Admissible subsets and Littelmann paths in affine Kazhdan-Lusztig theory
 Jeremie Guilhot

To cite this version:

Jeremie Guilhot. Admissible subsets and Littelmann paths in affine Kazhdan-Lusztig theory. 2016. hal-01333423v1

HAL Id: hal-01333423
https://hal.science/hal-01333423v1
Preprint submitted on 17 Jun 2016 (v1), last revised 15 Aug 2018 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Admissible subsets and Littelmann paths in affine Kazhdan-Lusztig theory

Jérémie Guilhot

Abstract

The center of an extended affine Hecke algebra is known to be isomorphic to the ring of symmetric functions associated to the underlying finite Weyl group W_{0}. The set of Weyl characters s_{λ} forms a basis of the center and this character acts as translation on the Kazhdan-Lusztig basis element $C_{w_{0}}$ where w_{0} is the longest element of W_{0}, that is we have $s_{\lambda} C_{w_{0}}=C_{p_{\lambda} w_{0}}$. As a consequence, we see that the coefficients that appears when decomposing $\mathbf{s}_{\tau} \mathbf{s}_{\lambda} C_{w_{0}}=\mathbf{s}_{\tau} C_{p_{\lambda} w_{0}}$ in the Kazhdan-Lusztig basis are tensor multiplicities of the Lie algebra with Weyl group W_{0}. The aim of this paper is to explain how admissible subsets and Littelmann paths, which are models to compute such multiplicities, naturally appear when working out the decomposition of $\mathrm{s}_{\tau} C_{p_{\lambda} w_{0}}$ in the Kazhdan-Lusztig basis.

1 Introduction

Let W_{e} be an extended affine Weyl group with underlying finite Weyl group W_{0}. Then $W_{e}=W_{0} \ltimes P$ where P denotes the set of weights associated to W_{0}. Let \mathscr{H}_{e} be the associated generic affine Hecke algebra defined over the ring \mathscr{A} of Laurent polynomials with one indeterminate and let $\left\{C_{w} \mid w \in W_{e}\right\}$ be the Kazhdan-Lusztig basis of \mathscr{H}_{e}. The center of the affine Hecke algebra \mathscr{H}_{e} associated to W_{e} is known to be isomorphic to the ring of symmetric functions $\mathscr{A}[P]^{W_{0}}$. The set of Weyl characters $\left\{\mathrm{s}_{\lambda} \mid \lambda \in P^{+}\right\}$forms a basis of $\mathscr{A}[P]^{W_{0}}$ and we have $\mathrm{s}_{\lambda} C_{w_{0}}=C_{p_{\lambda} w_{0}}$ where p_{λ} denotes the translation by $\lambda \in P^{+}$in W_{e}; see [7].
Denote by $V(\tau)$ the irreducible highest weight module of weight $\tau \in P^{+}$for the simple Lie algebra over \mathbf{C} with Weyl group W_{0}. Then the character of $V(\lambda)$ is \mathbf{s}_{λ} and for all $\tau, \lambda \in P^{+}$we have $\mathbf{s}_{\tau} \mathbf{s}_{\lambda}=\sum m_{\tau, \lambda}^{\mu} \mathbf{s}_{\mu}$ where $m_{\tau, \lambda}^{\mu}$ is the multiplicity of $V(\mu)$ in the tensor product $V(\tau) \otimes V(\lambda)$. Computing the multiplicities $m_{\tau, \lambda}^{\mu}$ is one of the most basic question in representation theory of simple Lie algebras over \mathbf{C}. Littelmann showed [10] that such multiplicities can be determined by counting certain kind of paths in the weight lattice P constrained to stay in the fundamental chamber. Later on, Lenart and Postnikov [8, 9] showed that these multiplicities can be determined using admissible subsets associated to a fix reduced expression of $p_{\tau} \in W_{e}$. Their model can be viewed as a discrete counterpart of Littelmann paths model and they explicitely constructed a bijection between admissible susbets and Littelmann paths.
In the extended affine algebra, we must have

$$
\mathrm{s}_{\tau} C_{p_{\lambda} w_{0}}=\mathrm{s}_{\tau} \mathrm{s}_{\lambda} C_{w_{0}}=\sum m_{\tau, \lambda}^{\mu} C_{p_{\mu} w_{0}}
$$

and the aim of this paper is to explain why these multiplicities appear when decomposing $\mathrm{s}_{\tau} C_{p_{\lambda} w_{0}}$ in the Kazhdan-Lusztig basis. This will be done in two steps:

1) we will show that to determine the decomposition of the product $\mathrm{s}_{\lambda} C_{p_{\tau} w_{0}}$ it is sufficient to study products of the form $T_{p_{\lambda}} T_{p_{\tau} w_{0}}$ in the standard basis and to find the terms of maximal degrees;
2) we will show that the terms of maximal degree in products of the form $T_{p_{\lambda}} T_{p_{\tau} w_{0}}$ are indexed by the set of admissible subsets J associated to a fix reduced expression of p_{λ}.

Then, according to the results of Lenart and Postnikov [9], we will obtain the desired equality.
The paper is organised as follows. In Section 2, we introduce all the needed material on (extended) affine Weyl groups. In Section 3, we present Kazhdan-Lusztig theory for affine Hecke algebras with unequal parameters and we describe the center of this algebra. In Section 4 and Section 5, we prove (1) and (2) above. Finally, we prove the desired equality using the theory of admissible subsets in Section 6. In Section 7, following [9], we describe the connection between admissible subsets and Lakshmibai-Seshadri paths.

2 Affine Weyl groups

Let V be an Euclidean space with scalar product (\cdot, \cdot). We denote by V^{*} the dual of V and by \langle,$\rangle :$ $V \times V^{*} \longrightarrow \mathbf{R}$ the canonical pairing. Let Φ be a root system and let Φ^{\vee} be the dual root system. If $\alpha \in \Phi$ then $\alpha^{\vee} \in \Phi^{\vee}$ is defined by $\left\langle x, \alpha^{\vee}\right\rangle=2(x, \alpha) /(\alpha, \alpha)$. We fix a set of positive roots Φ^{+}and a simple system Δ such that $\Delta \subset \Phi^{+}$.

2.1 Geometric presentation of an affine Weyl group

We denote by $H_{\alpha, n}$ the hyperplane defined by the equation $\left\langle x, \alpha^{\vee}\right\rangle=n$ and by \mathscr{F} the collection of all such hyperplanes. We will say that an hyperplane H is of direction $\alpha \in \Phi^{+}$if there exists a pair $(\alpha, n) \in \Phi^{+} \times \mathbf{Z}$ such that $H=H_{\alpha, n}$. We then write $\bar{H}=\alpha$.

Let Ω be the group generated by the set of orthogonal reflections $\sigma_{\alpha, n}$ with respect to $H_{\alpha, n}$ where $\alpha \in \Phi$ and $n \in \mathbf{Z}$. The group Ω is an affine Weyl group of type Φ^{\vee}. It is well known that Ω is generated by the set $\left\{\sigma_{\alpha, 0} \mid \alpha \in \Delta\right\} \cup\left\{\sigma_{\tilde{\alpha}, 1}\right\}$ where $\tilde{\alpha}$ is such that $\tilde{\alpha}^{\vee}$ is the highest root of Φ^{\vee}. To simplify notation, we will simply write σ_{α} for $\sigma_{\alpha, 0}$. Let Ω_{0} be the stabiliser of 0 in Ω : clearly $\Omega_{0}=\left\langle\sigma_{\alpha} \mid \alpha \in \Delta\right\rangle$. Let $\sigma_{\Omega_{0}}$ be the longest element of Ω_{0}.

The set of alcoves, denoted $\operatorname{Alc}(\mathscr{F})$, is the set of connected components of $V \backslash \mathscr{F}$. The fundamental alcove A_{0} is defined by

$$
\begin{aligned}
A_{0} & =\left\{\lambda \in V \mid 0<\left\langle\lambda, \alpha^{\vee}\right\rangle<1, \forall \alpha \in \Phi^{+}\right\} \\
& =\left\{\lambda \in V \mid 0<\left\langle\lambda, \alpha^{\vee}\right\rangle<1, \forall \alpha \in \Delta\right\} .
\end{aligned}
$$

The group Ω acts simply transitively on the set of alcoves. We set $A_{0}^{-}=A_{0} \sigma_{\Omega_{0}}$ and we have $A_{0}^{-}=A_{0} \sigma_{0}$.
The group Ω acts on the set of faces (codimension 1 facet) of alcoves and we denote by S the set of orbits. Then to each $s \in S$, one can associate an involution on the set of $\operatorname{Alc}(\mathscr{F})$: for all $A \in \operatorname{Alc}(\mathscr{F}), s A$ is the unique alcove which shares with A a face of type s. The set of all such involutions generate a Coxeter group W_{a} which is isomorphic to Ω. Both groups W_{a} and Ω acts transitively on the set of alcoves. We will write the action of W_{a} on the left and the action of Ω on the right. It is a well known fact that these two actions commute. For all $s \in S$ and all $A \in \operatorname{Alc}(\mathscr{F})$, there exists a unique pair $(\alpha, n) \in \Phi^{+} \times \mathbf{Z}$ such that the hyperplane $H_{\alpha, n}$ separate the alcoves A and $s A$ and we have $s A=A \sigma_{\alpha, n}$.

Given two alcoves $A, B \in \operatorname{Alc}(\mathscr{F})$, we set

$$
H(A, B)=\{H \in \mathscr{F} \mid H \text { separates } A \text { and } B\} \quad \text { and } \quad \overline{H(A, B)}=\{\bar{H} \mid H \in H(A, B)\}
$$

Let $A \in \operatorname{Alc}(\mathscr{F}), \beta \in \Phi$ and $n \in \mathbf{Z}$. We write $n<A[\beta]$ if and only if for all $x \in A$ we have $n\left\langle\left\langle x, \beta^{\vee}\right\rangle\right.$. Similarly, we write $n>A[\beta]$ if and only if for all $x \in A$ we have $n>\left\langle x, \beta^{\vee}\right\rangle$. For all alcoves A and all roots $\beta \in \Phi^{+}$, there exists a unique $n \in \mathbf{Z}$ such that $n<A[\beta]<n+1$.

The following proposition gather some well known facts about the two actions introduced above.
Proposition 2.1. Let $w \in W_{a}$. We have

1) $\ell(w)=\left|H\left(A_{0}, w A_{0}\right)\right|$
2) Let $s \in S$ and let $H_{\alpha, n}$ be the unique hyperplane separating $w A_{0}$ and sw A_{0}. We have sw<w if and only if we are in one of the following situation:
(a) $w A_{0} \in H_{\alpha, n}^{+}, s w A_{0} \in H_{\alpha, n}^{-}$and $n>0$,
(b) $w A_{0} \in H_{\alpha, n}^{-}, s w A_{0} \in H_{\alpha, n}^{+}$and $n \leq 0$.
3) We have $\overline{H\left(A_{0}, A_{0} \sigma\right)}=\overline{H\left(A_{0}^{-}, A_{0}^{-} \sigma\right)}=\left\{\gamma \in \Phi^{+} \mid \gamma \sigma^{-1} \in \Phi^{-}\right\}$.

