
HAL Id: hal-01333471
https://hal.science/hal-01333471

Submitted on 20 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Batsim: a Realistic Language-Independent Resources
and Jobs Management Systems Simulator

Pierre-François Dutot, Michael Mercier, Millian Poquet, Olivier Richard

To cite this version:
Pierre-François Dutot, Michael Mercier, Millian Poquet, Olivier Richard. Batsim: a Realistic
Language-Independent Resources and Jobs Management Systems Simulator. 20th Workshop on Job
Scheduling Strategies for Parallel Processing, May 2016, Chicago, United States. �hal-01333471�

https://hal.science/hal-01333471
https://hal.archives-ouvertes.fr


Batsim: a Realistic Language-Independent
Resources and Jobs Management Systems

Simulator

Pierre-François Dutot1, Michael Mercier1,2, Millian Poquet1, Olivier Richard1

firstname.lastname@inria.fr

1 Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
CNRS, LIG, F-38000 Grenoble, France

Inria
2 Atos

Abstract. As large scale computation systems are growing to exascale,
Resources and Jobs Management Systems (RJMS) need to evolve to
manage this scale modification. However, their study is problematic since
they are critical production systems, where experimenting is extremely
costly due to downtime and energy costs. Meanwhile, many scheduling
algorithms emerging from theoretical studies have not been transferred
to production tools for lack of realistic experimental validation. To tackle
these problems we propose Batsim, an extendable, language-independent
and scalable RJMS simulator. It allows researchers and engineers to test
and compare any scheduling algorithm, using a simple event-based com-
munication interface, which allows different levels of realism. In this pa-
per we show that Batsim’s behaviour matches the one of the real RJMS
OAR. Our evaluation process was made with reproducibility in mind and
all the experiment material is freely available.

Keywords: RJMS, Scheduling, Simulation, Reproducibility

1 Introduction

Resources and Jobs Management Systems (RJMSs) play a critical role in modern
high performance computing (HPC) infrastructures, simultaneously maximizing
the efficiency of the platform and fairly sharing its capacities among all their
users. Thus, the job scheduling algorithms that are used need to be effective in
multiple domains. On the way to exascale computing, large scale systems become
harder to study, to develop or to calibrate because of the costs in both time and
energy of such processes. It is often impossible to convince managers to use a
production cluster for several hours simply to test modifications in the RJMS.
Moreover, as the existing RJMS production systems need to be highly reliable,
each evolution requires several real scale test iterations. The consequence is that
scheduling algorithms used in production systems are mostly outdated and not
customized correctly.



The most efficient way to tackle these problems is coarse-grained simulation.
Simulation of these large scale systems is faster by multiple orders of magnitude
than real experiments. The savings in computing time and energy consumption
allow a much larger variety of scenarios to be tested. This unlocks new research
avenues to explore, and possibly leads to scientific discoveries and industrial
innovations.

Furthermore, recent algorithms developed in scheduling theory are impossi-
ble to compare in realistic conditions, because of the lack of simple and extensi-
ble simulators. There is a vast literature on possible theoretical improvements,
proved in different theoretical job and platform models which are generally not
yet transferred to production schedulers in real environments.

The research field around RJMS and scheduling in large scale systems in
general would greatly benefit from a simple – yet realistic – validated scheduling
simulator that is modular enough to be used with any theoretical or production
algorithm implementation in order to truly compare all of them in a scientific
way. Currently existing RJMS simulators are based on too simple models. Most
of them only rely on delays for job modeling or on network models that are
either minimalistic or not scalable enough to test really large scale systems.

From this assessment, we propose Batsim (for BATch scheduler SIMulator).
It is based on SimGrid [7], a state-of-the-art distributed platform simulator with
realistic network and computation models. Batsim allows different levels of re-
alism depending on the user’s needs, uses a simple message interface to achieve
language independence, uses an easily expandable workload input format and
provides readable and analysable outputs with jobs and scheduling details. For
comprehension’s sake, a simple Gantt chart visualisation tool is provided sepa-
rately.

Batsim was also created to achieve experiment reproducibility. We are well
aware that hardware suffers from a great variability. This is the main barrier
to achieve experiment reproducibility in computer science. But in the case of
simulation, those constraints do not exist anymore because the result of the
simulation can be deterministic with respect to the the simulation’s inputs (pa-
rameters and input data). That is why simulation experiments are much easier to
reproduce if the simulation environment and inputs are provided by the authors,
which is rarely the case [29]. There can be several reasons for this, as explained
in [31]:

– Restrictive licence or any intellectual property problem
– Complexity of the usually homemade simulation tool
– Missing experimental plan: used parameters are not provided
– Input data and/or results are not provided
– No access to the experimental environment (like the testbed or computer

Grid)

Despite the intellectual property problem, which by definition prevents the
reproducibility, all the aforementioned problems could be addressed by some
good practice and appropriate tools:



1. Use reusable and proven simulators
2. Provide environments
3. Provide experiment plan, design and workflow
4. Provide inputs and results

Batsim was made to implement the first of these solutions. In fact, most
published articles use ad hoc simulators which are not expected to be used
after the articles’ publications. Furthermore, simulators kept on-the-shelf are not
proven to be accurate. In order to validate simulation results, the simulator must
be assessed theoretically, and also experimentally if possible. Batsim aims at
improving repeatability in this domain which is widely affected by the problems
mentioned above.

The rest of this paper is organised as follows. Section 2 presents related works
in the field of RJMS simulation. Section 3 gives an overview of how Batsim works.
Section 4 develops the underlying models of Batsim. Section 5 gives more detailed
explanations on Batsim’s mechanics. Batsim’s evaluation process is presented in
Section 6, and its results in Section 7. Section 8 gives technical details on how
to repeat our evaluation process. Section 9 concludes the paper and outlines our
future works.

