target scene {(α n , f n )} related to the measurement y. These approaches are usually distinguished into two classes according to whether the method assumes, or not, a specific model about the noise covariance matrix. In the latter case the technique is said to be non-parametric (e.g., Fourier transform, Capon's method [START_REF] Capon | High-resolution frequency-wavenumber spectrum analysis[END_REF], APES [START_REF] Li | An adaptive filtering approach to spectral estimation and SAR imaging[END_REF]) while in the former case it is called parametric (e.g., subspace method [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF], [START_REF] Roy | ESPRIT-estimation of signal parameters via rotational invariance techniques[END_REF], autoregressive model [START_REF] Hayes | Statistical digital signal processing and modeling[END_REF]). Over the last few decades, a new estimation paradigm called sparse signal reconstruction (SSR) has emerged. It has been applied to many signal processing applications and, in particular, to the target estimation problem (1), e.g., [START_REF] Anitori | Design and analysis of compressed sensing radar detectors[END_REF]. SSR aims at describing the signal as a linear combination of a few atoms from a (possibly pre-defined) dictionary. Towards this end and given

The work of M. Lasserre, S. Bidon and O. Besson is supported by the Délégation Générale de l'Armement under grant 2012.60.0012.00.470.75.01. the problem at hand [START_REF] Capon | High-resolution frequency-wavenumber spectrum analysis[END_REF], a natural sparsifying dictionary is the Fourier basis so that (1) can be reformulated as

y = F x + n (2) 
with

F ∈ C M × M the Fourier dictionary of size M × M where usually in SSR M ≥ M ; x ∈ C M
the sparse vector having ideally exactly N nonzero components.

The literature describing methods solving such SSR problem is nowadays prominent, e.g., ℓ 1 penalized least squares formulations [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF] or Bayesian models [START_REF] Ji | Bayesian compressive sensing[END_REF]. However, most of these techniques are very sensitive to grid mismatch [START_REF] Herman | General deviants: An analysis of perturbations in compressed sensing[END_REF], [START_REF] Chi | Sensitivity to basis mismatch in compressed sensing[END_REF].

In the context of (2), grid mismatch occurs whenever the frequency of a target signal does not belong to the frequency grid associated with the sparsifying dictionary F , i.e., if f n / ∈ {0, 1/ M , . . . , 1 -1/ M }. Several attempts have been made at robustifying SSR technique towards grid mismatch. The most natural way to deal with grid mismatch is to refine the grid [START_REF] Malioutov | A sparse signal reconstruction perspective for source localization with sensor arrays[END_REF]. However, most of the techniques choose to represent grid mismatch via a perturbation matrix E added to F [START_REF] Zhu | Sparsity-cognizant total leastsquares for perturbed compressive sampling[END_REF]. E usually stems from a first order Taylor expansion [START_REF] Yang | Off-grid direction of arrival estimation using sparse Bayesian inference[END_REF]- [START_REF] Tan | Sparse direction of arrival estimation using coprime arrays with off-grid targets[END_REF]. Another strategy is to consider that F is parameterized by a frequency grid that is estimated jointly with x [START_REF] Hu | Compressed sensing of complex sinusoids: An approach based on dictionary refinement[END_REF]. In this paper, we adopt the latter strategy and propose a hierarchical Bayesian model which takes into account the possible grid mismatch in a Fourier dictionary. The model assumes a white noise background and is an extension (aside from the dictionary) of a non-robust SSR method [START_REF] Bidon | Bayesian sparse estimation of migrating targets for wideband radar[END_REF]. The advantage of the proposed formulation over that of [START_REF] Yang | Off-grid direction of arrival estimation using sparse Bayesian inference[END_REF], [START_REF] Hu | A fast and accurate reconstruction algorithm for compressed sensing of complex sinusoids[END_REF], [START_REF] Hu | Compressed sensing of complex sinusoids: An approach based on dictionary refinement[END_REF] is that it enforces more sparsity via the use of a hierarchical Bernoulli-complex Gaussian prior on x. But mostly it is specifically designed to be used, in future work, in other estimation schemes recently developed by the authors.

The remaining of the paper is organized as follows. The proposed Bayesian model and its associated estimation scheme are described respectively in Section II and III. Numerical simulations are conducted in Section IV to assess the benefit of the robustification on both synthetic and experimental radar data. 

II. BAYESIAN MODEL

The hierarchical Bayesian model considered in this paper is represented graphically in Fig. 1 and detailed herein. Compared to that of [START_REF] Bidon | Bayesian sparse estimation of migrating targets for wideband radar[END_REF], the technical novelty resides into the modeling of the grid mismatch.