2.2 Weight functions and special points

Let L be a positive weight function on W_{a}, that is a function $L: W_{a} \longrightarrow \mathbf{N}$ such that $L\left(w w^{\prime}\right)=$ $L(w)+L\left(w^{\prime}\right)$ whenever $\ell\left(w w^{\prime}\right)=\ell(w)+\ell\left(w^{\prime}\right)$. To determine a weight function, it is enough to give its values on the conjugacy classes of generators of S. From now on, we fix such a positive weight function
L on W_{a}. Note that this also defines a weight function on Ω simply by setting $L(\sigma)=L(w)$ whenever $w A_{0}=A_{0} \sigma$.
Let H be an hyperplane in \mathscr{F}. We say that H is of weight $L(r)$ if it contains a face of type $r \in S$. This is well-defined since if H contains a face of type r and r^{\prime} then r and r^{\prime} are conjugate and $L(r)=L\left(r^{\prime}\right)[2$, Lemma 2.1]. We denote the weight of an hyperplane H by $L(H)$. If $\beta \in \Phi$, we set $L(\beta)=\max _{\bar{H}=\beta} L(H)$. For any $\lambda \in V$ we set

$$
L(\lambda)=\sum_{H, \lambda \in H} L(H)
$$

Let $\nu=\max _{\lambda \in V} L(\lambda)$. We call λ an L-weight if $L(\lambda)=\nu$ and we denote by P the set L-weights. Further we denote by P^{+}the set of dominant L-weights that is $P^{+}:=\left\{\lambda \in P \mid\left\langle\lambda, \alpha^{\vee}\right\rangle \geq 0\right.$ for all $\left.\alpha \in \Phi^{+}\right\}$and by P^{-}the set of antidominant weights, that is $P^{-}=-P^{+}$. For $\lambda \in P$ and $\beta \in \Phi^{+}$we set $\lambda_{\beta}:=\left\langle\lambda, \beta^{\vee}\right\rangle$. For each root α, we set

$$
b_{\alpha}= \begin{cases}1 & \text { if } L_{H_{\alpha, 0}}=L_{H_{\alpha, 1}} \\ 2 & \text { otherwise }\end{cases}
$$

Remark 2.2. The only case where there can be parallel hyperplanes with different weights and therefore some b_{α} equal to 2 is when W is of type C and when the extremal generator in the Dynkin diagram have same weights. We refer to [2, Lemma 2.2] for details on this case.

The action of the longest element $\sigma_{\Omega_{0}}$ on the set of weights is an involution, we set $\lambda^{*}=\lambda \sigma_{\Omega_{0}}$. Note that we do not have in general $\lambda \sigma_{\Omega_{0}}=-\lambda$ but if $\lambda \in P^{+}$then $\lambda^{*} \in P^{-}$. If $\sigma=\sigma_{\beta_{1}} \ldots \sigma_{\beta_{n}}$ where $\beta_{i} \in \Phi$ we set $\sigma^{*}=\sigma_{\Omega_{0}} \sigma \sigma_{\Omega_{0}}=\sigma_{\beta_{1}^{*}} \ldots \sigma_{\beta_{n}^{*}}$. Let $v \in W_{0}$ and $\sigma_{v} \in \Omega_{0}$ be such that $v A_{0}=A_{0} \sigma_{v}$. With our notation we have $v A_{0}^{-}=A_{0}^{-} \sigma_{v}^{*}$.
For $\lambda \in P$, we denote by W_{λ} the stabiliser in W_{a} of the set of alcoves that contain λ in their closure and by Ω_{λ} the stabiliser of λ in Ω. This notation is coherent since for all $\lambda \in P$ we have $W_{\lambda} \simeq \Omega_{\lambda} \simeq \Omega_{0}$ where $\Omega_{0}=\left\langle\sigma_{\alpha} \mid \alpha \in \Delta\right\rangle$.

2.3 Extended affine Weyl groups

The extended affine Weyl group is defined by $\Omega_{e}=\Omega_{0} \ltimes P$; it acts naturally on (the right) of V and on $\operatorname{Alc}(\mathscr{F})$ but the action is no longer faithful. If we denote by Π the stabiliser of A_{0} in Ω_{e} then we have $\Omega_{e}=\Pi \ltimes \Omega$. Note that Π permutes the weights that belongs to the closure of A_{0}. Further the group Π is isomorphic to P / Q, hence abelian, and its action on Ω is given by an automorphism of the Dynkin diagram; see Planches I-IX in [1].
An extended alcove is a pair (A, μ) where $A \in \operatorname{Alc}(\mathscr{F})$ and μ is a vertex of A which lies in P. We denote by $\operatorname{Alc}_{e}(\mathscr{F})$ the set of extended alcoves. Then, the group Ω_{e} acts naturally on $\operatorname{Alc}_{e}(\mathscr{F})$ and the action is faithfull and transitive.

We set $W_{e} \simeq \Pi \ltimes W_{a}$. We define a left action of W_{e} on $\operatorname{Alc}_{e}(\mathscr{F})$ as follows. Let $(A, \mu) \in \operatorname{Alc}_{e}(\mathscr{F})$ and let $(a, s) \in \Pi \times S$. Let f_{s} be the face of type s of $A_{0} \in \operatorname{Alc}(\mathscr{F})$, by which we mean that $s A_{0}=A_{0} \sigma_{f_{s}}$ where $\sigma_{f_{s}}$ is the reflection with respect to the hyperplane that contains f_{s}. Let $\sigma_{A, \mu} \in \Omega_{e}$ be such that $\left(A_{0}, 0\right) \sigma_{A, \mu}=(A, \mu)$. We set

* $s(A, \mu)=(A \sigma, \mu \sigma)$ where σ is the reflection that contains the face $f_{s} \sigma_{A, \mu}$.
* $a(A, \mu)=\left(A, \mu a^{\sigma_{A}}\right)$ where $a^{\sigma_{A}}=\sigma_{A, \mu}^{-1} a \sigma_{A, \mu}$.

It can be shown that the action of Ω_{e} and the action of W_{e} commute.
To simplify notation we will simply write $A_{0} \in \operatorname{Alc}_{e}(\mathscr{F})$ for the alcove $\left(A_{0}, 0\right)$. Similarly, we write A_{λ} and A_{λ}^{-}for the alcoves $\left(A_{\lambda}, \lambda\right)$ and $\left(A_{\lambda}^{-}, \lambda\right)$. Let $p_{\lambda} \in W_{e}$ and p_{λ}^{-}be such that $p_{\lambda} A_{0}=A_{\lambda}$ and $p_{\lambda}^{-} A_{0}=A_{\lambda}^{-}$. Finally for all $w \in W_{e}$ we will denote by σ_{w} the unique element of Ω_{e} such that $w\left(A_{0}, 0\right)=\left(A_{0}, 0\right) \sigma_{w}$.

All the notion and notation for alcoves can be extended to $\operatorname{Alc}_{e}(\mathscr{F})$. We just omit the part with the weight when needed. For instance if $A^{\prime}=(A, \lambda) \in \operatorname{Alc}_{e}(\mathscr{F})$, we write $A^{\prime}[\gamma]<0$ to mean $A[\gamma]<0$. The length function, the weight function, the Bruhat order all naturally extend to W_{e} and Ω_{e} by setting $\ell(a w)=\ell(w)$, $L(a w)=L(w)$ and $a w<a^{\prime} w^{\prime}$ if and only if $a=a^{\prime}$ and $w<w^{\prime}$ where $a, a^{\prime} \in \Pi$ and $w, w^{\prime} \in W_{a}$.

2.4 Quarter of vertex λ

The quarters of vertex λ are the connected components of

$$
V \backslash \bigcup_{H \in \mathscr{F}, \lambda \in H} H .
$$

Given $\lambda \in P$ and $v \in W_{0}$, we let $\mathscr{C}_{\lambda, v}^{+}$and $\mathscr{C}_{\lambda, v}^{-}$the quarter of vertex λ which contains $v A_{\lambda}$ and $v A_{\lambda}^{-}$ respectively. When $v=1$, we will omit the 1 in the notation $\mathscr{C}_{\lambda, 1}$. The fundamental Weyl chamber is

$$
\mathscr{C}_{0}^{+}:=\left\{x \in V \mid\left\langle x, \alpha^{\vee}\right\rangle>0 \text { for all } \alpha \in \Phi^{+}\right\}
$$

Let X_{0} be the set of distinguished left coset representatives of W_{0} in W_{e}. Any element w of W_{e} can be uniquely written under the form $w=x v$ where $v \in W_{0}$ and $x \in X_{0}$. In view of Proposition 2.1, we have

$$
x \in X_{0} \Longleftrightarrow x A_{0} \in \mathscr{C}_{0}^{+} \Longleftrightarrow x A_{0}[\alpha]>0 \text { for all } \alpha \in \Delta .
$$

For all $x \in X_{0}, \lambda \in P$ and $v \in W_{0}$ we have $x v A_{\lambda} \in \mathscr{C}_{\lambda, v}^{+}$.
Let \mathscr{C} be a quarter of vertex $\lambda \in P$ and fix $\gamma \in \Phi^{+}$. We have either

$$
\left.\left\{\left\langle x, \gamma^{\vee}\right\rangle \mid x \in \mathscr{C}\right\}=\right] \lambda_{\gamma},+\infty\left[\quad \text { or } \quad\left\{\left\langle x, \gamma^{\vee}\right\rangle \mid x \in \mathscr{C}\right\}=\right]-\infty, \lambda_{\gamma}[.
$$

In the first case we say that \mathscr{C} is oriented toward $+\infty$ in the direction γ. In the second case we say that \mathscr{C} is oriented toward $-\infty$ in the direction γ.

Lemma 2.3. Let $\lambda \in P$ and $v \in W_{0}$. We have for all $\gamma \in \Phi^{+}$:

$$
\mathscr{C}_{\lambda, v}^{+}[\gamma]= \begin{cases}+\infty & \text { if } \gamma \cdot \sigma_{v}^{-1} \in \Phi^{+} \\ -\infty & \text { if } \gamma \cdot \sigma_{v}^{-1} \in \Phi^{-}\end{cases}
$$

Proof. Let $x \in \mathscr{C}_{\lambda, v}^{+}$. There exists $x_{0} \in \mathscr{C}_{0, v}^{+}$and $y_{0} \in \mathscr{C}_{0}^{+}$such that $x=x_{0}+\lambda$ and $x_{0}=y_{0} \sigma_{v}$. We have

$$
\left\langle x, \gamma^{\vee}\right\rangle=\left\langle x_{0}+\lambda, \gamma^{\vee}\right\rangle=\left\langle y_{0} \sigma_{v}, \gamma^{\vee}\right\rangle+\lambda_{\gamma}=\lambda_{\gamma}+\left\langle y_{0},\left(\gamma \sigma_{v}^{-1}\right)^{\vee}\right\rangle
$$

and the result follows by definition of \mathscr{C}_{0}^{+}.
Similarly, we have

$$
\mathscr{C}_{\lambda, v}^{-}[\gamma]=\left\{\begin{array}{ll}
-\infty & \text { if } \gamma \cdot \sigma_{v}^{*-1} \in \Phi^{+} \\
+\infty & \text { if } \gamma \cdot \sigma_{v}^{*-1} \in \Phi^{-}
\end{array} .\right.
$$

3 Affine Hecke algebras with unequal parameters

3.1 Affine Hecke algebra

Let $\mathscr{A}=\mathbf{C}\left[\mathbf{q}, \mathbf{q}^{-1}\right]$ where \mathbf{q} is an indeterminate. The Iwahori-Hecke algebra \mathscr{H} associated to W_{e} is the free \mathscr{A}-module with basis $\left\{T_{w} \mid w \in W_{e}\right\}$ and relation given by

$$
T_{u} T_{v}=T_{u v} \text { whenever } \ell(u v)=\ell(u)+\ell(v) \quad \text { and } \quad\left(T_{s}-\mathbf{q}^{L(s)}\right)\left(T_{s}+\mathbf{q}^{-L(s)}\right)=0 \text { if } s \in S
$$

From this relation, we easily find that for all $s \in S$ and all $w \in W$, we have

$$
T_{s} T_{w}=\left\{\begin{array}{ll}
T_{s w}, & \text { if } \ell(s w)>\ell(w), \\
T_{s w}+\xi_{s} T_{w}, & \text { if } \ell(s w)<\ell(w)
\end{array} \quad \text { where } \xi_{s}=\mathbf{q}^{L(s)}-\mathbf{q}^{-L(s)}\right.
$$

The basis $\left(T_{w}\right)_{w \in W_{e}}$ is called the standard basis. We write $f_{x, y, z}$ for the structure constants associated to the standard basis:

$$
T_{x} T_{y}=\sum_{z \in W_{e}} f_{x, y, z} T_{z}
$$

The elements $f_{x, y, z}$ are polynomials in $\left\{\xi_{s} \mid s \in S\right\}$ with positive coefficients. The degree of $f_{x, y, z}$ will be denoted $\operatorname{deg}\left(f_{x, y, z}\right)$ and is the highest power of \mathbf{q} that appear in $f_{x, y, z}$.

