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Admissible subsets and Littelmann paths in affine
Kazhdan-Lusztig theory

Jérémie Guilhot

Abstract

The center of an extended affine Hecke algebra is known to be isomorphic to the ring of symmetric functions
associated to the underlying finite Weyl group Wy. The set of Weyl characters sy forms a basis of the center and
Lusztig showed in [11] that these characters act as translations on the Kazhdan-Lusztig basis element C',, where
wo is the longest element of Wy, that is we have CyySx = Cugt,. As a consequence, the coefficients that appear
when decomposing Cygt,s- in the Kazhdan-Lusztig basis are tensor multiplicities of the Lie algebra with Weyl
group Wy. The aim of this paper is to explain how admissible subsets and Littelmann paths, which are models to
compute such multiplicities, naturally appear when working out this decomposition.

1 Introduction

Let W, be an extended affine Weyl group with underlying finite Weyl group Wy. Then W, = Wy x P
where P denotes the set of weights associated to Wy. Let H be the generic affine Hecke algebra of W,
defined over A the ring of Laurent polynomials with one indeterminate q and let {C,, | w € W} be the
Kazhdan-Lusztig basis of H. The center of the affine Hecke algebra H associated to W, is known to be
isomorphic to the ring of symmetric functions A[P]"°. The set of Weyl characters {sy | A € P*} forms
a basis of A[P]"° and we have Cy,sx = Cu,i, Where t) denotes the translation by A € P* in W,; see
[11, 13] and the references therein.

Denote by V(7) the irreducible highest weight module of weight 7 € P for the simple Lie algebra over
C with Weyl group Wy and weight lattice P. Then the character of V() is sy and for all 7,A € P¥
we have sys; = > mj s, where m{  is the multiplicity of V(1) in the tensor product V(A) @ V().
Computing the multiplicities m‘T" » is one of the most basic question in representation theory of simple Lie
algebras over C. Littelmann showed [9] that such multiplicities can be determined by counting certain
kind of paths in the weight lattice P constrained to stay in the fundamental chamber. Later on, Lenart and
Postnikov [7, 8] showed that these multiplicities can be determined using admissible subsets associated to
a fix reduced expression of t, € W,. In [7] they used a geometric approach based on equivariant K-theory
while in [8] their approach is more axiomatic and is based on the fact that their model satisfies a set of
axioms, introduced by Stembridge in [16], that encode the combinatorics of Weyl characters. The model
of Lenart and Postnikov can be viewed as a discrete counterpart of Littelmann paths model and they
explicitly constructed a bijection between admissible subsets and Lakshmibai-Seshadri paths (which are
certain kind of Littelmann paths).

In the extended affine Hecke algebra, we must have
CuotrSr = CuySasr = ng‘ﬁcwot“.

The aim of this paper is to explain how admissible subsets (and thus Littelmann paths) naturally appear
when decomposing Cy,t,S- in the Kazhdan-Lusztig basis. Ultimately, this will be a consequence of a
multiplication formula for two standard basis elements in the extended affine Hecke algebra [2, proof of
Proposition 5.1]. More precisely, we will, for all \,7 € P*

1. construct elements h, € Ty, + > ~1Z[q7!T, such that Cyoh, = Cugr. = CuySr;

y<tr q

2. show that Cy,,¢, h- is a Z-linear combination of Kazhdan-Lusztig basis elements;

3. show that determining the expansion in (2) is equivalent to finding terms of maximal degree in
products of the form Ty, 1%, (v € Wy) expressed in the standard basis;

4. show that the maximal terms in (3) are indexed by admissible subsets J associated to a reduced
expression of ¢, as defined by Lenart and Postnikov.
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The paper is organised as follows. In Section 2, we introduce all the needed material on (extended) affine
Weyl groups. In Section 3, we present Kazhdan-Lusztig theory for affine Hecke algebras with unequal
parameters and we describe the center of these algebras. In Section 4 we prove (1)—(3) above: this will
essentially be a consequence of results on the lowest two-sided cells in [5]. We will prove Statement (4) in
Section 5. In Section 6, following [8], we study the connections between our work and the results of Lenart
and Postnikov and we describe the bijection between admissible subsets and Lakshmibai-Seshadri paths.