2 Related Works

Many simulators can be found in the literature which can be used to simulate a
RJMS. Unfortunately, most implementations are either not available online or
depend on outdated softwares and libraries which are themselves not available
anymore. Thus, we chose to focus on simulators whose source code could be
found.

To the best of our knowledge, most scheduling simulators are either very
specific to one domain (e.g. Realtss) or do not primarily focus on realism of
results, since comparisons to real existing systems are hardly ever done. This
can be easily explained by the financial and ecological cost of such evaluations.

The approach which is closest to ours may be Alea [21]. This simulator is
based on the GridSim simulation toolkit and allows to compare different schedul-
ing algorithms. We chose the same approach of building our scheduling simulator
on top of a simulation framework. However, Batsim’s approach and Alea’s differ
in their modularity since Batsim allows to connect any scheduling algorithm,
written in any programming language, whereas the supplied Alea API only al-
lows new schedulers to be written in Java inside the project source code, with a
queue-oriented API. Moreover, at the best of our knowledge, this simulator has
not been validated in a real environment yet.

Another interesting approach can be found in article [26]. This approach
consists in using the INSEE [27] fine-grained network simulator offline, in order
to obtain the execution time of any configuration the job can run in. Article [26]
proposes job placement policies that guarantee that no network interference can
occur between the jobs, allowing to use offline execution times while simulating



an online workload. However, this approach cannot be used accurately when jobs
can interfere with each other.

A previous initiative of building a scheduling simulator on top of SimGrid
has been done in Simbatch [5]. However, as far as we know, the project has been
left unmaintained since 2007 and cannot be used easily with current SimGrid
versions. Moreover, Simbatch has not been developed in the perspective of con-
necting real RJMSs into it, nor to allow separation of concerns regarding system
simulation and scheduling algorithms.

3 Batsim General Description

Batsim is an open source platform simulator that allows to simulate the be-
haviour of a computational platform on which a workload is executed according
to the rules of a scheduling algorithm. In order to obtain sound simulation re-
sults and to broaden the scope of the experiments that can be done thanks to
Batsim, we did not choose to build it from scratch but on top of the SimGrid
simulation framework instead.

Batsim allows separation of concerns since it decouples the platform sim-
ulation and the decisions in two clearly separated components, represented in
Figure 1. The Batsim component is in charge of simulating the computational re-
sources behaviour whereas the Decision component is in charge of taking schedul-
ing or energy-related decisions. The scheduling decisions include executing a job
or rejecting it. The energy-related decisions include changing the power state of
a machine – i.e. to change its DVFS mode – or switching a machine ON or OFF.

Batsim Decision
Request
Reply

Decision
Input

Decision
Output

SimGrid
Platform

Description
XML

Workload
Description

JSON

Execution
Schedule

Pajé

Schedule
Metrics

CSV

Jobs
Metrics

CSV

Fig. 1. The two real processes involved in a Batsim simulation, their network commu-
nication pattern and their inputs and outputs.

The components are instantiated as processes (within the meaning of Op-
erating System processes) and communicate via a Unix Domain Socket. The
communication protocol used is a simple synchronous one which follows the



request-reply pattern. The simulation runs in the Batsim component and as soon
as an event occurs, Batsim stops the simulation and reports what happened to
the Decision component. Batsim then waits for the Decision component’s reply,
then continues the simulation by applying the Decision component’s choices.
Protocol details can be found in [34].

Splitting the simulation workflow into two separated components in this way
allows the Decision component to be implemented in any programming language
which can communicate through a Unix Domain Socket. Thus, existing event-
based scheduling algorithm implementations would not be hard to adapt in order
to connect them with the Batsim component.

4 Models

This section describes the simulation models used by Batsim by giving a simpli-
fied overview of SimGrid in section 4.1 then by detailing the models specific to
Batsim in section 4.2.

4.1 SimGrid Models

Since Batsim uses SimGrid internally, a brief – and simplified – overview of the
SimGrid models that were used is given for sake of clarity. A host is a resource
that can compute floating-point operations (flop). Hosts are connected via a
network whose links have a latency (in seconds) and a bandwidth (in bytes
per second). Links are hyperedges which can either represent a network link (a
connection between two nodes) or a network node (a switch or a router). Hosts
and links compose a platform that can be of virtually any topology.

Several SimGrid processes can be run on any SimGrid host. A SimGrid
process can only be on one host at a time. These SimGrid processes – which will
simply be called processes from now on – are user-given source code executed
within the simulation. These processes can execute tasks and communicate with
each other with messages. For simplicity’s sake, we will assume that such mes-
sages are sent to processes.

Hence, a SimGrid-based simulator is composed by a set of processes which
compute user-given functions. The user-given functions are executed within the
simulator whereas the execution of tasks and the communications are simulated.
Please note that user-given functions can spawn processes on which user-given
functions are executed. SimGrid orchestrates, at any time, which processes are
executed and which ones are not. SimGrid may change the running processes
whenever they enter a state that implies a simulation time increase. For example,
computing a task, sending a message or entering a sleep state implies a simulation
time increase.

SimGrid allows us to create parallel tasks which combine computations and
communications. To do so, we can build tasks with a computation vector (or row
matrix) c where each ck represents the amount of computation (in number of
floating-point operations) that must be computed on the kth host on which the



parallel task is run and a square communication matrix C in which each element
C[r, c] represents the amount of communication (in number of bytes) from the
rth to the cth hosts involved in computing the task.