3.2 Multiplication of the standard basis

In this section, we present a result of [4] on a bound on the degree of the polynomials $f_{x, y, z}$. Recall that for $A, B \in \operatorname{Alc}_{e}(\mathscr{F})$, we have set

$$
H(A, B)=\{H \in \mathscr{F} \mid H \text { separates } A \text { and } B\}
$$

Then for $x, y \in W_{e}$ we set

$$
H_{x, y}=H\left(A_{0}, y A_{0}\right) \cap H\left(x y A_{0}, y A_{0}\right)
$$

For $\alpha \in \Phi^{+}$we set

$$
c_{x, y}(\alpha):=\max _{\substack{H \in H(x, y) \\ \bar{H}=\alpha}} L_{H}
$$

Then according to [4, Theorem 2.4] we have:
Theorem 3.1. The degrees of the polynomials $f_{x, y, z}$ are bounded by $\sum_{\alpha \in \overline{H_{x, y}}} c_{x, y}(\alpha)$.
We obtain the following corollary [5, Proposition 5.3] which will be crucial in the following section.
Corollary 3.2. Let $y \in W_{e}$ and $x \in X_{0}$. Let $\left(y_{0}, y_{r}\right) \in W_{0} \times X_{0}^{-1}$ be such that $y=y_{0} y_{r}$. Then

$$
\operatorname{deg}\left(f_{x, y, z}\right) \leq L\left(w_{0}\right)-L\left(y_{0}\right)
$$

3.3 Kazhdan-Lusztig basis

Let ${ }^{-}$the ring involution of \mathscr{A} which takes \mathbf{q} to \mathbf{q}^{-1}. This involution can be extended to a ring involution of \mathscr{H} via the formula

$$
\overline{\sum_{w \in W_{e}} a_{w} T_{w}}=\sum_{w \in W_{e}} \bar{a}_{w} T_{w^{-1}}^{-1} \quad\left(a_{w} \in \mathscr{A}\right) .
$$

We set

$$
\mathscr{A}_{<0}=\mathbf{q}^{-1} \mathbf{Z}\left[\mathbf{q}^{-1}\right] \quad \text { and } \quad \mathscr{H}_{<0}=\bigoplus_{w \in W_{e}} \mathscr{A}_{<0} T_{w}
$$

We define $\mathscr{A}_{\leq 0}$ and $\mathscr{H}_{\leq 0}$ in a similar manner. For each $w \in W_{e}$ there exists a unique element $C_{w} \in \mathscr{H}$ (see [11, Theorem 5.2]) such that (1) $\bar{C}_{w}=C_{w}$ and (2) $C_{w} \equiv T_{w} \bmod \mathscr{H}_{<0}$. For any $w \in W_{e}$ we set

$$
C_{w}=T_{w}+\sum_{y \in W_{e}} P_{y, w} T_{y} \quad \text { where } P_{y, w} \in \mathscr{A}_{<0}
$$

The coefficients $P_{y, w}$ are called as the Kazhdan-Lusztig polynomials. It is well known ([11, §5.3]) that $P_{y, w}=0$ whenever $y \not \leq w$. It follows that $\left(C_{w}\right)_{w \in W_{e}}$ forms an \mathscr{A}-basis of \mathscr{H} known as the Kazhdan-Lusztig basis.
Remark 3.3. Using Corollary 3.2 and the definition of the Kazhdan-Lusztig basis, one can show that $T_{x} C_{p_{\lambda} w_{0}} \in \mathscr{H}_{\leq 0}$ for all $\lambda \in P^{+}$.

3.4 The center of the affine Hecke algebra

In this section we follow the presentation of Nelsen and Ram [7] and we refer to it and the references therein for details and proofs.

We start by introducing another presentation of the affine Hecke algebra which is more convenient to describe its center $Z(\mathscr{H})$. For each $\lambda \in P$, we set $e^{\lambda}:=T_{p_{\mu}} T_{p_{\nu}}^{-1}$ where $\mu, \nu \in P^{+}$are such that $\mu-\nu=\lambda$. This can be shown to be independant of the choice of μ and ν. Then \mathscr{H} is generated by the sets $\left\{T_{s} \mid s \in S_{0}\right\}$ and $\left\{e^{\lambda} \mid \lambda \in P\right\}$ and we have the relations

$$
e^{\lambda} e^{\mu}=e^{\lambda+\mu}=e^{\mu} e^{\lambda} \quad \text { and } \quad e^{\lambda} T_{s}=T_{s} e^{\lambda \sigma_{\alpha_{i}}}+\xi_{s} \frac{e^{\lambda}-e^{\lambda \sigma_{\alpha_{i}}}}{1-e^{-\alpha_{i}}}
$$

where s is such that $s A_{0}=A_{0} \sigma_{\alpha_{i}}$. Let $\mathscr{A}[P]$ be the subalgebra of \mathscr{H} generated by $\left\{e^{\lambda} \mid \lambda \in P\right\}$. The group Ω_{0} acts naturally on $\mathscr{A}[P]$ via $e^{\lambda} \sigma=e^{\lambda \sigma}$.
Theorem 3.4. The sets $\left\{e^{\lambda} T_{w} \mid \lambda \in P, w \in W_{0}\right\}$ and $\left\{T_{w} e^{\lambda} \mid w \in W_{0}, \lambda \in P\right\}$ are \mathscr{A}-basis of \mathscr{H}. The center $Z(\mathscr{H})$ of \mathscr{H} is

$$
\mathscr{A}[P]^{\Omega_{0}}=\left\{f \in \mathscr{A}[P] \mid f \cdot \sigma=f \text { for all } \sigma \in \Omega_{0}\right\} .
$$

Let $\mathscr{A}_{-}[P]^{\Omega_{0}}=\left\{f \in \mathscr{A}[P] \mid f \cdot \sigma=(-1)^{\ell(\sigma)} f\right.$ for all $\left.\sigma \in \Omega_{0}\right\}$ be the sets of antisymmetric functions and let

$$
a_{\mu}:=\sum_{\sigma \in \Omega_{0}}(-1)^{\ell(\sigma)} e^{\mu \sigma} \quad \text { and } \quad \mathbf{s}_{\mu}=\frac{a_{\mu+\rho}}{a_{\rho}} \quad \text { where } \rho=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha .
$$

The elements \mathbf{s}_{μ} which are called the Weyl characters are well-defined and the set $\left\{\mathbf{s}_{\mu} \mid \mu \in P^{+}\right\}$forms a basis of $\mathscr{A}[P]^{\Omega_{0}}$. Recall the definition of the coefficients $m_{\tau, \lambda}^{\mu}$ in the introduction.
Theorem 3.5. We have $\mathrm{s}_{\tau} C_{w_{0}}=C_{w_{0}} \mathrm{~s}_{\tau}=C_{p_{\tau} w_{0}}$ for all $\tau \in P^{+}$and

$$
\mathrm{s}_{\tau} C_{p_{\lambda} w_{0}}=\mathrm{s}_{\tau} \mathrm{s}_{\lambda} C_{w_{0}}=\sum_{\mu} m_{\tau, \lambda}^{\mu} C_{p_{\mu} w_{0}} .
$$

4 Decomposition into the Kazhdan-Lusztig basis

The aim of this section is to prove Statement (1) in the introduction, that is, in order to determine the decomposition of $\mathrm{s}_{\tau} C_{p_{\lambda} w_{0}}$ in the Kazhdan-Lusztig basis, it is enough to determine the terms of maximal degree in product of the form $T_{p_{\tau}} T_{p_{\lambda} w_{0}}$.
Let $x \in X_{0}$ (respectively $y \in X_{0}^{-1}$). There exists a unique family of polynomials $\left(\mathfrak{p}_{x^{\prime}, x}\right)_{x^{\prime} \in X_{0}}$ in $\mathscr{A}_{<0}$ (respectively $\left(\mathrm{p}_{x^{\prime}, x}^{r}\right)_{x^{\prime} \in X_{0}}$ in $\mathscr{A}_{<0}$) such that $\mathrm{p}_{x^{\prime}, x}=0$ whenever $x^{\prime} \nsubseteq x$ (respectively $\mathrm{p}_{y^{\prime}, y}=0$) and

$$
C_{x w_{0}}=T_{x} C_{w_{0}}+\sum_{x^{\prime} \in X_{0}} \mathfrak{p}_{x^{\prime}, x} T_{x^{\prime}} C_{w_{0}} \quad \text { and } \quad C_{w_{0} y}=C_{w_{0}} T_{y}+\sum_{y^{\prime} \in X_{0}^{-1}} \mathrm{p}_{y^{\prime}, y}^{r} C_{w_{0}} T_{y^{\prime}} .
$$

The polynomials p are called relative Kazhdan-Lusztig polynomials [3]. In our case, it can be shown [12] that we have $\mathbf{p}_{x, x^{\prime}}=P_{x w_{0}, x^{\prime} w_{0}}$ although it is sufficient for us to know that they belong to $\mathscr{A}_{<0}$. Finally, we set

$$
\mathbf{P}(x)=\sum_{x^{\prime} \in X_{0}} \mathbf{p}_{x^{\prime}, x} T_{x^{\prime}} \quad \text { and } \quad \mathbf{P}_{R}(y)=\sum_{y^{\prime} \in X_{0}^{-1}} \mathbf{p}_{y^{\prime}, y}^{r} T_{y^{\prime}} .
$$

so that $\mathbf{P}(x) C_{w_{0}}=C_{x w_{0}}$ and $C_{w_{0}} \mathbf{P}_{R}(y)=C_{w_{0} y}$. When $\tau \in P^{+}$, we know that $p_{\tau} \in X_{0}$. To lighten notation, we will write $\mathbf{P}(\tau)$ instead of $\mathbf{P}\left(p_{\tau}\right)$. For all $\tau, \lambda \in P^{+}$we have

$$
\mathbf{s}_{\tau} C_{w_{0}}=\mathbf{P}(\tau) C_{w_{0}} \quad \text { and } \quad \mathrm{s}_{\tau} C_{p_{\lambda} w_{0}}=\mathrm{s}_{\tau} C_{w_{0}} \mathrm{~s}_{\lambda}=\mathbf{P}(\tau) C_{w_{0}} \mathrm{~s}_{\lambda}=\mathbf{P}(\tau) C_{p_{\lambda} w_{0}} .
$$