2 Affine Weyl groups

Let V be an Euclidean space with scalar product (-,-). We denote by V* the dual of V and by (, ) :
V x V* — R the canonical pairing. Let ® be a root system and let ®V be the dual root system. If o € ®
then a¥ € ®V is defined by (z,a") = 2(z, ) /(, a). We fix a set of positive roots @+ and a simple system
A ={o,...,an} such that A C ®F.

2.1 Geometric presentation of an affine Weyl group

We denote by H,,», the hyperplane defined by the equation (z,a¥) = n and by F the collection of all such
hyperplanes. We will say that an hyperplane H is of direction o € ®+ if there exists a pair (a,n) € ®T x Z
such that H = H,,. We then write H = a. For any subset F C F we set ' := {H | H € F} C &%,
Playing with notations yields {H} = {H?}.

Let W, be the group generated by the set of orthogonal reflections s, with respect to H, , where o € ®
and n € Z. The group W, is an affine Weyl group of type ®" and it is isomorphic to Wy x @ where @Q is
the lattice generated by ®. For A € @, we will denote by ¢, the translation by A in W,. It is well known
that W, is generated by the set S := {sqa,,0 | @« € A} U{sa,1} where @ is the highest root of ®V. We will
simply write sq, for s,, 0 where 1 <i < N and s,, for s5,1. Let Wy be the stabiliser of 0 in W, and wg
be the longest element of Wy. Clearly Wy = (So) where So = {Say,---sSay - We will denote by id the
identity element in W,,.

The set of alcoves, denoted Alc(F), is the set of connected components of V\F. The fundamental alcove
Ay is defined by

Ag={zeV]0< (z,0") <1, Va e dt}
={xeV]0< (z,a") <1, Va € A}

The set of hyperplanes bounding Ay is equal to {Hq 0 | @ € A}U{Hg,1}: these are called the walls of Ay.
A face of Ap (that is a codimension 1 facet) is said to be of type s,, if it is contained in the hyperplane
H,, 0 and of type sq, if it is contained in the hyperplane Hy ;.

The group W, acts simply transitively on the set of alcoves and we can extend the definition of walls and
faces to all alcoves. Two alcoves A and A’ are then said to be s-adjacent where s € S if they share a face
f of type s and we write A ~, A’. In other words, A and A’ are s-adjacent if there exists w € W, such
that wf is the face of type s of Ag. We will denote by A, the alcove yAo.

Remark 2.1. It is important to notice that the alcoves A,, and A, are s-adjacent for all w € W, and
all s € S. Therefore, any expression W = $1...8, (s; € S) of w € W, defines a sequence of adjacent
alcoves starting at the fundamental alcove Ay and finishing at the alcove A,,:

€~ Asl ~so As152 sz e NMs, AS1.~-Sn = A’w'

Further, there exists a unique pair (o, k) € @ x Z such that the hyperplane H, j separates the alcoves
A,y and Ay and we have s, Ay = Ays.

Any hyperplane H, ,, where a € ®* divides the space V into two half spaces
H;r,n ={ eV |{\aY)>n} and H., = NeV|(\aY)<n}

We say that an hyperplane H € F separates the alcoves A and B if and only if A € H® and B € H™¢
where € = +. Given two alcoves A, B € Alc(F), we set

H(A,B) ={H € F | H separates A and B}.

For all A € Ale(F), a € ® and n € Z, we write n < Ala] (respectively n > Ala]) if and only if for all
A € A we have n < (A, a") (respectively n > (X, a")). For two alcoves A and A’, we write A[a] < A'[a] if
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and only if (A, a¥) < (u,aV) for all (A\,u) € A x A’. For all alcoves A and all roots a € ®, there exists a
unique n € Z such that n < Ala] <n+ 1.