The SimGrid energy consumption model only takes computation hosts into
account at the moment and is described in the following paragraph. Each host
h has a set of power states Ph where each power state p ∈ Ph has a computa-
tional power cpp (in number of floating-point operations per second), a minimum
electrical power consumption ep∧p (in W) and a maximum electrical power con-
sumption ep∨p (also in W). The SimGrid model which simulates the execution
of actitivies on simulated resources computes the computational load lh(t) of
each host h at any simulation time t. The load is a real number in [0,1] where
0 represents an idle host and 1 a host computing at maximum computational
power. Let ph(t) be the power state in which host t is at simulation time t. The
instant electrical consumption of host h at time t is noted Ph(t) and is deter-
mined by ph(t) and lh(t). Ph(t) is computed as the linear interpolation between
ep∧ph(t)

and ep∨ph(t)
in function of lh(t) : Ph(t) = ep∧ph(t)

+ (ep∨ph(t)
− ep∧ph(t)

) · lh(t)
and is expressed in watts. The energy consumption of host h is then given by
Eh =

∫
Ph(t)dt and is expressed in joules.

4.2 Batsim Models

The computation platforms used by Batsim are theoretically as broad in scope
as SimGrid ones and can be of virtually any topology. However, only a sub-
set of SimGrid platforms are valid Batsim platforms. Indeed, we chose to use
a dedicated SimGrid host – that may be also be referred to as computational
resource from now on – referred as the Master host to compute the resource
management processes. In order to be able to run a job on computational re-
sources, the platform must allow messages to be exchanged between the Master
host and the other computational resources. Moreoever, if jobs are parallel and
must be run on different computational resources, the platform must allow the
set of computational resources allocated to the job to communicate with each
other.

Moreover, we enhanced the SimGrid energy model by adding explicit sleep
and transition power states. We chose to split the set Ph of power states of the
host h into three disjoint sets: P c

h is the set of computation power states, P s
h

is the set of sleep power states and P t
h is the set of transition power states.

The computation power states are the only ones which can be used to compute
jobs. A sleep power state represents the state of one machine which cannot
instantaneously compute something e.g. ACPI S1, S3, S4 or S5 states. A Batsim
host can switch from one computation power state to another instantaneously.
However, entering into one sleep power state s or leaving it can take some time
and cost some energy. Transition power states are virtual power states which
are only used to simulate the transition into and from sleep power states. To do
so, the amount of computation done in one transition is fixed to 1 flop. If one
transition t should take time tt (in seconds) and consume et energy (in joules),
the corresponding virtual power state pt should have a computational power



cppt
= 1

tt
and electrical power consumption bounds ep∧pt

= ep∨pt
= et

tt
. If Batsim

is run with energy enabled, the platform used must fulfill all SimGrid energy
requirements and define, for each host h each sleep power state sh ∈ P s

h , the
transition power state v↓sh used to switch into sh and the transition power state

v↑sh used to leave sh.
Batsim workloads are divided into two parts: one set J of jobs and one set P

of profiles. Each job j ∈ J must have a unique job number idj , a submission time
subj (the time at which the job is submitted into the system), a walltime wallj
(the user-specified execution time bound such that j is killed if its execution time
exceeds wallj), the number of requested resources resj (rigid at the moment but
moldable jobs can trivially be added into our architecture if needed) and the
profile profj the job executes. One profile describes how a job is computed.
The profile information has been separated from the jobs because 1. it avoids
data duplication when many jobs are computed in the same way 2. it makes
workload generation easier and more modular.

At the moment several atomic profile types are available: Delay profiles are
fixed amounts of time, msg profiles compute a vector c and a communication
matrix C and smpi profiles simulate the execution of one SimGrid MPI time-
independent trace within Batsim. Moreover, non-atomic profile types exist such
as the msg homogeneous profile type that wraps the msg profile type and
simplifies its usage by forcing homogeneity to the underlying computation vector
and communication matrix. As another non-atomic profile type, we can think of
the sequence profile type, which is composed of a list of other profiles it must
execute in sequence a certain number of times. The sequence profile type can
be used to model Bulk Synchronous Parallel jobs for example. Our architecture
allows to implement new profile types quite easily and the JSON format used in
workload description allows modularity since any user can add any field to jobs
or profiles to match their needs. For example, we used the same workloads to
compare Batsim’s behaviour to a real platform’s by simply specifying how each
profile should be run on the real platform.

5 Batsim Inner Mechanics

Batsim is a C++ program developed using the SimGrid C library. SimGrid allows
us to simulate the behaviour of a computation platform on which concurrent
SimGrid processes are run. We will use the phrase ”real process” to talk about
a process which is directly run by the user on a given Operating System. For
example, the Batsim real process and the Decision real process. A SimGrid
process (which will simply be referred to as a process from now on) is a process
simulated within Batsim. The main Batsim processes and their interactions are
shown in Figure 2.

The Jobs Submitter process is in charge of reading one workload and sub-
mitting the jobs at the right simulation time. To do so, it simply iterates over
the jobs in ascending submission time order and sends a message to the Server
process as soon as a job has been submitted. If the next job submission time is



Job
Killer

ON/OFF
Switcher

Master host

Computation hosts

Server Jobs
Submitter

Request
Reply

Job
Launcher

Waiter

Fig. 2. The different processes within Batsim. The Job Launcher, Job Killer, and
ON/OFF Switcher processes are executed on the computational resources whereas the
other processes are run on a dedicated resource called the Master host. Filled arrows
represent message transmissions and hollow arrows stand for a process execution.

strictly after the current simulation time, this process enters a sleep phase until
the aforementioned job is submitted. Once all the jobs of its appointed workload
have been submitted, the Jobs Submitter process tells the Server it has finished
then ends. Several Jobs Submitters may be instantiated in the same simula-
tion, which can be useful to simulate internally (within Batsim) the behaviour
of concurrent users. These processes are executed on the Master host.

The Request Reply process’s role is to manage the Unix Domain Socket to
communicate with the Decision real process. Its lifespan is short: It is launched
by the Server process on the Master host, it sends a network message to the
Decision real process, then waits for its reply. It then parses the received mes-
sage according to the Batsim protocol. The received message is composed of a
sequence of events. In order to simulate the impact of real decision algorithms,
which may take some decisions before returning the control flow, a simulation
time is associated to each event (potentially the same for all events). The Re-
quest Reply process parses and transmits those events to the Server process one
by one in the given chronological order. Just as the Jobs Submitter process,
the Request Reply process enters a sleep phase between events to respect the re-
ceived simulation times at which the events should have occured. Once all events
have been sent to the Server, the process tells the Server the message has been
managed, then ends.