Let $\tau, \lambda \in P^{+}$. Using Remark 3.3 we get

$$
\begin{aligned}
\mathbf{P}(\tau) C_{p_{\lambda} w_{0}} & =T_{p_{\tau}} C_{p_{\lambda} w_{0}}+\sum_{x<p_{\tau}, x \in X_{0}} \underbrace{\mathrm{p}_{x, p_{\tau}} T_{x} C_{p_{\lambda} w_{0}}}_{\in \mathscr{H}<0} \\
& \equiv T_{p_{\tau}} C_{p_{\lambda} w_{0}} \bmod \mathscr{H}_{<0} .
\end{aligned}
$$

Next

$$
T_{p_{\tau}} C_{p_{\lambda} w_{0}}=T_{p_{\tau}} T_{p_{\lambda} w_{0}}+\sum_{y<p_{\lambda} w_{0}} P_{y, p_{\lambda} w_{0}} T_{p_{\tau}} T_{y} .
$$

Let $y \in W_{e}$ and $\left(y_{0}, y_{r}\right) \in W_{0} \times X_{0}^{-1}$ be such $y=y_{0} y_{r}$. On the one hand, we have

$$
P_{y, p_{\lambda} w_{0}}=P_{y_{0} y_{r}, w_{0} p_{\lambda^{*}}}=\mathbf{q}^{L\left(y_{0}\right)-L\left(w_{0}\right)} P_{w_{0} y_{r}, w_{0} p_{\lambda^{*}}}
$$

On the other hand the maximal degree that can appear in $T_{p_{\tau}} T_{y}$ is $L\left(w_{0}\right)-L\left(y_{0}\right)$. Therefore if $w_{0} y_{r}<$ $w_{0} p_{\lambda^{*}}$ we get that $P_{y, p_{\lambda} w_{0}} T_{p_{\tau}} T_{y} \in \mathscr{H}_{<0}$ and

$$
\begin{aligned}
T_{p_{\tau}} C_{p_{\lambda} w_{0}} & \equiv T_{p_{\tau}} T_{p_{\lambda} w_{0}}+\sum_{y_{0} \in W_{0}} \mathbf{q}^{L\left(y_{0}\right)-L\left(w_{0}\right)} T_{p_{\tau}} T_{y_{0} p_{\lambda^{*}}} \quad \bmod \mathscr{H}_{<0} \\
& \equiv T_{p_{\tau}} T_{w_{0} p_{\lambda^{*}}}+\sum_{v \in W_{0}} \mathbf{q}^{-L(v)} T_{p_{\tau}} T_{\left(v w_{0}\right) p_{\lambda^{*}}} \quad \bmod \mathscr{H}_{<0} .
\end{aligned}
$$

Finally

$$
\mathbf{P}(\tau) C_{p_{\lambda} w_{0}} \equiv T_{p_{\tau+\lambda} w_{0}}+\sum_{v \in W_{0}} \underbrace{\mathbf{q}^{-L(v)} T_{p_{\tau}} T_{\left(v w_{0}\right) p_{\lambda *}}}_{\in \mathscr{H}_{\leq 0}} \bmod \mathscr{H}_{<0} .
$$

The element $\mathbf{P}(\tau) C_{w_{0} p_{\lambda^{*}}}$ are stable under the ${ }^{-}$-involution, thus to determine the decomposition of $\mathbf{P}(\tau) C_{p_{\lambda} w_{0}}$ in the Kazhdan-Lusztig basis, we need to determine which products $T_{p_{\tau}} T_{\left(v w_{0}\right) p_{\lambda^{*}}}$ can actually give rise to a coefficient of degree $L(v)$. To simplify notation we now take $\lambda \in P^{-}$.
Let $x, y \in W_{e}$ and fix a reduced expression $a s_{n} \ldots s_{1}$ of x where $a \in \Pi$ and $s_{i} \in S$ for all i. Let $J=\left\{i_{1}, \ldots, i_{p}\right\}$ be a subset of $\{1, \ldots, n\}$. For all $1 \leq \ell \leq k<n$, we set

$$
x^{J}[k, \ell]=\prod_{r=\ell, r \notin J}^{k} s_{r} \quad \text { and } \quad x^{J}[n, \ell]=a \prod_{r=\ell, r \notin J}^{n} s_{r} .
$$

We denote by $\mathfrak{I}_{x, y}$ the set of all subsets $\left\{i_{1}, \ldots, i_{p}\right\}$ of $\{1, \ldots, n\}$ such that $1 \leq i_{1}<\ldots<i_{p} \leq k$ and

$$
s_{i_{t}} x^{J}{ }_{\left[i_{t}-1,1\right]}<x^{J}{ }_{\left[i_{t}-1,1\right]} \text { for all } t \in\{1, \ldots, p\} .
$$

It should be noted that the set $\mathfrak{I}_{x, y}$ depends on the reduced expression of x. For $J=\left\{i_{1}, \ldots, i_{p}\right\}$ in $\mathfrak{I}_{x, y}$, we set $\xi_{J}=\prod_{k=1}^{p} \xi_{s_{i_{k}}}$. Then we have [2, Proof of Proposition 5.1]

$$
T_{x} T_{y}=\sum_{J \in \mathfrak{I}_{x, y}} \xi_{J} T_{x^{J}[n, 1] y}
$$

We fix a reduced expression $a s_{n} \ldots s_{1}$ of p_{τ}. Then

$$
T_{p_{\tau}} T_{v w_{0} p_{\lambda}}=T_{p_{\tau}} T_{v p_{\lambda}^{-}}=\sum_{J \in \mathcal{I}_{p_{\tau}, v p_{\lambda}^{-}}} \xi_{J} T_{p_{\tau}^{J}[n, 1] v p_{\lambda}^{-}}
$$

If we set (keeping in mind that a reduced expression for p_{τ} is fixed)

$$
\mathfrak{I}_{\tau, v \lambda}:=\mathfrak{I}_{p_{\tau}, v p_{\lambda}^{-}} \quad \text { and } \quad \mathfrak{I}_{\tau, v \lambda}^{\max }:=\left\{J \in \mathfrak{I}_{p_{\tau}, v p_{\lambda}^{-}} \mid \xi_{J}=L(v)\right\}
$$

then, we have

$$
\mathbf{P}(\tau) C_{w_{0} p_{\lambda}^{-}}=\sum_{v \in W_{0}} \sum_{J \in \mathcal{T}_{\tau, v \lambda}^{\max }} C_{p_{\tau}^{J}[n, 1] v p_{\lambda}^{-}}
$$

we now need to determine the sets $\mathfrak{I}_{\tau, v \lambda}^{\max }$ for all $v \in W_{0}$ and all $\lambda \in P^{-}$.

5 Description of $\mathfrak{I}_{\tau, v \lambda}^{\max }$ in terms of admissible subsets

Once and for all in this section, we fix a reduced expression $p_{\tau}=a s_{n} \ldots s_{1}$ where $a \in \Pi$ and $s_{i} \in S$. Let $\left(\beta_{1}, \ldots, \beta_{n}\right) \in\left(\Phi^{+}\right)^{n}$ be such that

$$
s_{i} \ldots s_{1} A_{0}=A_{0} \sigma_{\beta_{1}, N_{1}} \ldots \sigma_{\beta_{i}, N_{i}} \text { for all } i \in\{1, \ldots, n\}
$$

Recall that for $\beta \in \Phi^{+}$, we have set $\beta^{*}:=\beta \sigma_{\Omega_{0}} \in \Phi^{-}$. We have

$$
p_{\tau} A_{0}^{-}=p_{\tau} A_{0} \sigma_{\Omega_{0}}=A_{0} \sigma_{\beta_{1}, N_{1}} \ldots \sigma_{\beta_{n}, N_{n}} \sigma_{\Omega_{0}}=A_{0}^{-} \sigma_{\beta_{1}^{*}, N_{1}} \ldots \sigma_{\beta_{n}^{*}, N_{n}} .
$$

Following [9], we now introduce the concept of admissible subsets. Recall that a chain $\left(\sigma_{0}, \sigma_{1} \ldots, \sigma_{p}\right) \in \Omega_{0}^{p}$ is an increasing saturated chain in the Bruhat order if and only if

$$
\sigma_{i-1}<\sigma_{i} \quad \text { and } \quad \ell\left(\sigma_{i}\right)=\ell\left(\sigma_{i-1}\right)+1 \text { for all } i \in\{1, \ldots, p\}
$$

Definition 5.1. A subset $J=\left\{i_{1}, \ldots, i_{p}\right\}$ of $\{1, \ldots, n\}$ will be called an admissible subset if

$$
e<\sigma_{\beta_{i_{p}}}<\sigma_{\beta_{i_{p-1}}} \sigma_{\beta_{i_{p}}}<\ldots<\sigma_{\beta_{1}} \ldots \sigma_{\beta_{i_{p-1}}} \sigma_{\beta_{i_{p}}}
$$

is a saturated chain in the Bruhat order on Ω_{0}.
Conjugating by $\sigma_{\Omega_{0}}$, we see that $J=\left\{i_{1}, \ldots, i_{p}\right\}$ is admissible if and only if

$$
e<\sigma_{\beta_{i_{p}}^{*}}<\sigma_{\beta_{i_{p-1}^{*}}^{*}} \sigma_{\beta_{i_{p}}^{*}}<\ldots<\sigma_{\beta_{1}^{*}} \ldots \sigma_{\beta_{i_{p-1}}^{*}} \sigma_{\beta_{i_{p}}^{*}}
$$

is a saturated chain in the Bruhat order on Ω_{0}.
Remark 5.2. Our definition of admissible subset is slightly different than the one in [9] where they multiply on the right in the definition. This is because, in our work, reduced expressions of p_{τ} naturally appear whereas the authors in [9] work with reduced expressions of $p_{-\tau}$. The relationship between those two definitions will be made explicit in the next section.

Definition 5.3. Let $J=\left\{i_{1}, \ldots, i_{p}\right\}$ be an admissible susbet. Let $\sigma_{J}=\sigma_{\beta_{1}} \ldots \sigma_{\beta_{i_{p-1}}} \sigma_{\beta_{i_{p}}}$ and $v_{J} \in W_{0}$ be such that $v_{J} A_{0}=A_{0} \sigma_{J}$. We say that J is

1) μ-dominant for $\mu \in P^{+}$if the alcoves $p_{\tau}^{J}[k, 1] v_{J} A_{\mu} \in \mathscr{C}_{0}^{+}$for all $k \in\{1, \ldots, n\}$,
2) maximal if $L\left(s_{i_{\ell}}\right)=L\left(\beta_{i_{\ell}}\right)$ for all $1 \leq \ell \leq p$.