A. Observation model 1) Modeling of grid mismatch:

We consider the observation model y = F x + n described in (2) with M fixed. In absence of grid mismatch, an appropriate choice for the Fourier dictionary F yields

[f m] m = 1/ √ M exp{j2πm( m/ M )}
where f m is the mth column of F . We propose to model the possible grid error by introducing a perturbation vector on the frequency axis denoted as

ε = [ε 0 . . . ε m . . . ε M -1 ]
T so that the Fourier dictionary is parameterized by ε as follows

F F (ε) = [f 0 (ε 0 ) . . . f m(ε m) . . . f M -1 (ε M -1 )]
where the mth column of F (ε) is now expressed as

[f m(ε m)] m = 1/ √ M exp{j2πm( m + ε m)/ M } .
To avoid overlapping between the frequency bins of F , the amplitude of the grid errors are assumed bounded such that for m = 0, . . . , M -1, ε m ∈ [-0.5, 0.5).

2) Likelihood: As stated in the introduction, an additive white noise background is considered. More precisely n is assumed to be centered Gaussian with power σ 2 , which is denoted as

n|σ 2 ∼ CN M 0, σ 2 I ( 3 
)
where I is the identity matrix. The likelihood function is thus given by

f (y|ε, x, σ 2 ) = 1 π M σ 2M exp - y -F (ε)x 2 2 σ 2 . (4) 
In ( 4), the vectors of interest are x and ε while σ 2 is a nuisance parameter. To estimate the target scene x, ε a Bayesian framework is chosen where each unknown parameter is modeled by a random variable with a given prior probability density function (pdf). In what follows, each prior density is designed to find a convenient balance between 1) mathematical tractability when performing the estimation 2) guarantee to preserve some physical sense to the hierarchical model.

B. Prior pdfs of the parameters

1) Target amplitude vector: Ideally in SSR the vector x introduced in (2) has exactly N nonzero elements whose value represents the post-integration amplitude of the target signal. As in [START_REF] Bidon | Bayesian sparse estimation of migrating targets for wideband radar[END_REF] a Bernoulli-complex Gaussian prior is chosen to actually enforce sparsity in x. More precisely, the elements x m [x] m of the amplitude vector are assumed independent and identically distributed (iid) according to the following mixed type pdf

f (x m|w, σ 2 x ) = (1-w)δ(|x m|)+w 1 πσ 2 x exp - |x m| 2 σ 2 x . (5) 
Using the prior (5), denoted as x m|w, σ 2 x ∼ BerCN w, 0, σ 2 x , leads to considering that a target with power σ 2

x is present at the mth frequency with probability w.

2) Grid errors:

In this paper, we propose to define the prior pdf of the grid error ε m conditionally to the magnitude of x m. The idea behind this approach is that it may be unnecessary to estimate a grid error if no target signal is present at the corresponding frequency bin. More specifically, we assume that the ε m|x m are iid with pdf

f (ε m|x m = 0) = δ(ε m) (6a) f (ε m|x m = 0) = I [-0.5,0.5] (ε m) (6b) 
where I A (.) is the indicator function of the set A. Note that the uniform distribution (6b) over [-.5, .5] is equivalent to a Betalike distribution of parameters (1,1) over [-.5, .5], denoted as Be [-.5,.5] (1, 1).

3) Noise power: A suitable prior for the white noise power σ 2 is an inverse-gamma distribution since it is conjugate to the likelihood (4). The prior pdf of σ 2 can therefore be expressed as

f (σ 2 |γ 0 , γ 1 ) ∝ e -γ1/σ 2 (σ 2 ) γ0+1 I [0,+∞) (σ 2 ) (7) 
where γ 0 , γ 1 are respectively the shape and scale parameters. The distribution ( 7) is denoted as σ 2 |γ 0 , γ 1 ∼ IG (γ 0 , γ 1 ). Note that by tuning adequately the shape and scale parameters (γ 0 , γ 1 ), the prior can be made very informative or on the contrary flat. In radar applications, the thermal noise power is usually well known so that a moderately informative prior can be favored.

C. Prior pdfs of the hyperparameters

Since the probability w and the target signal power σ 2 x are both unknown, another level is added to the hierachical model.

1) Target signal power:

Similarly to the case of σ 2 , an inverse-gamma prior is chosen for the target signal power σ 2 x and is denoted as σ 2

x |β 0 , β 1 ∼ IG (β 0 , β 1 ). Nonetheless note that the shape and scale parameters β 0 , β 1 must be chosen to obtain this time a not so informative prior since the target signal amplitudes may vary significantly from one to another. 