The following proposition gathers some well known results about the length function and the action of W,
on the set of alcoves. A standard reference for these results is [6].

Proposition 2.2. Let w € W,. We have
1 f(w) = [H(Ag, Aw)|

2. Let s € S and let H,,, where a € ®F be the unique hyperplane separating w and ws. We have
ws < w if and only one of the following statement holds:
(a) Ay € HY,,, Aws € H,

(b) Ay € Hy ,,, Aws € HJ,

a,n

and n > 0,
and n < 0.

3. We have H(Ag, Ay) = {a € T |v=ta € @~} for all v € Wy.

Example 2.3. Let ® be a root system of type G2 and let A = {a3,a2} be a simple system in ® such
that as is the short root so that

o = :l:{Oél,OZQ,Oél + g, X1 + 20&2,0&1 + 30&2, 20&1 + 30&2}.

Then ®V is also of type G2 and the coroot of oy + 2as is 20y + 3y which is the highest root of ®V. In
Figure 1a, we represent the root system ®. In Figure 1b, we represent the alcoves Ag, A, and the alcove
Ay where W = SaySay Sas San Sas Sag -

A I
| > N \ /]
~
| X
ap + 2az ~\lz
| 7,
|
“ I 1Ag |
| \ ~
S R
T
D
I\
W | |
/ I \
t
7 | D
/ \
7 ' ' <
/ | \
1
(a) Root system & (b) Action on Ao

Fig. 1: Roots, hyperplanes and alcoves in type Go

The set of hyperplanes that separates Ag and A, is

H(AO; Aw) = {Haz,Qa Ha1+20¢2,2’ Ha1+3o¢2,1a Hag,l; Hoq,Oa Hozo,l}

and these are represented with dashed lines. Note that the cardinal of H(Ag, wAo) is indeed the length
of w. The alcoves of the sequence

(on Aso ) ASUSl ) A505152 ) A50515251 ) A5051525152 ) Aw)

are colored in light gray. Finally we have

SapSaiSasSarSasSag Ay = Sag,2sa1+2a2,25a1+3a2,lsaz,lsal,Osao,lAO-

2.2 Weight functions and special points

Let L be a positive weight function on Wy, that is a function L : W, — N such that L(ww') =
L(w) 4+ L(w') whenever {(ww') = ¢(w) + £(w"). To determine a weight function, it is enough to give its
values on the conjugacy classes of generators of S. From now on, we fix such a positive weight function L
on W,.

Let H be an hyperplane in F. We say that H is of weight L(s) if it contains a face of type s € S. This is
well-defined since if H contains a face of type s and s’ then s and s’ are conjugate and L(s) = L(s’) see [2,
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Lemma 2.1]. We denote the weight of an hyperplane H by L(H). If o € ®, we set L(a) = maxy_,, L(H).
For any A € V we set

HMeH

Let v = maxyey L(A). We call A an L-weight if L(\) = v and we denote by P the set of L-weights. Further
we denote by PT the set of dominant L-weights that is PT ={A € P | (\,a¥) > 0 for all « € ®*} and
by P~ the set of anti-dominant weights, that is P~ = —PT. Without loss of generality, we will always
assume that 0 € V is an L-weight. The action of the longest element wy € Wy on the set of weights is an
involution that sends Pt onto P~ and we set \* = wg for all \ € P.

2.3 Extended affine Weyl groups

The extended affine Weyl group is defined by W, = Wy x P; it acts naturally on the set of alcoves Alc(F)
but the action is no longer faithful. If we denote by II the stabiliser of Ay in W, then we have W, = I[Ix W,,.
Note that IT permutes the weight that belong to the closure of Ay. Further the group II is isomorphic to
P/Q, hence it is abelian and its action on W, is given by an automorphism of the Dynkin diagram; see
Planches I-IX in [1]. We denote ¢y where A € P the translation by A in W,.