If $\mu \in P^{-}$, we will say that J is λ-antidominant if $p_{\tau}^{J}[k, 1] v_{J} A_{\mu}^{-} \in \mathscr{C}_{0}^{-}$for all $k \in\{1, \ldots, n\}$. We can easily see that J is μ-antidominant if and only if J is μ^{*}-dominant.
We have $L\left(\sigma_{J}\right)=L\left(v_{J}\right)=\sum_{k=1}^{p} L\left(\beta_{i_{k}}\right)$. In particular, we see that if $J \in \mathfrak{I}_{\tau, v_{J} \lambda}^{\max }$, then J must be maximal in order to have $\operatorname{deg}\left(\xi_{J}\right)=L\left(v_{J}\right)$.
Let $\beta \in \Phi^{+}$and $\sigma \in \Omega_{0}$. We have [6, §5.7] $\sigma<\sigma_{\beta} \sigma$ if and only if $\beta \sigma \in \Phi^{+}$. If $J=\left\{i_{1}, \ldots, i_{p}\right\}$ is an admissible subset, then, since $\sigma_{\beta_{i_{\ell+1}}} \ldots \sigma_{\beta_{i_{p}}}<\sigma_{\beta_{i_{\ell}}} \sigma_{\beta_{i_{\ell+1}}} \ldots \sigma_{\beta_{i_{p}}}$, we have $\beta_{i_{\ell}} \sigma_{\beta_{i_{\ell+1}}} \ldots \sigma_{\beta_{i_{p}}} \in \Phi^{+}$. Similarly, since β_{i}^{*} is a negative root, we have

Note that if $\left\{i_{1}, \ldots, i_{p}\right\}$ is an admissible subset then so is $\left\{i_{\ell}, \ldots, i_{p}\right\}$ for all $\ell \leq p$: we'll denote this subset by $J_{\ell-1}$ so that $J_{0}=J$ and $J_{p}=\emptyset$. Then according to Definition 5.3 we have

$$
\sigma_{J_{\ell}}=\sigma_{\beta_{i_{\ell+1}}} \ldots \sigma_{\beta_{i_{p}}} \quad \text { and } \quad v_{J_{\ell}} A_{0}=A_{0} \sigma_{J_{\ell}}
$$

We are now ready to state the main result of this section. Recall the notation introduced at the end of the previous section.
Theorem 5.4. Let $\lambda \in P^{-}$and $v \in W_{0}$.

1) If J is admissible, λ-antidominant and maximal then $J \in \mathfrak{I}_{\tau, v_{J} \lambda}^{\max }$.
2) If $J \in \mathfrak{I}_{\tau, v \lambda}^{\max }$ then $v=v_{J}, J$ is admissible, λ-antidominant and maximal.

The rest of this section is devoted to the proof of this theorem.
Proposition 5.5. Let $v \in W_{0}, \lambda \in P$ and fix $k \in\{1, \ldots, n\}$.

1) The unique hyperplane separating the alcoves $p_{\tau}[k-1,1] v A_{\lambda}$ and $p_{\tau}[k, 1] v A_{\lambda}$ is $H_{k}:=H_{\beta_{k} \sigma_{v}, N_{k}+\left\langle\lambda, \beta_{k} \sigma_{v}^{\vee}\right\rangle}$.
2) We have $p_{\tau}[k-1,1] v A_{\lambda}=p_{\tau}[k, 1] v^{\prime} A_{\lambda^{\prime}}$ where $\sigma_{v^{\prime}}=\sigma_{\beta_{k}} \sigma_{v}$ and $\lambda^{\prime}=\lambda \sigma_{H_{k}}=\lambda+N_{k} \beta_{k} \sigma_{v}$.

Proof. The (unique) hyperplane separating $p_{\tau}[k-1,1] A_{0}$ and $p_{\tau}[k, 1] A_{0}$ is $H_{\beta_{k}, N_{k}}$. It follows that the hyperplane separating $p_{\tau}[k-1,1] v A_{0}$ and $p_{\tau}[k, 1] v A_{0}$ is $H_{\beta_{k}, N_{k}} \sigma_{v}=H_{\beta_{k} \sigma_{v}, N_{k}}$. Finally, the hyperplane separating $p_{\tau}[k-1,1] v A_{\lambda}$ and $p_{\tau}[k, 1] v A_{\lambda}$ is $H_{\beta_{k} \sigma_{v}, N_{k}+\left\langle\lambda, \beta_{k} \sigma_{v}^{\vee}\right\rangle}$. Next we have

$$
\begin{aligned}
p_{\tau}[k-1,1] v A_{\lambda} & =p_{\tau}[k, 1] v A_{\lambda} \sigma_{H_{k}} \\
& =p_{\tau}[k, 1] v A_{\lambda^{\prime}} \sigma_{\beta_{k} \sigma_{v},\left\langle\lambda^{\prime}, \beta_{k} \sigma_{v}^{\vee}\right\rangle} \\
& =p_{\tau}[k, 1] v A_{0} \sigma_{\beta_{k} \sigma_{v}} t_{\lambda^{\prime}} \\
& =p_{\tau}[k, 1] A_{0} \sigma_{v} \sigma_{\beta_{k} \sigma_{v}} t_{\lambda^{\prime}} \\
& =p_{\tau}[k, 1] A_{0} \sigma_{\beta_{k}} \sigma_{v} t_{\lambda^{\prime}} \\
& =p_{\tau}[k, 1] v^{\prime} A_{\lambda^{\prime}}
\end{aligned}
$$

as required.
Given any triplet (λ, v, J) such that $(\lambda, v) \in P \times W_{0}$ and $J=\left\{i_{1}, \ldots, i_{p}\right\} \in \mathfrak{I}_{\tau, v \lambda}$, we associate sequences $\underline{v}=\left(v_{0}, \ldots, v_{p}\right), \underline{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{p}\right)$ and $\underline{\lambda}=\left(\lambda_{0}, \ldots, \lambda_{p}\right)$ defined by the following relations for $\ell \in\{1, \ldots, p\}$:

- $v_{0}=v, \sigma_{0}=\sigma_{v}$ and $v_{\ell} A_{0}=A_{0} \sigma_{\beta_{i_{\ell}}} \ldots \sigma_{\beta_{i_{1}}} \sigma_{v}$;
- $\gamma_{i_{\ell}}=\beta_{i_{\ell}}^{*} \sigma_{v_{\ell-1}}^{*}$;
- $\lambda_{0}=\lambda$ and $\lambda_{\ell}=\lambda_{\ell-1}+N_{i_{\ell}} \gamma_{i_{\ell}}=\lambda_{\ell-1} \sigma_{\gamma_{i_{\ell}}, N_{i_{1}}+\left\langle\lambda_{\ell-1}, \gamma_{i_{\ell} \vee}\right\rangle}$.

With these notation, we have for all $0 \leq \ell \leq p$:

$$
p_{\tau}^{J}\left[i_{\ell}-1,1\right] v A_{\lambda}^{-}=p_{\tau}\left[i_{\ell}-1,1\right] v_{\ell-1} A_{\lambda_{\ell-1}}^{-}=p_{\tau}\left[i_{\ell, 1}\right] v_{\ell} A_{\lambda_{\ell}}^{-} .
$$

If we choose $v=v_{J}$ then $v_{\ell}=v_{J_{\ell}}, \gamma_{i_{\ell}}=\beta_{i_{\ell}}^{*} \sigma_{\beta_{i_{\ell}}^{*}} \ldots \sigma_{\beta_{p}^{*}}$ and

$$
\sigma_{\beta_{i_{\ell}}^{*}} \ldots \sigma_{\beta_{i_{p}}^{*}}=\sigma_{\gamma_{i_{p}}} \ldots \sigma_{\gamma_{i_{\ell}}} .
$$

We are now ready to prove the first part of Theorem 5.4.

Proposition 5.6. Let $\lambda \in P^{-}$. If J is admissible, λ-antidominant and maximal then $J \in \mathfrak{I}_{\tau, v_{J} \lambda}^{\max }$.
Proof. In order to prove that $J=\left\{i_{1}, \ldots, i_{p}\right\} \in \mathfrak{I}_{\tau, v_{J} \lambda}^{\max }$, since J is maximal, we only need to show that

$$
s_{i_{\ell}} p_{\tau}^{J}\left[i_{\ell}-1,1\right] v_{J} p_{\lambda}^{-}<p_{\tau}^{J}\left[i_{\ell}-1,1\right] v_{J} p_{\lambda}^{-} \text {for all } 1 \leq \ell \leq p
$$

We have

1) $p_{\tau}^{J}\left[i_{\ell}-1,1\right] v_{J} p_{\lambda}^{-}=p_{\tau}\left[i_{\ell}-1,1\right] v_{J_{\ell-1}} p_{\lambda_{\ell-1}}^{-}$;
2) $\left(-\beta_{i_{\ell}}^{*}\right) \sigma_{\beta_{i_{\ell+1}}^{*}} \ldots \sigma_{\beta_{i_{p}}^{*}}=\beta_{i_{\ell}}^{*} \sigma_{J_{\ell-1}}=\gamma_{i_{\ell}} \in \Phi^{+}$(since J is admissible);
3) the hyperplane separating $p_{\tau}^{J}\left[i_{\ell}-1,1\right] v_{J} A_{\lambda}^{-}$and $s_{i_{\ell}} p_{\tau}^{J}\left[i_{\ell}-1,1\right] v_{J} A_{\lambda}^{-}$is equal to $H_{\gamma_{i_{\ell}}, m}$ where $m<0$ (since J is λ-antidominant).

It follows from the second statement that $\gamma_{i_{\ell}} \sigma_{J_{\ell-1}}^{*-1}=\beta_{i_{\ell}}^{*} \in \Phi^{-}$. The quarter $\mathscr{C}_{\lambda_{\ell-1}, v_{J_{\ell-1}}}^{-}$is therefore oriented towards $+\infty$ in the direction $\gamma_{i_{\ell}}$. The result follows by Proposition 2.1 and statement 3).

We now focus on the second part. We start by proving some technical lemmas.
Lemma 5.7. Let $\lambda \in P^{-}$and $v \in W_{0}$. We have $\overline{H_{p_{\tau}, v p_{\lambda}^{-}}} \subset\left\{\delta \in \Phi^{+} \mid \delta \sigma_{v}^{*-1} \in \Phi^{-}\right\}$.
Proof. Let $\delta \in \Phi^{+}$be such that $H_{\delta, N} \in H_{p_{\tau}, v p_{\lambda}^{-}}=H\left(A_{0}, v A_{\lambda}^{-}\right) \cap H\left(p_{\tau} v A_{\lambda}^{-}, v A_{\lambda}^{-}\right)$. First of all, since $\lambda \in P^{-}$, we have $v A_{\lambda}^{-}[\delta]<1$. It follows that $v A_{\lambda}^{-}[\delta]<N \leq 0$. If the quarter $\mathscr{C}_{\lambda, v}^{-}$is oriented towards $-\infty$ in the direction δ then $v A_{\lambda}^{-}[\delta] \geq p_{\tau} v A_{\lambda}^{-}[\delta]$ so that $v A_{\lambda}^{-}[\delta]>N$ which is impossible. This shows that the quarter $\mathscr{C}_{\lambda, v}^{-}$is oriented towards $+\infty$ in the direction δ and thus $\delta \sigma_{v}^{*-1} \in \Phi^{-}$as required.

