

Enhancing carbon-nanotubes luminescence With the help of plasmonic antennas

Carbon nanotubes

Well-defined exciton peak @ Room temperature

Telecom-window range : *wavelength* ~ 1200 nm

Small in diameter but quite long \rightarrow single CNT

(Can be excited by current injection)

Nanotube $d \sim nm$ $L \sim \mu m$ CNT are attractive light source

But...

with a very small quantum yield (less than 1%)!

Typically : in the sample 5 families of semiconducting carbon nanotubes

Characterized by a well-defined exciton peak

Typically : in the sample 5 families of semiconducting carbon nanotubes

Characterized by a well-defined exciton peak

Carbon nanotubes + photonics crystals

LABORATOIRE

MONTPELLIER

Radiative Enhancement ~ 200

R. Miura et al. Nature communications 6580 (2014)

Carbon nanotubes + photonics crystals

LABORATOIRE

Few carbon nanotubes (1 single) Quantum emitter Collection of Metallic scatterers Luminescence Enhancement?

Field of plasmonics (optics of metals) Purcell effect : how environment modify quantum emitter luminescence

Broad-band enhancement: for the 5 chiralities

Plasmonics and plasmonics antennas

Prism coupling

Metallic nanoparticles Diffraction => Localized plasmon resonance

Can act as antennas in the visible regime :

- modify radiative pattern (directivity)
- modify luminescence intensity (energy extraction, Purcell effect)

The patch antenna

Bottom metallic mirror:

- Light emits in one direction
- Increase electric field confinement

Finite size metallic nanoparticle:

- scatter the near-field
- Can increase of the power radiates by the emitter

Cavity (plasmonic) modes : cavity geometry defines resonant modes Large cavity (~1 μ m) many cavity modes (kind of continuum)

small antennas = high enhancement

The whole metallic disk radiates \rightarrow the plasmonic mode radiates

Purcell factor ~ 70

Belacel et al. Nano Lett., 2013, 13 (4), pp 1516–1521

The purcell factor depends drastically on the dipole orientation

Unfortunately not favorable for CNT !!

MONTPELLIER

LABORATOIRE

Collection of individual scatterers

Microscopic scale: dipolar resonance
→ Large Purcell factor

150 nm

Random distribution of plasmonic
 nanoparticles
 → relax dipole/metal surface alignment

Patch: Colloidal nano-triangles made on silver coated with silica

Resonant @ 1280 nm with broad size dispersion

=> broad "resonance" peak (inhomogeneous broadening)

=> broad-band enhancement

Single emitter = Carbon Nanotube

Cartography of the sample luminescence (XY-map) From room temperature to 4 K

The experimental setup: Reflectivity

Cartography of reflectivity of the sample surface (XY-map)

Map of the sample luminescence

LABORATOIRE

JLOMB MONTPELLIER

XY-Map of the Total Intensity – Without particles

Map of the sample luminescence

LABORATOIRE Δ

OMB

MONTPELLIER

XY-Map of the Total Intensity Without particles s

Cartography of the sample : finer scale

LABORATOIRE

Inhomogeneity characteristic scale ~ 500 nm

-Strategy

Random antennas/ Random CNT

Improve CNT/antenna dipole matching

⇒Radiative enhancement ~ 200 ⇒ Usually ~ 50 ⇒ length scale ~ 50 nm

Large antennas = better directivity

Scattering cross-section