An extended alcove is a pair (A, u) where A € Alc(F) and p is a vertex of A which lies in P. We denote
by Alc.(F) the set of extended alcoves. The group W, acts naturally on Alc.(F) and the action is faithfull
and transitive. Indeed, if (4, u) € Alc.(F), there exists w € W, such that wA = Ay and wu = p’ where
i € Ag. If we let m € IT be such that 7y’ = 0 we obtain mw(A, u) = (Ao, 0) as required. To simplify the
notation, we will simply write Ag for (Ag,0) and for all w € W, we set A, = wAy.

All the notions and notations for alcoves in Ale(F) can be extended to Alc.(F). We just omit the part
with the weight when needed. For instance if A = (4,\) € Alc.(F), we write A'[a] < 0 to mean
Ala] < 0. The length function, the weight function, the Bruhat order all naturally extend to W, by setting
l(aw) = 4(w), L(aw) = L(w) and aw < &'w’ if and only if a = o’ and w < w’ where a,a’ € II and
w,w’ € W,.

2.4 Quarter of vertex )\

The quarters of vertex A € V' are the connected components of
o J m
HeF \eH

Given A € P and v € W)y, we denote by C, , the quarter of vertex A which contains tyv. When we consider
a quarter with vertex 0 we will omit the 0 in the notation. The set of Weyl chambers is then {C,, | w € Wy}
and the fundamental Weyl chamber is C;q. We have

Ca:={zeV|(z,a’)>0foralaecd"} and
Cuwo ={z €V |(2,0") <0 foral o€ d}.

Let Xy be the set of right coset representatives of minimal length of Wy in W,.. Then X is the set of
x € W, that satisfies £(wox) = (wo) + £(z) and

x€Xg<= A, €Cyg <= A;la] >0 forall a € A.

Any element w of W, can be uniquely written under the form w = vz where v € Wy and = € X. For
all z € Xo, A € P and v € Wy, the alcove ¢t vz lies in Cy .

For A€ V and a € T we set A\, = (\,a"). Let C be a quarter of vertex A € P and fix a € ®. We have
either

{z,a¥) |2 € C} =]Aa, +oo[ or {{z,aY) |z €C}=]— 00, sl
In the first case we say that C is oriented toward +oco in the direction « and we write C[a] = +o0. In the
second case we say that C is oriented toward —oo in the direction o and we write C[a] = —oc.

Lemma 2.4. Let A € P and v € Wy. We have for all a € % :

+oo ifvila e dt,
C)\JJ[O‘] = . —1 —
—o00  ifvTaed.
Proof. Let x € Cy . There exist zg € C, and yo € Cig such that z = z¢o + A and z¢ = vyg. We have
(x,a) = (g + N\, ") = (vyo, ") + Ao = (%0, (v_loz)v> + Ao

Since yo € Cig we have (yo, (v"1a)¥) > 0 if and only if v=ta € ®T as required. O
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3 Affine Hecke algebra with unequal parameters

3.1 Affine Hecke algebra

Let A = C[q,q~!] where q is an indeterminate. The Iwahori-Hecke algebra H associated to W, is the
free A-module with basis (T\)wew, and relations given by

TuTy = Ty, whenever £(uv) = £(u) 4 £(v)

and
(Ts — ") (Ty + g7 H) =0 if s € S.

From this relation, we easily find that for all s € S and all w € W, we have

—L(s)

Tsw if ¢ L(w),
T, T, = { if £(sw) > £(w) where & = q*(®) —q .

Tow +&sTh  if £(sw) < £(w)

The basis (Tw)wew, is called the standard basis. We write f5 , . for the structure constants with respect
to this basis:

TxTy = Z f:c,y,sz-

zeWe

The elements f;, . are polynomials in {& | s € S} with positive coefficients. The degree of f, , » will be
denoted deg(fz,y,~) and is the highest power of q that appears in f ..