We remark that if $v A_{\lambda} \notin \mathscr{C}_{0}^{-}$then there exists a root $\delta \in \Phi^{+}$such that $0<v A_{\lambda}^{-}[\delta]<1$ and $\delta \sigma_{v}^{*-1} \in \Phi^{-}$ which in turn implies that the inclusion $\overline{H_{p_{\tau}, v p_{\lambda}^{-}}} \subset\left\{\delta \in \Phi^{+} \mid \delta \sigma_{v}^{-1} \in \Phi^{-}\right\}$is strict. Then $\mathfrak{I}_{\tau, v \lambda}^{\max }$ has to be empty by Theorem 3.1.

Lemma 5.8. Let $\lambda \in P$ and $v \in W_{0}$. If $J=\left\{i_{1}, \ldots, i_{p}\right\} \in \mathfrak{I}_{\tau, v \lambda}$ is such that $p_{\tau}\left[k_{0}, 1\right] v A_{\lambda}^{-} \in \mathscr{C}_{0}^{-}$for some $k_{0} \in\left\{0, \ldots, i_{1}-1\right\}$ then $\overline{H_{p_{\tau}\left[n, i_{1}\right], p_{\tau}\left[i_{1}-1,1\right] v p_{\lambda}^{-}}} \subset\left\{\delta \in \Phi^{+} \mid \delta \sigma_{v}^{*-1} \in \Phi^{-}\right\}$.

Proof. Let $\delta \in \Phi^{+}$be such that $H_{\delta, N} \in H_{p_{\tau}\left[n, i_{1}\right], p_{\tau}\left[i_{1}-1,1\right] v p_{\lambda}^{-}}$where we recall that

$$
H_{p_{\tau}\left[n, i_{1}\right], p_{\tau}\left[i_{1}-1,1\right] v p_{\lambda}^{-}}=H\left(A_{0}, p_{\tau}\left[i_{1}-1,1\right] v A_{\lambda}^{-}\right) \cap H\left(p_{\tau} v A_{\lambda}^{-}, p_{\tau}\left[i_{1}-1,1\right] v A_{\lambda}^{-}\right) .
$$

Assume first that the $\mathscr{C}_{\lambda, v}$ is oriented towards $-\infty$. Then we must have

$$
v A_{\lambda}^{-}[\delta] \geq \underbrace{p_{\tau}\left[k_{0}, 1\right] v A_{\lambda}^{-}[\delta]}_{<0} \geq p_{\tau}\left[i_{1}-1,1\right] v A_{\lambda}^{-}[\delta] \geq p_{\tau} v A_{\lambda}^{-}[\delta] .
$$

But $H_{\delta, N} \in H\left(A_{0}, p_{\tau}\left[i_{1}-1,1\right] v A_{\lambda}^{-}\right)$implies that $0 \geq N>p_{\tau}\left[i_{1}-1,1\right] v A_{\lambda}^{-}[\delta]$. Therefore in this case we cannot have $H_{\delta, N} \in H\left(p_{\tau} v A_{\lambda}^{-}, p_{\tau}\left[i_{1}-1,1\right] v A_{\lambda}^{-}\right)$. This shows that the quarter $\mathscr{C}_{\lambda, v}^{-}$has to be oriented towards $+\infty$ in the direction δ and therefore we have $\delta \sigma_{v}^{*-1} \in \Phi^{-}$.

Lemma 5.9. Let $v \in W_{0}, \lambda \in P$ and fix $k \in\{1, \ldots, n\}$ such that

$$
s_{k} p_{\tau}[k-1,1] v p_{\lambda}^{-}<p_{\tau}[k-1,1] v p_{\lambda}^{-} \quad \text { and } \quad p_{\tau}[k-1,1] v A_{\lambda}^{-} \in \mathscr{C}_{0}^{-} .
$$

Then $\beta_{k}^{*} \sigma_{v}^{*} \in \Phi^{+}$.
Proof. The unique hyperplane H that separates $p_{\tau}[k-1,1] v A_{\lambda}^{-}$and $s_{k} p_{\tau}[k-1,1] v A_{\lambda}^{-}$is

$$
H:=H_{\beta_{k}^{*} \sigma_{v}^{*}, N_{k}+\left\langle\lambda, \beta_{k}^{*} \sigma_{v}^{* \vee}\right\rangle .} .
$$

Since $p_{\tau}[k-1,1] v A_{\lambda}^{-} \in \mathscr{C}_{0}^{-}$, we must have $p_{\tau}[k-1,1] v A_{\lambda}^{-} \in H^{-}$and $s_{k} p_{\tau}[k-1,1] v A_{\lambda}^{-} \in H^{+}$, which means that the quarter $\mathscr{C}_{\lambda, v}^{-}$has to be oriented toward $+\infty$ in the direction $\left|\beta_{k}^{*} \sigma_{v}^{*}\right| \in \Phi^{+}$. According to Lemma 2.3, since $\beta_{k}^{*} \sigma_{v}^{*} \sigma_{v}^{*-1}=\beta_{k}^{*} \in \Phi^{-}$, we must have $\beta_{k}^{*} \sigma_{v}^{*} \in \Phi^{+}$.

Proposition 5.10. Let $\lambda \in P^{-}, v \in W_{0}$. If $J \in \mathfrak{I}_{\tau, v \lambda}^{\max }$ then J is λ-antidominant.

Proof. Let $J=\left\{i_{1}, \ldots, i_{p}\right\} \in \mathfrak{I}_{\tau, v \lambda}^{\max }$. We have already seen that if $v A_{\lambda}^{-} \notin \mathscr{C}_{0}^{-}$then $\mathfrak{I}_{\tau, v \lambda}^{\max }=\emptyset$. Thus we must have $v A_{\lambda}^{-} \in \mathscr{C}_{0}^{-}$. Assume that there exists an index k_{0} such that $p_{\tau}^{J}\left[k_{0}+1,1\right] v A_{\lambda}^{-} \notin \mathscr{C}_{0}^{-}$and choose k_{0} to be minimal with this property. Let $0 \leq \ell \leq p$ be such that $i_{\ell+1}>k_{0}+1>i_{\ell}$ where we set $i_{0}=0$ and $i_{p+1}=+\infty$. By minimality of k_{0} we get $p_{\tau}^{J}\left[k^{\prime}, 1\right] v A_{\lambda}^{-} \in \mathscr{C}_{0}^{-}$for all $k^{\prime} \leq k_{0}$.

We construct the sequences \underline{v} and $\underline{\lambda}$ associated to the triplet (λ, v, J). By construction and by hypothesis we have

$$
s_{i_{\ell}} p_{\tau}\left[i_{\ell}-1,1\right] v_{\ell-1} p_{\lambda_{\ell-1}}^{-}<p_{\tau}\left[i_{\ell}-1,1\right] v_{\ell-1} p_{\lambda_{\ell-1}}^{-} \quad \text { and } \quad p_{\tau}\left[i_{\ell}-1,1\right] v_{\ell-1} A_{\lambda_{\ell-1}}^{-} \in \mathscr{C}_{0}^{-}
$$

Therefore, by Lemma 5.9, we have $\beta_{i_{\ell}}^{*} \sigma_{v_{\ell-1}}^{*} \in \Phi^{+}$, in other words $\left(-\beta_{i_{\ell}}^{*}\right) \sigma_{v_{\ell}}^{*} \in \Phi^{+}$. This implies in particular that $\sigma_{v_{\ell}}=\sigma_{{\beta_{i}}_{*}^{*}} \sigma_{v_{\ell-1}}<\sigma_{v_{\ell-1}}$. Thus we have $\sigma_{v_{0}}>\sigma_{v_{1}} \ldots>\sigma_{v_{\ell}}$ and $L\left(\sigma_{v_{\ell}}\right)=L\left(\sigma_{v}\right)-\sum_{k=1}^{\ell} L_{\beta_{i_{k}}^{*}}$. Since $J \in \mathfrak{I}_{\tau, v \lambda}^{\max }$ we have

$$
L\left(\sigma_{v_{\ell}}\right)=L\left(\sigma_{v_{0}}\right)-\sum_{k=1}^{\ell} L\left(\beta_{i_{\ell}}^{*}\right)=\sum_{k=\ell+1}^{p} L\left(\beta_{i_{k}}^{*}\right)=\sum_{k=\ell+1}^{p} L\left(s_{i_{k}}\right) .
$$

In particular, if $\ell=p$, then we must have $v_{p}=1$. We know that

$$
p_{\tau}^{J}\left[k_{0}, 1\right] v A_{\lambda}^{-}=p_{\tau}\left[k_{0}, 1\right] v_{\ell} A_{\lambda_{\ell}}^{-} \quad \text { and } \quad s_{k_{0}+1} p_{\tau}^{J}\left[k_{0}, 1\right] v A_{\lambda}^{-}=s_{k_{0}+1} p_{\tau}\left[k_{0}, 1\right] v_{\ell} A_{\lambda_{\ell}}^{-} .
$$

We denote by $H:=H_{\delta_{0}, 0}$ the unique hyperplane separating $s_{k_{0}+1} p_{\tau}^{J}\left[k_{0}, 1\right] v_{\ell} A_{\lambda_{\ell}}^{-}$and $p_{\tau}^{J}\left[k_{0}, 1\right] v_{\ell} A_{\lambda_{\ell}}^{-}$. Since $p_{\tau}^{J}\left[k_{0}, 1\right] v_{\ell} A_{\lambda_{\ell}}^{-} \in \mathscr{C}_{0}^{-}$and $s_{k_{0}+1} p_{\tau}^{J}\left[k_{0}, 1\right] v_{\ell} A_{\lambda_{\ell}}^{-} \notin \mathscr{C}_{0}^{-}$, the quarter $\mathscr{C}_{\lambda_{\ell}, v_{\ell}}$ has to be oriented toward $+\infty$ in the direction δ_{0}. This implies $\delta_{0} \in\left\{\gamma \in \Phi^{+} \mid \gamma \sigma_{v_{\ell}}^{*-1} \in \Phi^{-}\right\}$. Further, we have $\ell<p$ since otherwise $v_{\ell}=1$ and there is no such δ_{0}.

The set $J_{\ell}=\left\{i_{\ell+1}, \ldots, i_{p}\right\} \in \mathfrak{I}_{\tau, v_{\ell} \lambda_{\ell}}$ is non-empty and $p_{\tau}\left[k_{0}, 1\right] A_{\lambda_{\ell}}^{-} \in \mathscr{C}_{0}^{-}$(where $k_{0}<i_{\ell+1}$) thus by Lemma 5.8 we know that

$$
\overline{H_{p_{\tau}\left[n, i_{\ell+1}\right], p_{\tau}\left[i_{\ell+1}-1,1\right] v_{\ell} p_{\lambda_{\ell}}^{-}}} \subset\left\{\gamma \in \Phi^{+} \mid \gamma \sigma_{v_{\ell}}^{*-1} \in \Phi^{-}\right\}
$$

By definition of δ_{0} and since $i_{\ell+1}>k_{0}+1$ we have

$$
\overline{H_{p_{\tau}\left[n, i_{\ell+1}\right], p_{\tau}\left[i_{\ell+1}-1,1\right] v_{\ell} p_{\lambda_{\ell}}^{-}}} \subset\left\{\gamma \in \Phi^{+} \mid \gamma \sigma_{v_{\ell}}^{*-1} \in \Phi^{-}\right\} \backslash\left\{\delta_{0}\right\}
$$

and by Theorem 3.1 we obtain

$$
\sum_{k=\ell+1}^{p} L\left(s_{i_{k}}\right)<\sum_{\gamma \in \Phi^{+}, \gamma \sigma_{v_{\ell}}^{*-1} \in \Phi^{-}} L(\gamma)=L\left(v_{\ell}\right)
$$

This contradicts (\star) and therefore, there cannot be such an index k_{0}.
Now that we know that if $J \in \mathfrak{I}_{\lambda, v}^{m a x}$ then J is λ-antidominant, we can re-do the first part of the proof and show that we must have $v=v_{J}$ (indeed in the case where J is λ-antidominant there is no index k_{0} and therefore $\ell=p$).
The proof of the second part of Theorem 5.4 follows from Proposition 5.10.
Corollary 5.11. Let $\lambda \in P^{-}$and $\tau \in P^{+}$. We have

$$
P(\tau) C_{w_{0} p_{\lambda}}=\sum_{J} C_{p_{\tau}^{J} v_{J} w_{0} p_{\lambda}}
$$

where the sum is taken over all λ-antidominant maximal admissible subset J.
Remark 5.12. If we are working in the case of equal parameters, we can remove the condition of maximality since all parallel hyperplanes have same weights and therefore all admissible subsets are maximal.