The Server is the main Batsim process. It orchestrates the simulation: It
knows when jobs are submitted, chooses when the Decision real process should
be requested – ensuring that only one Request Reply process can be executed
at the same time – and follows the orders dictated by the Decision real process
(received from the Request Reply process). Depending on the received order, the
Server process might launch a Job Launcher process to run a job, or launch a
ON/OFF Switcher process to either boot or shutdown a computational resource,
or launch a Waiter process if the Decision real process wants to be awaken at



a specific time. The Server process ends its execution if and only if the follow-
ing conditions are met. 1. All Jobs Submitters must have finished their execu-
tions. 2. All submitted jobs must have been either processed or rejected. 3. The
Request-Reply process must not be running at the current time. 4. All ON/OFF
Switchers must have finished their executions. 5. There should be at least one
Jobs Submitter connected – to ensure that the simulation starts.

The Waiter process is used to wake the Decision real process at a specific
time. To do so, it is launched by the Server on the Master host, sleeps for the
right amount of time, tells the Server it is time to wake the Decision real process
then ends.

The ON/OFF Switcher process is in charge of simulating what happens
when a computational resource is booted or shut down. It is executed on the
computational resource whose state is requested to change.

The Job Launcher process is in charge of executing a job on a set of com-
putational resources R. The process is executed on one computational resource
r ∈ R. Jobs are then computed according to their profiles. If the profile type is
Delay, the process is simply put into a sleep state for the right amount of time. If
the profile type is MSG, the computation vector and the communication matrix
are generated into memory then computed on the given set of computational
resources R. If the profile type is Sequence, the different subjobs are computed
sequentially according to previously given rules for the requested number of
times. Finally, if the profile type is SMPI, the given MPI trace is replayed on R.
To respect the walltime of non-SMPI jobs, the Job Launcher process executes
the Job Killer process. The Job Killer process is in charge of waiting for the
walltime amount of time. For each walltime-constrained job j there is a double
pj = (launchj , killj) where launchj is the Job Launcher process in charge of job
j and killj is the Job Killer process associated to launchj . The first process to
finish its task in pj (either the job comptutation or the sleep) cancels the other
process’s task. This leads to killj finishing its execution and launchj sending
a message to the Server process to tell it j has been computed (successfully or
not) then finishing its execution too.

6 Batsim Evaluation Experiment

In order to evaluate whether Batsim’s behaviour is similar to real RJMSs’, we
set up an experiment comparing Batsim to OAR [6]. OAR is a RJMS – or batch
scheduler – notably known for being used in the Grid’5000 [1] infrastructure.
We chose OAR over other RJMSs – e.g. SLURM – because the modular design
of OAR allows its scheduling part to be decoupled from the other parts of the
system very easily. We tested Kamelot [35], a conservative backfilling scheduling
algorithm implemented in OAR by executing it on real OAR-managed resources
on Grid’5000 and by plugging it to Batsim. Since the same scheduling algo-
rithm is used both in reality and in simulation, this allows us 1. to demonstrate
that Batsim’s architecture can be used to test production schedulers 2. to check
Batsim’s behaviour’s soudness.



Our experimental process can be simplified in two major parts: 1. workload
generation 2. schedule comparison between real and simulated workload execu-
tions. The first major part requires real programs, their instrumentation and
a methodology to create jobs in our different job models. This is detailed in
Section 6.1. Subsequently, the way the jobs are put together to form workloads
is explained in Section 6.2. The second major part is described in Sections 6.3
and 6.3 .

Using a realistic simulator means using a realistic platform. Fortunately, the
Graphene cluster situated in the Nancy Grid’5000 site [13] has already been
calibrated so we chose to use this cluster for our real and simulated experiments.
Thus, all our real experiments were done on the Grid’5000 Graphene cluster,
reserving the nodes below one switch each time.

6.1 Profile Generation

In order to execute a scheduling algorithm, workloads must be generated. How-
ever, the jobs of our workloads must fulfill some requirements to be executed
both in a real platform and in simulation. Batsim allows different levels of re-
alism depending on the profile models used in the workload, which makes the
workload generation process more complex. Indeed, the msg model needs realistic
computation vectors and communication matrices to make sense. Furthermore,
the smpi model requires MPI traces in order to be used.

In order to obtain realistic values for our profile models, we chose to execute
real jobs from the MPI version of the NAS Parallel Benchmarks (NPB)3 and to
instrument them to obtain execution traces. We have selected the three bench-
marks IS, FT and LU. We chose to compile and execute them for all available
processor sizes – powers of two from 1 to 32 – and for tiny to medium data sizes
– B to D depending on the benchmark. Considering NPB limitations, we were
able to compile 47 different MPI programs.

First, in order to obtain the real execution times of our programs, we run
them in a sequence (one by one, to avoid network influence of one program to
another) without instrumentation. This allowed us to directly generate delay
profiles.

We then instrumented the jobs using Extrae [2], which gave us heavy exe-
cution traces. In order to get time-independent traces – required by SimGrid –
from the format used by Extrae, we used a script, courtesy of Lucas Schnorr [33].
Time-independent traces contain, for each processor, a sequence of events de-
scribing how many flops the processor computed or the MPI functions it called
with the associated data amount. Unfortunately, the conversion script we used
is a work in progress and was not able to capture all MPI messages, which added
a profile calibration phase in our experiment process.