The MMSE estimator of x was intractable to derive analytically in [START_REF] Bidon | Bayesian sparse estimation of migrating targets for wideband radar[END_REF] when the grid mismatch was not taken into account. Therefore, the analytic calculation of the MMSE estimators (8a) and (8b) seem all the more trying. A Monte-Carlo Markov Chain (MCMC) is thus implemented [START_REF] Robert | Monte Carlo Statistical Methods[END_REF]. The MCMC algorithm simulates iteratively samples σ 2 (t) , ε (t) , x (t) , w (t) , σ 2

x (t) according to their conditional posterior distribution f (θ i |y, θ -i ) where θ = σ 2 , ε T , x T , w, σ 2

x T and θ -i is the vector θ whose ith element has been removed. After a burn-in time N bi , the samples are distributed according to their posterior distribution f (θ i |y). When a sufficient number of samples N r is collected, conventional Bayesian estimators can be built empirically

θiMMSE = N -1 r Nr t=1 θ i (t+N bi ) . (9) 
The conditional posterior distributions are obtained from the joint posterior pdf of

σ 2 , ε, x, w, σ 2 x |y f (σ 2 , ε,x, w, σ 2 x |y) ∝ f (y|ε, x, σ 2 )f (ε|x)f (x|w, σ 2 x )f (w)f (σ 2 x )f (σ 2 ).
In particular, both vectors x and ε are sampled elementwise. The conditional posterior distributions of ε m and x m are derived from their conditional joint posterior distribution

f (ε m, x m|y, ε -m, x -m, σ 2 , w, σ 2 x ) ∝ exp -σ -2 |x m| 2 -x * mf m(ε m) H e m -x me H mf m(ε m) ×f (ε m|x m)f (x m|w, σ 2 x ) (10) 
where e m = yi = m f i (ǫ i )x i .

A. Sampling of x

Following [START_REF] Bidon | Bayesian sparse estimation of migrating targets for wideband radar[END_REF], x is sampled element-wise. The mth element of x follows the distribution BerCN w m, µ m, η 2 m with

η 2 m = 1 σ 2 + 1 σ 2 x -1 µ m = η 2 m σ 2 f m(ǫ m) H e m w m = w η 2 m σ 2 x exp |µ m | 2 η 2 m 1 -w + w η 2 m σ 2 x exp |µ m | 2 η 2 m .

B. Sampling of ε

As for the vector x, the parameter ε is sampled elementwise. Using [START_REF] Chi | Sensitivity to basis mismatch in compressed sensing[END_REF], the conditional posterior distribution of ε m is calculated and rearranged to obtain

f (ε m|y, ε -m, x, σ 2 )∝ exp M -1 m=1 κ m cos 2π ε m M m -φ m ×f (ε m|x m) (11) 
where

κ m = 2 σ 2 √ M ×|b m | and φ m = ∠b m . b has been defined as b = x * mu * m ⊙ e m, (12) 
where u m = exp{j2πm( m/ M )}. When x m = 0, f (ε m|x m) = I [-0.5,0.5] (ε m). Thus, we recognize from (11) a dilated and truncated generalized von Mises distribution [START_REF] Gatto | The generalized von Mises distribution[END_REF]. Such a distribution can be troublesome to sample, so a Metropolis-Hastings (MH) algorithm is used [START_REF] Robert | Monte Carlo Statistical Methods[END_REF]. This algorithm is based on a proposal distribution that is easy to simulate from, and is chosen as close as possible from the target distribution. The conditional posterior distribution of ε m is represented in Fig. 2 for different values of mismatch and post-processing SNR (defined in ( 16)). This figure suggests that a flat proposal would be appropriate in the case of low power, and a Gaussian distribution in the case of high power. Thus, in our MH algorithm we switch from a flat proposal to a Gaussian proposal (and vice-versa) depending on the estimated target power. This adaptive scheme should be employed only during a burn-in period in order to preserve the convergence properties [START_REF] Robert | Monte Carlo Statistical Methods[END_REF], but in fact it does not damage the performance when used in the whole process.