6 Proof of the main result

Fix a reduced expression $a s_{n} \ldots s_{1}$ of p_{τ} and denote by $H_{\beta_{i}, N_{i}}$ the corresponding hyperplanes as in the beginning of the previous section. As mentionned in Remark 5.2, the authors in [9] work with reduced expression of $p_{-\tau}$. Let $a^{-1} s_{n}^{\prime} \ldots s_{1}^{\prime}$ be the reduced expression of $p_{-\tau}$ obtained by inverting the reduced
expression above and moving a^{-1} to the left. Then, the hyperplane separating $s_{i}^{\prime} \ldots s_{1}^{\prime} A_{0}$ and $s_{i-1}^{\prime} \ldots s_{1}^{\prime} A_{0}$ is $H_{\beta_{i}^{\prime}, N_{i}^{\prime}}$ where $\beta_{i}^{\prime}=\beta_{n-i+1}$ and $N_{i}^{\prime}=N_{n-i+1}-\left\langle\tau, \beta_{n-i+1}^{\vee}\right\rangle$. The map $i \mapsto n-i+1$ induces a bijection $J \mapsto J^{\dagger}$ between admissible subsets in the sense of Definition 5.1 and admissible subsets in the sense of Lenart and Postnikov [9, Definition 6.1]. To distinguish between those two definitions, we will say that a subset is LP-admissible if it is admissible in the sense of [9].

We start with the definition of a gallery.
Definition 6.1. A gallery is a sequence $\gamma=\left(\mu_{0}, B_{0}, F_{1}, B_{1}, \ldots, B_{\ell}, \mu_{\ell+1}\right)$ such that

1) B_{0}, \ldots, B_{ℓ} are alcoves in $\operatorname{Alc}(\mathscr{F})$;
2) for all $k \in\{1, \ldots, \ell\}, F_{k}$ is the common facet of B_{k} and B_{k-1};
3) μ_{0} and $\mu_{\ell+1}$ are vertices of B_{0} and B_{ℓ} respectively which are elements of P.

The weight of the gallery is $F_{\ell+1}-F_{0}$ and we denote it by $\mathbf{w}(\gamma)$.
Let $\gamma=\left(\mu_{0}, B_{0}, F_{1}, B_{1}, \ldots, B_{\ell}, \mu_{\ell+1}\right)$ be a gallery and let σ_{k} be the affine reflection with respect to the hyperplane which contains the facet F_{k}. The k-th tail flip operator f_{k} is defined by

The operators f_{k} commutes. For any subset $J=\left\{i_{1}, \ldots, i_{p}\right\}$ of $\{1, \ldots, \ell\}$, the weight of $f_{i_{1}} \ldots f_{i_{p}} \gamma$ is $\mu_{\ell+1} \sigma_{i_{p}} \ldots \sigma_{i_{1}}-\mu_{0}$.

Let $x=x_{0} p_{\mu} \in W_{e}$ where $\left(x_{0}, \mu\right) \in W_{0} \times P$ and let $b t_{n} \ldots t_{1}$ be an expression of x such that $b \in \Pi$ and $t_{i} \in S$ for all i. Let $\left(A, \mu_{0}\right) \in \operatorname{Alc}_{e}(\mathscr{F})$. To the reduced expression of x and he alcove $\left(A, \mu_{0}\right)$ we associate a gallery $\gamma=\left(\mu_{0}, A, F_{1}, A_{1}, \ldots, F_{n}, A_{n}, \mu_{n+1}\right)$ such that $A_{i}=t_{i} \ldots t_{1} A, F_{i}$ the common facet of A_{i} and A_{i+1} for all $1 \leq i \leq n$ and μ_{n+1} is such that $x\left(A, \mu_{0}\right)=\left(A_{n}, \mu_{n+1}\right)$. We denote by $\gamma_{-\tau}$ the gallery associated to our reduced expression of $p_{-\tau}$ and the alcove $\left(A_{0}, 0\right)$. If J is an admissible subset we denote by γ_{J} the gallery associated to our reduced expression of p_{τ} and the alcove $\left(v_{J} A_{0}, 0\right)$. Finally, let \sharp be the involution on the set of galleries defined by reading γ backward and by translating all of its components by $-\mathbf{w}(\gamma)$.

Proposition 6.2. Let $J=\left\{i_{1}, \ldots, i_{p}\right\}$ be a admissible subset and let $J^{\dagger}=\left\{j_{1}, \ldots, j_{p}\right\}$ be the corresponding LP-admissible subset. We have

$$
\left(f_{j_{1}} \ldots f_{j_{p}} \gamma_{-\tau}\right)^{\sharp}=f_{i_{1}} \ldots f_{i_{p}} \gamma_{J}
$$

Proof. The gallery $f_{j_{1}} \ldots f_{j_{p}} \gamma_{-\tau}$ is completely determined by the action of $p_{-\tau}^{J^{\dagger}}$ on $\left(A_{0}, 0\right)$. If we denote by μ its weight, we have

$$
\begin{aligned}
p_{-\tau}^{J^{\dagger}} A_{0} & =A_{-\tau} \sigma_{\beta_{j_{p}}^{\prime}, N_{j_{p}}^{\prime}} \ldots \sigma_{\beta_{j_{1}}^{\prime}, N_{j_{1}}^{\prime}} \\
& =A_{\mu} \sigma_{\beta_{j_{p}}^{\prime}} \ldots \sigma_{\beta_{j_{1}}^{\prime}} \\
& =A_{\mu} \sigma_{\beta_{i_{1}}} \ldots \sigma_{\beta_{i_{p}}} \\
& =v_{J} A_{\mu} .
\end{aligned}
$$

Since $p_{\tau}^{J} p_{-\tau}^{J^{\dagger}} A_{0}=A_{0}=p_{\tau}^{J} v_{J} A_{\mu}$, we get the result.
We will denote by $\mu(J)$ the weight of the gallery $f_{i_{1}} \ldots f_{i_{p}} \gamma_{J}$. According to the proposition above, it is equal to $-\mathbf{w}\left(f_{j_{1}} \ldots f_{j_{p}} \gamma_{-\tau}\right)$.
Lenart and Postnikov [9, Corollary 8.3] showed that in a simple Lie algebra with Weyl group W_{0}, we have for $\lambda, \tau \in P^{+}$

$$
\mathbf{s}_{\tau} \mathbf{s}_{\lambda}=\sum_{J} \mathbf{s}_{\lambda+\mu(J)}
$$

where the sum is over all LP-admissible subsets $J=\left\{j_{1}, \ldots, j_{p}\right\}$ that are λ-dominant and where $-\mu(J)$ is the weight of the gallery $f_{j_{1}} \ldots f_{j_{p}} \gamma_{-\tau}$. Using the previous proposition together with expression of $P(\tau) C_{p_{\lambda} w_{0}}$ obtained at the end of the last section in the case of equal parameters, we get

$$
\mathbf{P}(\tau) C_{p_{\lambda} w_{0}}=\sum_{J} C_{p_{\tau}^{J} v_{J} p_{\lambda} w_{0}}=\sum_{J} C_{p_{\lambda+\mu(J)} w_{0}}
$$

Remark 6.3. The condition at the end of Corollary 8.3 in [9] is not formulate in the same fashion but can be seen to be equivalent.

7 Lakshmibai-Seshadri paths

In this last section, we explain following [9, §9], how to construct an Lakshmibai-Seshadri path (LS paths for short) from an admissible subset J. There is no new result in this section but this construction can be helpful in order to understand the proof of Theorem 5.4.
A rational Ω-path of shape $\mu \in P$ is a pair of sequences $(\underline{\tau}, \underline{a})$ such that $\underline{\sigma}=\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{r}\right)$ is a stricly deacreasing chain (in the Bruhat order) of distinguished left coset representatives of $\operatorname{Stab}_{\mu}\left(\Omega_{0}\right)$ and $\underline{a}=$ $\left(a_{0}, a_{1}, \ldots, a_{r+1}\right)$ is an increasing sequence of rational numbers such that $a_{0}=0$ and $a_{r+1}=1$.
We identify π with the path $\pi:[0,1] \longrightarrow V$ defined by

$$
\pi(t):=\sum_{i=1}^{j-1}\left(a_{i}-a_{i-1}\right) \mu \sigma_{i}+\left(t-a_{j-1}\right) \mu \sigma_{j} \text { for } a_{j-1} \leq t \leq a_{j}
$$

The weight of π is equal to $\pi(1)$. We set $\pi^{*}:=\left(\underline{\sigma}^{*}, \underline{a}\right)$ where $\underline{\sigma}^{*}:=\left(\sigma_{0}^{*}, \sigma_{1}^{*}, \ldots, \sigma_{r}^{*}\right)$. The path π^{*} is then of weight $\pi(1) \sigma_{\Omega_{0}}$.

A rational Ω-path of shape μ is called a Lakshmibai-Seshadri path if there exists a sequence of positive roots $\left(\delta_{1}, \ldots, \delta_{r}\right)$ such that

$$
\sigma_{0}>\sigma_{1}=\sigma_{0} \sigma_{\delta_{1}}>\sigma_{2}=\sigma_{0} \sigma_{\delta_{1}} \sigma_{\delta_{2}}>\ldots>\sigma_{r}=\sigma_{0} \sigma_{\delta_{1}} \ldots \sigma_{\delta_{r}}
$$

$\ell\left(\sigma_{i}\right)=\ell\left(\sigma_{i-1}\right)-1$ and $a_{i}\left\langle\mu \sigma_{i}, \delta_{i}^{\vee}\right\rangle \in \mathbf{Z}$.
Remark 7.1. Our definition of LS paths is slightly different from the one of Littelmann in [10] but nearly obviously equivalent. One only needs to notice that if $a=a_{q}=a_{q+1}=\ldots=a_{q+r}$ then the chain $\left(\sigma_{q}, \ldots, \sigma_{q+r}\right)$ is an a-chain as defined by Littelmann.
For the rest of this section we will need to work with a specific reduced expression of p_{τ}. The reason for this choice will become clear later. Fix a total order on the set of simple roots $\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ and write $\left\{\omega_{1}, \ldots, \omega_{d}\right\}$ for the corresponding fundamental weights. We define the map

$$
\begin{array}{clc}
\mathbf{h}: H\left(A_{0}, A_{\tau}\right) & \longrightarrow & \mathbf{R}^{d+1} \\
H_{\delta, k} & \longmapsto & \frac{1}{\langle\tau, \delta \vee\rangle}\left(k,\left\langle\omega_{1}, \delta^{\vee}\right\rangle, \ldots,\left\langle\omega_{d}, \delta^{\vee}\right\rangle\right)
\end{array}
$$

The lexicographic order on \mathbf{R}^{d+1} induces a total order on the set $H\left(A_{0}, A_{\tau}\right)$. Let

$$
H\left(A_{0}, A_{\tau}\right)=\left\{H_{\beta_{1}, N_{1}}, \ldots, H_{\beta_{n}, N_{n}}\right\}
$$

be such that $H_{\beta_{i}, N_{i}}<H_{\beta_{i+1}, N_{i+1}}$ for all i. Then there exists a reduced expression of p_{τ} of the form $a s_{n} \ldots s_{1}$ where $a \in \Pi, s_{i} \in S$ and such that $H_{\beta_{i}, N_{i}}$ is the unique hyperplane separating $s_{i} \ldots s_{1} A_{0}$ and $s_{i-1} \ldots s_{1} A_{0}$.