3.2 Multiplication of the standard basis

In this section, we present a result of [4] on a bound on the degree of the polynomials f5 , .. Recall that for
two alcoves A, B € Alc.(F), we have set H(A, B) = {H € F | H separates A and B}. Then for x,y € W,
we set

Hyy = H(Ao, Az) NH(Az, Azy) and ¢y y(a) = Hm&x Lg.
€Hz .y

H=«
Then according to [4, Theorem 2.4] we have:
Theorem 3.1. The degrees of the polynomials fy, . are bounded by Zaem Coy(@).
We obtain the following corollary [5, Proposition 5.3] which will be crucial in the following section.

Corollary 3.2. Let x € X(;l, ve Wy andy € Xg. We have

deg(fzv,y,z) < L(’LUO) — L(U)

3.3 Kazhdan-Lusztig basis

Let ~ be the ring involution of A which takes q to q~!. This involution can be extended to a ring involution

of H via the formula
Y awTw= > @WT,Y (awcA).

weWe weWe
We set ) )
Aco= a7 'Z[q"'] , Heo = Dpew, A<oTw
ASO = Z[q_l] and Hgo = ®w€We ASOTw.

For each w € W, there exists a unique element C,, € H (see [12, Theorem 5.2]) such that (1) Cy, = Cy,
and (2) C, =T, mod Hg. For any w € W, we set

Cyp = Z P, T, where P, ., € Aco.
yeW,

The coefficients P, ,, are called the Kazhdan-Lusztig polynomials. It is well known ([12, §5.3]) that
P, ., = 0 whenever y £ w and that P, ,, = 1. It follows that (Cy)wew, forms an A-basis of H known as
the Kazhdan-Lusztig basis. According to [12, Theorem 6.6] we have

Vw e We,Vs € S, P,y = 7L(5)P157y whenever x < xs and ys < y.
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Remark 3.3. Using Corollary 3.2 and the definition of the Kazhdan-Lusztig basis, one can show that the
element Cy,,:, Ty lies in H< for all A € P+ and y € Xo; see Proposition 5.3 in [5]. Indeed we have

Cuwptn Ty = Z Pyt TaTy

ot

x<wotx
= E P - T 1T,
Ty vitxrwo T Ty v Y
o€ Xo,vEWH
— E L(v)—L(wo)
- q Pzglwg,t)\* ngxglva

—1
x5 v<wotx

The result follows since deg(fzal ) < L(wp) — L(v) for all z € We.

v,Y,2

3.4 The center of the affine Hecke algebra

In this section we follow the presentation of Nelsen and Ram [13] and we refer to it and the references
therein for details and proofs. We start by introducing another presentation of the affine Hecke algebra
which is more convenient to describe its center Z(H). For each A € P, we set e} := Tt”thl where
i, v € PT are such that ;1 — v = \. This can be shown to be independent of the choice of u and v. Then
H is generated by the sets {Ts | s € Sp} and {e* | A € P} and we have the relations

eA _ esi)\
et = eMHP = ele?  and e/\Tsi = T,e* + §sﬁ.
—e (e 73
Let A[P] be the subalgebra of H generated by {e* | A\ € P}. Then W acts naturally on A[P] via w-e* =
v,
Theorem 3.4. The sets (e*Ty)rxepwew, and (Twe)wew, rep are A-basis of H and the center of H is
ZH)={fe€ APl |w- f=f for all we Wy}.

We define the Weyl characters sy as follows

1
ay = Z (—1)®evd and sy = Do here pP=3 Z a.

ap
weWy acdt

Then (sx)rep+ form a basis of Z(H). According to [13, Theorem 2.9], the element sy acts as translation
on the Kazhdan-Lusztig element C',.