Since SimGrid does not allow – at the moment – the concurrent execution
of several SMPI applications at the same time, we were not able to validate the
smpi profile type in the present article. On the other hand, we aggregated the

3 NPB 3.3.1 available here[25]



time-independent traces into computation vectors and communication matrices
to obtain msg profiles. These msg profiles have been calibrated such that their
execution times match those of the previously obtained delay profiles. The main
advantage of the calibrated msg profiles over the delay ones is that their ex-
ecution time may vary depending on resources’ computational power, network
bandwidth or network contention. On the contrary, delay profiles have a fixed
execution time that strongly depends on the platform they were executed on,
and cannot take network contention into account. This difference makes this
type of profile more appropriate for heterogeneous experiments.

6.2 Workload Generation

The workload generation algorithm that we decided to use is described in this
paragraph and was inspired by chapter 9.6 of book [12]. Please note that our
workload generation method is not intended to be sound for comparing schedul-
ing heuristics, but only to evaluate how Batsim behaves compared to a real
RJMS. The algorithm generates N = 800 jobs iteratively. The interarrival sub-
mission times of the jobs is computed randomly with a Weibull distribution of
shape parameter k = 2 and scale parameter λ = 15. Since the job sizes (the rigid
number of resources a job requests) of the real jobs at our disposal are powers
of 2 (from 1 to 32), the size of each job is computed with the formula 2buc where
u is a lognormal variate of parameters µ = 0.25 and σ = 0.5. Only variates such
that buc is in [0, log2(32) = 5] are used to match the sizes at our disposal. The
generation of those workloads depends on a random seed, simply referred as seed
in the remainder of this article.

We chose to generate nine different workloads and to execute each of them
once below two different switches of the Graphene cluster. We chose two dif-
ferent switches to obtain more representative simulation results. Indeed, both
the computation nodes and the switches are homogeneous in Graphene and are
described in the exact same way in the simulated platform. However, in practice,
little differences exist between nodes that are supposed to be identical and we
hope that these differences will be more noticeable this way.

6.3 Executing Workloads in a Real Platform

In order to execute the workloads we generated on Graphene, we used a repro-
ducible methodology which is described in Section 8. This methodology includes
the installation and the configuration of OAR within the nodes we reserved in
Graphene. We configured OAR such that it uses the Kamelot scheduler and im-
plemented a replay tool that reads a Batsim workload, then launches real OAR
submissions at the times dictated by the workload. The OAR submissions launch
the MPI programs which were previously generated.

6.4 Executing Workloads in Simulation

Executing the workloads in simulation simply consists in running the Kamelot
scheduler on Batsim with the aforementioned calibrated platform file. To do so,



we created an adaptor between Batsim and OAR which will be used later to test
the different algorithms implemented in OAR.

7 Results

The nine different workloads we generated have been executed twice on a real
platform (on identical machines and network, but not on the exact same ma-
chines), and twice in simulation (with Delay and MSG profile types). This section
presents the different results and analyses them.

An overview of the execution of all the workloads can be found on Figure 3.
First of all, Figure 3 shows that the MSG and the Delay simulation results
are very close to each other. The execution times of MSG jobs depends on
where the jobs are allocated and depends on the network saturation. However,
in this experiment, the platform is highly homogeneous and very low contention
has been observed during the jobs’ execution, which explains why the results
are so close. Furthermore, Figure 3 shows that the difference between two real
executions of the same workload is not negligible.

●●

●

●

●
●

●
●

●

●

●

●

●
●

●
●●

●

1.0

1.5

2.0

2.5

3.0

11100 11400 11700 12000
Makespan (s)

M
ea

n 
bo

un
de

d 
st

re
tc

h 
(b

ou
nd

 =
 6

0 
s)

● real

simulation (msg)

simulation (delay)

●

●

●

●

●

●

●

●

●

seed1_size32

seed2_size32

seed3_size32

seed4_size32

seed5_size32

seed6_size32

seed7_size32

seed8_size32

seed9_size32

Fig. 3. Mean bounded stretch against the makespan of all workload executions. Each
point represents one workload execution. Circles are executions on the real platform,
triangles and crosses are simulated executions with respectively Delay and MSG pro-
files. Each workload is associated with one color.



●●

●●

●●

● ●

● ●

● ●

●●

● ●

●●

seed1_size32

seed2_size32

seed3_size32

seed4_size32

seed5_size32

seed6_size32

seed7_size32

seed8_size32

seed9_size32

−0.4 −0.2 0.0 0.2
Mean stretch difference

W
or

kl
oa

d

● real − simulation (msg) real − simulation (delay)

Fig. 4. Mean stretch difference between real and simulated executions of each workload.
Different workloads are plotted on different lines. Circles and crosses represent the
difference from the simulated execution with respectively MSG and Delay profiles.

7.1 Similarities

Many similarities exist between the schedules resulting from the simulated and
real executions of the workloads we defined.

Figure 3 allows to see the makespan and the mean bounded stretch of real and
simulated executions of all the workloads we generated. The closer the points of
a given color, the more similar the real and simulated executions are. For most
workloads, the points are tightly clustered. Workloads 6, 7 and 8 seem to be
unstable in both makespan and mean bounded stretch when they are executed
with this scheduling algorithm. For these three workloads, we can see that the
points are less tightly clustered. Furthermore, the distance between the points
resulting from real and simulated execution is of the same order of magnitude
as the one resulting from two real experiments.

Figures 4 and 5 shows the differences in mean stretch between real and sim-
ulated executions of all the workloads. The mean stretch of real different execu-
tions is in range [1.492, 5.876]. Figure 5 shows that the mean stretch difference
is centered a little bit after zero if we look at all the workloads at once. Fig-
ure 4 shows that the mean stretch of the simulated execution of each workload



0

1

2

3

4

5

−0.4 −0.2 0.0 0.2
Mean stretch difference (real − simulation)

co
un

t

Fig. 5. Distribution of the mean stretch difference between real and simulated (with
MSG profiles) executions of all workloads. The black vertical line is on zero. Red and
green vertical lines are respectively the mean and median of the mean stretch difference
among all workloads.

is not necessarily between the two values coming from real executions, but that
the mean stretch difference between the real and the simulated executions of
one workload is of the same order of magnitude as the mean stretch difference
between the two real executions of the same workload.