Let $J=\left\{i_{1}, \ldots, i_{p}\right\}$ be an admissible subset. For all $k \in\{0, \ldots, p\}$, we set (compare to the construction following Proposition 5.5)

$$
\begin{aligned}
& * J_{k}=\left\{i_{k+1}, \ldots, i_{p}\right\} \text { where by convention } J_{p}=\emptyset \\
& * \sigma_{J_{k}}=\sigma_{\beta_{i_{k+1}}} \ldots \sigma_{\beta_{i_{p}}} \text { and } v_{J_{k}} \in W_{0} \text { is such that } v_{J_{k}} A_{0}=A_{0} \sigma_{J_{k}} \\
& * \gamma_{i_{k}}=\beta_{i_{k}} \sigma_{J_{k}} \text { for } k \geq 1 \text { so that } \sigma_{J_{k}}=\sigma_{\gamma_{i_{p}}} \ldots \sigma_{\gamma_{i_{k+1}}} \\
& * \tau_{k}=\tau \sigma_{J_{k}} \\
& * \mu_{0}=0 \text { and } \mu_{k}=\mu_{k-1} \sigma_{\gamma_{i_{1}}} \ldots \sigma_{\gamma_{i_{k}}} \\
& * \pi_{k} \text { is the straight path defined by }
\end{aligned}
$$

$$
\begin{array}{ccc}
\pi_{k}:[0,1] & \longrightarrow & V \\
t & \longmapsto & \mu_{k}+t \cdot \tau_{k}
\end{array}
$$

$$
* a_{k}=\frac{N_{i_{k}}}{\left\langle\tau_{k-1}, \gamma_{i_{k}}^{\vee}\right\rangle}=\frac{N_{i_{k}}}{\left\langle\tau, \beta_{i_{k}}^{\vee}\right\rangle}
$$

Finally, we set $\underline{\sigma}=\left(\sigma_{J_{0}}, \ldots, \sigma_{J_{p}}\right)$ and $\underline{a}=\left(a_{0}, \ldots, a_{p+1}\right)$ where $a_{0}=0$ and $a_{p+1}=1$. By construction, the path $\pi=(\underline{\sigma}, \underline{a})$ coincide with the path π_{k} for all $a_{k} \leq t \leq a_{k+1}$. Then according to [9, §9] one can show the following result where once again, we assume that we are in the equal parameter case. The choice of our specific reduced expression plays a crucial role in the proof of Statement 3). Recall the definition of $\mu(J)$ in the previous section.

Theorem 7.2. Let J be an admissible subset. Let $\lambda \in P^{+}$and $\pi=(\underline{\sigma}, \underline{a})$ be the Ω-rational path defined above. We have

1) π is a LS-path of shape τ and weight $\mu(J)$.
2) The set of $L S$ paths of shape τ is in bijection with the set of admissible subsets.
3) π is λ-dominant (i.e. $\lambda+\pi(t)$ lies in the closure of \mathscr{C}_{0} for all $t \in[0,1]$) if and only if the set of alcoves $p_{\tau}^{J}[k, 1] v_{J} A_{\lambda} \in \mathscr{C}_{0}$ for all $k \in\{1, \ldots, n\}$.
As a direct consequence of this theorem and of Theorem 5.4, we obtain for $\lambda, \tau \in P^{+}$

$$
\mathbf{P}(\tau) C_{p_{\lambda} w_{0}}=\sum_{\pi} C_{p_{\lambda+\pi(1) w_{0}}}
$$

where the sum is over all λ-dominant LS-paths of shape τ.
Example 7.3. Let $\Phi^{+}=\left\{\delta_{1}, \ldots, \delta_{6}\right\}$ be a root system of type G_{2} :

The associated simple system is $\left\{\delta_{1}, \delta_{6}\right\}$. The Weyl group of type G_{2} is generated by $\sigma_{\delta_{1}}$ and $\sigma_{\delta_{6}}$ and the affine Weyl group of type \tilde{G}_{2} is generated by $\left\{\sigma_{\delta_{1}}, \sigma_{\delta_{6}}, \sigma_{\delta_{3}, 1}\right\}$. We'll denote the corresponding element of S by $\left\{t_{1}, t_{2}, t_{3}\right\}$. Let τ be the fundamental weight associated to the root δ_{6}. In this case, we have $\tau=\delta_{4}$. It is shown in [8, §18] that

$$
t_{\tau}=\sigma_{\delta_{3}, 1} \sigma_{\delta_{5}, 1} \sigma_{\delta_{4}, 1} \sigma_{\delta_{3}, 1} \sigma_{\delta_{5}, 2} \sigma_{\delta_{2}, 2} \sigma_{\delta_{3}, 2} \sigma_{\delta_{4}, 2} \sigma_{\delta_{5}, 3} \sigma_{\delta_{6}, 1} \quad \text { and } \quad p_{\tau}=t_{2} t_{1} t_{2} t_{1} t_{2} t_{3} t_{1} t_{2} t_{1} t_{3}
$$

Following [8, Example 10.2], we know that there are 14 admissible subsets. We describe these sets in the table below. In the column saturated chain, we only put the extremal element and one can recover the full chain by adding to the chain all the elements in the columns above: for instance, the saturated chain associated to the admissible subset $\{3,9,10\}$ is $\sigma_{\delta_{4}} \sigma_{\delta_{5}} \sigma_{\delta_{6}}>\sigma_{\delta_{5}} \sigma_{\delta_{6}}>\sigma_{\delta_{6}}>e$.

Saturated chains	reduced expression	admissible subset
1	1	\emptyset
$\sigma_{\delta_{6}}$	t_{2}	$\{10\}$
$\sigma_{\delta_{5}} \sigma_{\delta_{6}}$	$t_{2} t_{1}$	$\{9,10\},\{5,10\},\{2,10\}$
$\sigma_{\delta_{4}} \sigma_{\delta_{5}} \sigma_{\delta_{6}}$	$t_{2} t_{1} t_{2}$	$\{8,9,10\},\{3,9,10\},\{3,5,10\}$
$\sigma_{\delta_{3}} \sigma_{\delta_{4}} \sigma_{\delta_{5}} \sigma_{\delta_{6}}$	$t_{2} t_{1} t_{2} t_{1}$	$\{7,8,9,10\},\{4,8,9,10\},\{1,8,9,10\},\{1,3,9,10\},\{1,3,5,10\}$
$\sigma_{\delta_{2}} \sigma_{\delta_{3}} \sigma_{\delta_{4}} \sigma_{\delta_{5}} \sigma_{\delta_{6}}$	$t_{2} t_{1} t_{2} t_{1} t_{2}$	$\{6,7,8,9,10\}$

We now compute the different elements needed in the construction of the path π_{J} where $J=\{3,5,10\}$.

k	J_{k}	$\beta_{i_{k}}^{*}$	$\gamma_{i_{k}}$	$\sigma_{J_{k}}$	τ_{k}	$N_{i_{k}}$	a_{k}
0	$\{3,5,10\}$			$\sigma_{\delta_{4}} \sigma_{\delta_{5}} \sigma_{\delta_{6}}$	$-\delta_{6}$		0
1	$\{5,10\}$	δ_{4}	δ_{6}	$\sigma_{\delta_{5}} \sigma_{\delta_{6}}$	δ_{6}	1	$1 / 2$
2	$\{10\}$	δ_{5}	δ_{1}	$\sigma_{\delta_{6}}$	δ_{2}	2	$2 / 3$
3	\emptyset	δ_{6}	δ_{6}	1	δ_{4}	1	1

The LS path associated to J is represented in red in Figure 1: we see that

* it follows the direction $\delta_{4} \sigma_{\delta_{4}} \sigma_{\delta_{5}} \sigma_{\delta_{6}}=-\delta_{6}$ for a time $1 / 2 ;$

Fig. 1: LS path associated to the set $J=\{3,5,10\}$.

* it follows the direction $\delta_{4} \sigma_{\delta_{5}} \sigma_{\delta_{6}}=\delta_{6}$ for a time $1 / 6$;
* it follows the direction $\delta_{4} \sigma_{\delta_{6}}=\delta_{2}$ for a time $1 / 3$.

When doing it for all J we obtain 14 paths corresponding to the 14 admissible subsets as shown in Figure 2.

Fig. 2: LS paths in type G_{2}.

Acknowledgement: The author would like to thank Cédric Lecouvey for many helpful discussions and for pointing out many interesting references.

References

[1] N. Bourbaki. Groupes et algèbres de Lie, Chap 4-6. Hermann, Paris, 1968; Masson, Paris, 1981.
[2] K. Bremke. On generalized cells in affine Weyl groups. J. of Algebra 191, 149-173, 1997.
[3] M. Geck. Relative Kazhdan-Lusztig cells. Represent. Theory 10, 481-524, 2006.
[4] J. Guilhot. On the lowest two-sided cell of an affine Weyl groups. Represent. Theory 12, 327-345., 2008.
[5] J. Guilhot. Cellularity of the lowest two-sided ideal of an affine hecke algebra. Adv. Math. 255, 2014.
[6] J. E. Humphreys. Reflection groups and Coxeter groups. Cambridge studies in advance mathematics 29, Cambridge University Press, 1990.
[7] A. Ram K. Nelsen. Kostka-Foulkes polynomials and Macdonald spherical functions. Surveys in combinatorics, London Math. Soc. Lecture Note Ser., 307, Cambridge Univ. Press, Cambridge, 2003.
[8] C. Lenart and A. Postnikov. Affine Weyl groups in K-theory and representation theory. Int. Math. Res. Not. IMRN 12, 2007.
[9] C. Lenart and A. Postnikov. A combinatorial model for crystals of Kac-Moody algebras. Trans. Amer. Math. Soc. no.8, 2008.
[10] P. Littelmann. A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. Invent. Math. 116, no. 1-3, 329-346, 1994.
[11] G. Lusztig. Hecke algebras with unequal parameters. CRM Monograph Series 18, Amer. Math. Soc., Providence, RI, 2003.
[12] X. Xie. The based ring the lowest generalized two-sided cell of an extended affine Weyl group. Preprint available at http://arxiv.org/abs/1403.3213, 2016.

Jeremie Guilhot: Laboratoire de Mathématique et de Physique Théorique, UMR 7350, 37000 Tours
Email address jeremie.guilhot@lmpt.univ-tours.fr