C. Sampling of w, σ 2

x and σ 2 Like in [START_REF] Bidon | Bayesian sparse estimation of migrating targets for wideband radar[END_REF], the parameter σ 2 and hyperparameters w and σ 2

x are sampled according to their conditional posterior distribution

σ 2 |y, x, ε ∼ IG γ 0 + M, γ 1 + y -F (ε)x 2 2 (13) w|x ∼ Be (1 + n 1 , 1 + n 0 ) (14) σ 2 x |x ∼ IG β 0 + n 1 , β 1 + x 2 2 ( 15 
)
where n 1 is the number of nonzero elements of x and 

n 0 = M -n 1 . í f (ǫ m|y, ǫ -m, x, σ 2 ) ǫ m (a) í f (ǫ m|y, ǫ -m, x, σ 2 ) ǫ m (b) í f (ǫ m|y, ǫ -m, x, σ 2 ) ǫ m (c) í f (ǫ m|y, ǫ -m, x, σ 2 ) ǫ m (d)

IV. NUMERICAL SIMULATIONS

We now present various numerical examples illustrating the performance of the proposed SSR algorithm. Note that for each scenario, the constant hyperparameters (γ 0 , γ 1 ) and (β 0 , β 1 ) are calculated to obtain the desired values of mean and variance of the prior distributions of σ 2 and σ 2

x . Indeed for an inverse gamma distribution g ∼ IG (ν 0 , ν 1 ) the mean and variance are respectively

m g = ν 1 ν 0 -1 , ν 0 > 1 var g = ν 2 1 (ν 0 -1) 2 (ν 0 -2)
, ν 0 > 2 so the parameters are calculated as

ν 0 = m 2 g var g + 2 ν 1 = m g m 2 g var g + 1 .

A. Synthetic data

To begin with, synthetic data are generated according to the model described by ( 1) and (3).

1) Results after one realization: Three targets with possible grid mismatch are simulated in a white noise background with unit power. They all have a post-processing signal-to-noise ratio (SNR) of 25 dB, defined as

SN R n = E{|α n | 2 } σ 2 × M. (16) 
In Fig. 3 are plotted the post-processing amplitude of the target vector xMMSE and the grid mismatch εMMSE . These estimates are compared with the true target scene x, ε and with the target scene estimated by the non-robust method (the proposed SSR technique when the grid mismatch is ignored, i.e., with ε = 0). From Fig. 3, we see that the proposed SSR algorithm estimates correctly both x and ε. On the contrary, if the grid error is ignored, the target energy tends to be spread over the adjacent frequency bins especially when the mismatch is important, i.e., |ε m| → .5. As as result it invalidates the sparsity of the reconstruction (this performance loss is well known).

2) Performance: A simple scenario is considered with a single target at zero velocity for different values of SNR and mismatch ǫ 0 . The performance of the proposed estimators ( 8) is assessed after 500 Monte-Carlo simulations through the calculation of the mean square error (MSE) of the reconstructed estimated target scene F (ε MMSE )x MMSE i.e.

MSE(F (ε

MMSE )x MMSE ) = (17) 1 N mc Nmc n=1 F (ε (n) MMSE )x (n) MMSE -F (ε)x 2 2 .
This metric seems more relevant than the MSE of xMMSE and εMMSE . Indeed, the sparse representation sometimes induces ambiguity about the position of the target: is it in the mth frequency bin with a mismatch of .5 (ε m = .5) or in the m + 1th frequency bin with a mismatch of -.5 (ε m+1 = -.5)?

With such an ambiguity, two problems might arise: the target might be shifted or split. Let us consider the case of a target in the mth frequency bin with a mismatch of .5 (ε m = .5).

First, the analysis may result in a shifted target: the target is estimated in the next range bin with a mismatch of -.5. The analysis may also result in a split target: a target is estimated in the mth frequency bin with a positive mismatch (ε m → .5), and another in the m + 1th frequency bin with a negative mismatch (ε m+1 → -.5). In both cases, the MSE of xMMSE and εMMSE will be high. On the other hand, the MSE of the reconstructed estimated target scene F (ε MMSE )x MMSE will be lower, thanks to the estimation of εMMSE . This metric may be more representative of the estimation quality.

We represent on Fig. 4 the MSE of F (ε MMSE )x MMSE as a function of grid mismatch for a SNR of 10 and 20 dB. We can see from Fig. 4 that for a SNR of 20 dB, the robust analysis outperforms the non-robust analysis as soon as ǫ 0 > .02 (ǫ 0 > .75 for a SNR of 10 dB) meaning that it is almost always profitable to estimate ε. We can also see that the benefits of the robust analysis compared to the non-robust analysis increase with the SNR. The clairvoyant case with respect to (wrt) grid mismatch is also represented on Fig. 4 and corresponds to the robust analysis when ε is known. It is a reference and it shows that when we know the true value of the grid mismatch, it is worth taking it into account for the estimation of the target scene. It also indicates how reliable the sampling of ε is in the proposed SSR method: it is highly efficient.