7.2 Differences

Figure 6 shows that simulated workload executions are almost always below real
executions, which means that Batsim underestimates the waiting time of jobs.
This underestimation can be explained by the OAR’s ssh-based job launching
procedure and the OAR’s job cleaning procedure. Indeed, these procedures take
a non-negligible amount of time and have not been modeled into Batsim. The
way the jobs are launched and cleaned is highly RJMS-dependent and we chose
not to overfit any RJMS for the moment.

Furthermore, differences can be observed if we look at each workload at a finer
grain. For example, the Gantt charts of the real and the simulated executions
of the same workload differ, but this is also true for two real executions of the
same workload, as seen in Figure 7.



●●

●●

●●

●
●

●●

● ●

●
●

●
●

●
●

50

100

150

11100 11400 11700 12000
Makespan (s)

M
ea

n 
w

ai
tin

g 
tim

e 
(s

)

● real

simulation (msg)

simulation (delay)

●

●

●

●

●

●

●

●

●

seed1_size32

seed2_size32

seed3_size32

seed4_size32

seed5_size32

seed6_size32

seed7_size32

seed8_size32

seed9_size32

Fig. 6. Mean waiting time against the makespan of all workload executions. Each point
represents one workload execution. Circles are executions on the real platform, triangles
and crosses are simulated executions with respectively Delay and MSG profiles. Each
workload is associated with one color.

8 Reproducing our Work

One of our main goal while creating Batsim was to foster reproducibility in the
field of jobs and resources scheduling, by providing the tools needed to make more
reproducible science. The aim of this section is to explain how all our evaluation
process – or only a part of it – can be reproduced. To do so, we provide a
complete environment to use Batsim and the different schedulers which run on
top of it.

All the experiment tools mentioned below (Batsim, Kameleon, Execo, Grid’5000)
are necessary to repeat the experiments we done. Of course, other tools exist to
achieve reproducibility but we describe the ones we chose for our experiments.

Environments An environment can be seen as an object that fixes a software
context. Such an environment typically regroups an Operating System and a set
of programs and libraries, specifying which version is used for each component.
To build our environments we used Kameleon [30]. This tool allows its users to
build environments from template recipes and to extend them. It also allows a
user to write their own environment recipes from scratch. Such environments
handle failures thanks to a breakpoint mechanism. Recipes can be shared using
Git, and Kameleon comes with the possibility to rebuild the environment from



0

5

10

15

20

25

30

674

687

689

692

707

711

713

717

719

720

721

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738 739

739

740

740

740

740

741

742

743

744

745

746

747748

748

748

749

749

750

751

752

753 754

755

756

756

757

758

759

759

759

760

760

760

761

761

761

762

763

763

763

764

764

764

765

766

767

768

769

770

770

770

771

772

773

774

775

776

776

777

778

779

779

779

780

781

781

781

782

782

782

782

782

783

784

784

785

786

787

788

789

789

790

791

791

792

793

793

794

795

796

797

798

798

798

799

799

batsim_msg_seed6_size32_out_jobs.csv

0

5

10

15

20

25

30

795

792

792

797

730
674

752

752

777

777

689

799

732

732

773

729

729

756

737

784

759

759

749

749

748

748

748

748

742

742

735

725

725

725

796758

711

775

775

745

745

745

763

763

717

687

788

753

727

785

761

761

781

781

747

728

728

692

789

778

778

719

719

721

740

740

713

713

782

782

793

766

733

767

791

736

739

794

723

787

731

731

743

760

760

746

771

762

754

786

751

779

779
734

776

774

774

770

770

770

770

798

798

798

738

783

757

755

755

772

722

722

764

764

768

768

741

741

726

750

790

744

765

780

720

720

720

724

724

724

769

769

oar_seed6_size32_s1r1b_out_jobs.csv

9800 10000 10200 10400 10600 10800 11000 11200
0

5

10

15

20

25

30
726

728

794

794

723

719

731

674

797

779

779

783

783

737

798

798

798

727

730

687

747

743

759

759

799

775

772

689

729

778

782

782

782

782

782

782

758

774

765

792

792

792

753

777

707

755

741

763

763

763

791

711

748

748

748

750

760

788

771

786

786

790

725

724

724

749

749

773
713

736 785

751

738

735

766

745

745

745

756

721

740

740

740

742

742

796

780

768

739

732

769

722

770

793776

754

734

744

761

757

762
784

784

784

746

717

795

764

764692

787

781

733

789

789

720

752

767

767

oar_seed6_size32_s4r1_out_jobs.csv

Fig. 7. Final section of the Gantt charts of the executions of workload seed = 6. The
uppermost gantt chart is a simulated execution while the other two are real executions.
Workload seed = 6 is the least stable workload in makespan.



cache to achieve full re-constructibility. The software appliance produced by
Kameleon can be exported to many formats, including a virtual machine, a
docker container or a tarball, in order to be deployed anywhere.

The Batsim complete environment, as the workload generation environment
recipes, are both available in the Git repository [17].

Experiment design and workflow Most of the time the experiment design consists
in one or more documents that describe the purpose and the experiment with
some details and some dedicated scripts. Some domain specific tools exist to
compute the experiment on a grid from a user-defined workflow [37], but it
is not well suited for computer science experiments, which also need to select
the underlying software stack and OS. Hopefully, computer scientists dedicated
testbeds exist, like Grid’5000 which allows this level of management.

Batsim’s evaluation experiment has been made using Execo [19], a tool which
completely automates the experiment workflow. Execo is a tool which allows
Grid’5000 users to programmatically describe their experiment workflows in or-
der to compute them on the grid. It is a Python toolbox library that allows to
run local and remote processes easily. It also provides an engine to manage the
parameters sweeping and an interface to the Grid’5000 testbed, which allows to
design fully automated sets of experiments.