B. Experimental data

Let us now discuss the performance of the SSR algorithm in a practical case. To that end, data collected from the PARSAX radar [START_REF] Krasnov | Basics and first experiments demonstrating isolation improvements in the agile polarimetric FM-CW radar -PARSAX[END_REF] on November 2010 are considered. For this dataset the radar was pointing on a freeway during a heavy traffic time. The exact number of targets as well as their amplitude and location in the range-velocity map are unknown. Note that compared to the synthetic case, the target amplitudes are very high, so the hyperparameters (β 0 , β 1 ) are set such that (m σ 2

x , √ var σ 2 x ) = M dB + (60, 3.5) dB. In Fig. 5 are depicted the elements of xMMSE whose magnitude is greater than the lowest value of the colorbar. For the sake of comparison, the amplitude estimated by a conventional Capon's method is represented as a transparent background. (Note however that the Capon's output gives only an estimate of the target scene and should not be taken has the ground truth.) We see again the benefit of estimating the grid mismatch to avoid target spreading and/or miss detection. It is worth noticing that the target at range bin #4 and velocity ≈ -17 m/s is split by the robust analysis. This problem has been discussed before, and we can see that the non-robust estimation of this target is even worse. Besides, this anomaly is not inherent to our model and has been identified in [START_REF] Tan | Sparse direction of arrival estimation using coprime arrays with off-grid targets[END_REF] where a perturbation matrix is used.

V. CONCLUSION

In this paper we have described a new Bayesian algorithm for the sparse representation of targets in Fourier basis. Particularly, an error vector is introduced to model the possible mismatch between the target frequency and the nearest frequency point in the Fourier basis. The method, though computationally intensive, allows the sparsity of the scene to be preserved in case of grid mismatch. However, a problem persists in the limiting case when |ε m| → .5 but the proposed estimation method still remains more reliable than the nonrobust estimation. A number of parameters need to be set by the radar operator, and they can change significantly the performance of the analysis (in particular the parameters of the target signal power). This point will be further investigated in the near future. Furthermore, the proposed SSR technique will be integrated into more advanced hierarchical model.
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 1 Fig. 1. Directed acyclic graph associated with the hierarchical Bayesian model. The dashed lines indicate that (β 0 , β 1 ) and (γ 0 , γ 1 ) must be set by the operator.
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 2 Level of occupancy: If no information is available to the radar operator about the sparsity level of the target scene, a convenient prior is a uniform pdf over the interval [0, 1], i.e., w ∼ U [0,1] . III. BAYESIAN ESTIMATION Herein we propose an estimation scheme of the target scene x, ε according to the Bayesian hierarchical model described in Section II. Particularly in what follows, we propose to study the minimum mean square error (MMSE) estimators xMMSE = xf (x|y)dx, (8a) εMMSE = εf (ε|y)dε.
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 2 Fig. 2. Shape of the conditional posterior distribution f (ε m|y, ε -m, x, σ 2 ). (a) SNR=5dB, ε m = .15. (b) SNR=5dB, ε m = .45. (c) SNR=15dB, ε m = .15. (d) SNR=15dB, ε m = .45.
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 322 Fig. 3. SSR of synthetic target scene: M = 16, N = 3, σ 2 = 1, M = M , (m σ 2 x , var σ 2 x ) = M dB + (0, 3.5) dB where M dB = 10 log 10 (M ), (m σ 2 , √ var σ 2 ) = (0, 2.4) dB. (a) Grid errors ε. (b) Target amplitude vectorx.
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 422 Fig. 4. Performance on synthetic target scene: M = 32, N = 1, σ 2 = 1, M = M , (m σ 2 x , var σ 2 x ) = M dB + (0, 3.5) dB, (m σ 2 , √ var σ 2 ) = (0, 2.4) dB. Comparison with the clairvoyant wrt ǫ and non-robust estimation. (a) SNR=10dB. (b) SNR=20dB
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 522 Fig. 5. SSR of experimental target scene (PARSAX data): range resolution of 1.5 m, M = 16, N unknown, σ 2 ≈ 1 (pre-normalization of the data), M = M , (m σ 2 x , var σ 2 x ) = M dB + (60, 3.5) dB, (m σ 2 , √ var σ 2 ) = (0, 2.4) dB. (a) Target amplitude vector xMMSE (diamond marker). (b) Target amplitude vector xMMSE when ε = 0 (diamond marker).
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