Moreover, the scripts and tools used to generate all the figures present in this
paper are provided in our Git repository [18]. The Gantt chart visualisation and
comparison tools named Evalys is available independently [15].

The complete experiment workflow made to conduct this paper’s experiment
is also available in our Git repository [18].

Inputs and results The original input data are crucial in the process of repro-
ducibility. Most of the inputs and results of the experiments we have done are
available in the aforementioned Git repository. The results that do not fit in the
repository because of their size – notably the MPI instrumentation traces ('
20Go) – are shared using Academic Torrent [24].

9 Conclusion and Future Works

In this paper we presented Batsim, a modular RJMS simulator that provides dif-
ferent levels of realism, on which scheduling algorithms can be easily connected
and compared. Batsim JSON-formatted workloads are extensible and allow pain-
less workload generation. Batsim CSV outputs provide clear information about
scheduling metrics, job placement and energy consumption, and can be easily
linked with standard data analysis tools.

We used the OAR RJMS to check whether Batsim’s behaviour is close to
real RJMSs’ in our experiment. In this experiment, the execution times of the
jobs in the delay and msg profile models were almost identical because no con-
tention has been observed during the experiment, and because the platform that
we used was completely homogeneous both in computing power and in network



bandwidth. As a future work, we can think of a validating process concerning
the msg profile type, which may focus on conducting experiments on real het-
erogeneous platforms for example. Furthermore, the Batsim energy model has
not been validated in real machines yet, which opens a door for future works.

We are well aware that the workloads used in our evaluation process remain
small in their number of resources, their number of different jobs and in their
duration. We would like to do larger scale experiments but finding funding to
conduct this kind of study becomes problematic, as the energy and financial
costs of reservations for such experiments would skyrocket.

We chose not to overfit the behaviour of a given RJMS, which may impact
result realism on different metrics such as the mean waiting time, as seen in
Section 7.2. Since our architecture allows to model finely the different RJMS’s
procedures, it would be beneficial to allow Batsim’s users to parametrize how
the different procedures should be done in order to improve accuracy.

At the moment, Batsim allows a production scheduler to be used in sim-
ulation. To do so, Batsim is in charge of simulating the RJMS whereas the
scheduling component of the real RJMS makes the decisions. An interesting fu-
ture work would be to allow the opposite type of connection: The real RJMS
would run normally but it would communicate with a Batsim-compatible algo-
rithm to make scheduling decisions. This would simplify greatly the production
launch of theoretical scheduling algorithms.

Even if Batsim is fully operational as we wrote this article, we would like to
improve its capabilities in several way. For example, we would like to implement
the possibility to concurrently run several SMPI application within SimGrid in
order to use those applications within Batsim. Moreover, we are also interested
in IO-related problems for big data workload simulation. Eventually, we want to
implement a user model to take user reactions into account during the ongoing
scheduling execution.

As we want to promote experiment reproducibility, all the materials necessary
to understand and reproduce our evaluation experiments are provided online.

Batsim is an open source [16] project and we encourage any researcher or
engineer that has to deal with resources and jobs scheduling to use it. Besides,
we would be pleased to collaborate with anyone who wants to port an existing
scheduling algorithm to Batsim. This would enhance the list of supported al-
gorithms which may be studied and compared in the same context, in order to
make more reproducible and better science.

References

1. Balouek, D., Amarie, A.C., Charrier, G., Desprez, F., Jeannot, E., Jeanvoine,
E., Lèbre, A., Margery, D., Niclausse, N., Nussbaum, L., Richard, O., Perez, C.,
Quesnel, F., Rohr, C., Sarzyniec, L.: Adding Virtualization Capabilities to the
Grid’5000 Testbed. In: Ivanov, I.I., Sinderen, M.v., Leymann, F., Shan, T. (eds.)
Cloud Computing and Services Science, pp. 3–20. No. 367 in Communications in
Computer and Information Science, Springer International Publishing (Apr 2012),
dOI: 10.1007/978-3-319-04519-1 1



2. Barcelona Supercomputing Center: Extrae (Feb 2016), https://www.bsc.es/

computer-sciences/extrae
3. Bedaride, P., Degomme, A., Genaud, S., Legrand, A., Markomanolis, G., Quin-

son, M., Stillwell, M., Suter, F., Videau, B.: Toward Better Simulation of MPI
Applications on Ethernet/TCP Networks (Nov 2013), https://hal.inria.fr/

hal-00919507/document
4. Bell, W.H., Cameron, D.G., Millar, A.P., Capozza, L., Stockinger, K., Zini, F.:

Optorsim: A grid simulator for studying dynamic data replication strategies. In-
ternational Journal of High Performance Computing Applications 17(4), 403–416
(2003)

5. Caniou, Y., Gay, J.S.: Simbatch: An api for simulating and predicting the per-
formance of parallel resources managed by batch systems. In: Euro-Par 2008
Workshops-Parallel Processing. pp. 223–234. Springer (2009)

6. Capit, N., Da Costa, G., Georgiou, Y., Huard, G., Martin, C., Mounié, G., Ney-
ron, P., Richard, O.: A batch scheduler with high level components. In: Cluster
Computing and the Grid, 2005. CCGrid 2005. IEEE International Symposium on.
vol. 2, pp. 776–783. IEEE (2005)

7. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scal-
able, and accurate simulation of distributed applications and platforms. Jour-
nal of Parallel and Distributed Computing 74(10), 2899–2917 (Jun 2014), http:
//hal.inria.fr/hal-01017319

8. Clauss, P.N., Stillwell, M., Genaud, S., Suter, F., Casanova, H., Quinson, M.: Single
Node On-Line Simulation of MPI Applications with SMPI (May 2011), https:

//hal.inria.fr/inria-00527150/document
9. Diaz, A., Batista, R., Castro, O.: Realtss: a real-time scheduling simulator. In:

Electrical and Electronics Engineering, 2007. ICEEE 2007. 4th International Con-
ference on. pp. 165–168. IEEE (2007)

10. Dutot, P.F., Poquet, M., Trystram, D.: Communication models insights meet sim-
ulations. In: Euro-Par 2015: Parallel Processing Workshops (HeteroPar). Springer
(2015)

11. Estrada, T., Flores, D., Taufer, M., Teller, P.J., Kerstens, A., Anderson, D.P.,
et al.: The effectiveness of threshold-based scheduling policies in boinc projects.
In: e-Science and Grid Computing, 2006. e-Science’06. Second IEEE International
Conference on. pp. 88–88. IEEE (2006)

12. Feitelson, D.G.: Workload Modeling for Computer Systems Performance Eval-
uation. Cambridge University Press, Cambridge (2015), https://cds.cern.ch/

record/2005898
13. Grid5000: Nancy:Home - Grid5000 (Feb 2016), https://www.grid5000.fr/

mediawiki/index.php/Nancy:Home
14. Imbert, M., Pouilloux, L., Rouzaud-Cornabas, J., Lèbre, A., Hirofuchi, T.: Using

the EXECO toolbox to perform automatic and reproducible cloud experiments
(Dec 2013), https://hal.inria.fr/hal-00861886

15. Inria: InriaForge: Evalys: Projet Home, https://gforge.inria.fr/projects/

evalys
16. Inria: BatSim Homepage (Feb 2016), http://batsim.gforge.inria.fr/
17. Inria: InriaForge: Batsimctn: Project Home (Feb 2016), https://gforge.inria.

fr/projects/simctn/
18. Inria: InriaForge:expe batsim:Project Home (Feb 2016), https://gforge.inria.

fr/projects/expe-batsim
19. Inria: Welcome to execo — execo v2.5.3 (Feb 2016), http://execo.gforge.inria.

fr/doc/latest-stable/



20. Jones, W.M., Ligon III, W.B., Pang, L.W., Stanzione, D.: Characterization of
bandwidth-aware meta-schedulers for co-allocating jobs across multiple clusters.
The Journal of Supercomputing 34(2), 135–163 (2005)

21. Klusáček, D., Rudová, H.: Alea 2: job scheduling simulator. In: Proceedings of the
3rd International ICST Conference on Simulation Tools and Techniques. p. 61.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering) (2010)

22. Legrand, A.: Simgrid Usages (Jan 2016), http://simgrid.gforge.inria.fr/

Usages.php
23. Lucarelli, G., Mendonca, F., Trystram, D., Wagner, F.: Contiguity and Locality

in Backfilling Scheduling. In: Cluster, Cloud and Grid Computing (CCGrid), 2015
15th IEEE/ACM International Symposium on. pp. 586–595. IEEE (2015)

24. Mercier, M.: MPI+PRV+TIT-traces nas-Benchmarks 2016-02-08–
10-10-44 (Feb 2016), http://academictorrents.com/details/

53b46a4ff43a8ae91f674b26c65c5cc6187f4f8e
25. NASA: NAS Parallel Benchmarks (Feb 2016), https://www.nas.nasa.gov/

publications/npb.html
26. Pascual, J.A., Miguel-Alonso, J., Lozano, J.A.: Locality-aware policies to improve

job scheduling on 3d tori. The Journal of Supercomputing 71(3), 966–994 (2015)
27. Perez, F.J.R., Miguel-Alonso, J.: Insee: An interconnection network simulation

and evaluation environment. In: Euro-Par 2005 Parallel Processing, pp. 1014–1023.
Springer (2005)

28. Phatanapherom, S., Uthayopas, P., Kachitvichyanukul, V.: Dynamic scheduling ii:
fast simulation model for grid scheduling using hypersim. In: Proceedings of the
35th conference on Winter simulation: driving innovation. pp. 1494–1500. Winter
Simulation Conference (2003)

29. Proebsting, T., Warren, A.M.: Repeatability and Benefaction in Computer Systems
Research. Tech. rep., The university of Arizona (2015), http://reproducibility.
cs.arizona.edu/v2/RepeatabilityTR.pdf

30. Ruiz, C., Harrache, S., Mercier, M., Richard, O.: Reconstructable Software Appli-
ances with Kameleon. SIGOPS Oper. Syst. Rev. 49(1), 80–89 (Jan 2015)

31. Stanisic, L., Legrand, A.: Effective Reproducible Research with Org-Mode and Git.
In: Euro-Par 2014: Parallel Processing Workshops. pp. 475–486. Springer (2014),
http://link.springer.com/chapter/10.1007/978-3-319-14325-5_41

32. Takefusa, A., Matsuoka, S., Nakada, H., Aida, K., Nagashima, U.: Overview of
a performance evaluation system for global computing scheduling algorithms. In:
High Performance Distributed Computing, 1999. Proceedings. The Eighth Inter-
national Symposium on. pp. 97–104. IEEE (1999)

33. tcbozzetti: tcbozzetti/trabalhoconclusao (Feb 2016), https://github.com/

tcbozzetti/trabalhoconclusao
34. oar team: Batsim protocol description (2016), https://github.com/oar-team/

batsim/blob/master/doc/proto_description.md
35. oar team: Kamelot (2016), https://github.com/oar-team/oar3/blob/master/

oar/kao/kamelot.py
36. Xia, H., Dail, H., Casanova, H., Chien, A.: The microgrid: Using emulation to

predict application performance in diverse grid network environments. In: Proc. of
the Workshop on Challenges of Large Applications in Distributed Environments
(2004)

37. Yu, J., Buyya, R.: A Taxonomy of Scientific Workflow Systems for Grid Computing.
SIGMOD Rec. 34(3), 44–49 (Sep 2005)