Theorem 3.5. We have s)Cuyy = Cuysx = Cuyty, for all X € Pt and
CuotsSr = CupSasr = Zmi,‘rcwotu'
w

4 Decomposition into the Kazhdan-Lusztig basis

The aim of this section is to show that in order to determine the decomposition of Cy, s- in the Kazhdan-
Lusztig basis, it is enough to determine the terms of maximal degree in the products Ty, 1%, Where
v € Wpy. This will be done in 3 steps:

1. we construct some special elements h; such that Cyi,5r = Cugr hr and h € T+ @ ATy,
y<tr,y€Xo

2. we show that Cyyt, hr = > a, T, mod Ho where a, € Z,

3. we show that Cy,t, hy = Ciyyt, hr and therefore Copr, hr = >, Cy.

Let z € Xy and set h, := > Pyow’ woz Ty - Following [18, Lemma 2.5] we get

z’€Xo

Cuwoz = E PyyonTy
yeWe

= E Puz’,wowTuz’
z'€Xo,uceWy

= Z qL(u)iL(wo)ngz’,wozTuTx/
z'€Xo,uceWy

= (Z qL(u)_L(wO)Tu> Z Pwom/,wosz’

ueEWy z’€Xo

= Ciyoha.
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When 7 € PT, we know that ¢, € Xy and we will write h, instead of hy_. For all 7))\ € PT we have
CuwoSr = Cuwohr  and  Cuyt,Sr = S2aClupSr = SACwohr = Cuyty hr-

This concludes part (1) since the elements h, have the required form. Similarly, we can construct elements
g, for all z € Xal such that g,Cyy = Caw,. Setting gr, = g, (7 € P~) we have Cy,hy = Cyypt, =
Ct,.* wo — gT*Cwo-

Let 7, € PT. Using Remark 3.3 and the fact that Pz wot, € Aco whenever x < t., we get

Cwotx hT = C’wot)\Tt,- + § Pwoz,wot,- Cwot)\Tm = wotATt,- mod H<O
rz<tr,x€Xo

€EH<o

and

Cuwoty Tt = Twot It + E Py ot TyTr, -
y<wotx

Let y € W, and (y,,y0) € XO_1 x Wy be such y = y,y0. On the one hand Py 4, = qL(yO)’L(WO)Pyrwmtv wo
and on the other hand, by Corollary 3.2, the maximal degree that can appear in T}, ,, T3, is L(wo) — L(yo).
Therefore if y,wo < ta-wo we get that Py e, TyTt, € Heo and

Cuwot It = Z q (yo)—L(wo) Tt*yoTt Z q )Tt*wouTt mod H<o.

yo€Wo vEWy
Finally
’u)otk T = Z q U)Twot)\UTt mOd 7_[<0 (1)
—_—
veWy eHeo

as claimed in statement (2).

We now prove Statement (3).

Lemma 4.1. For all \,7 € P, the elements Cy ¢, hy are stable under the ~-involution.

0t

Proof. First we have C,,
and Cy,, H. Next

otahr = Cyohahr = gr-g~Cy, so that Cy,¢, hr lies in the intersection of HC )y,

HCwy = (Corwy | T € XO_1>A and HCy,, = (Cuwz | € Xo)a
from where we get

HClyy N CuyH = (Cupr, | v € P4

since X LweNw X = {wot, | v € PT}. Therefore there exist b, € Asuch that Cyyi,hr = > cpt 0uCupt,, -

At this stage, in order to show that C‘wotA = Clyot,hr it is now enough to show that b, € Z since
Cuwot, = Cuyt, - The following argument is 1nsp1red by [17, Proof of Theorem 6.2]. We have

hw07w07w0 Cwot)\ - Otx*wocwoh
- Ctx*wgcwotﬂ.

= 5 htx*wg,wgtﬂ.,zcz

zeW,

= E thwo,wo,wocwotV

veP+

where h, , . € A denote the structure constants with respect to the Kazhdan-Lusztig basis. According to
[12, §13.4], the degree of h, . is bounded by L(wg) for all z,y,z € We. Therefore deg(hr—1yy wot, 2) <
L(wo) and since deg (g wo,wo) = L(wo), this forces b, € Z as required. O

Statement (3) now follows using the following lemma.
Lemma 4.2. Let h € H be such thath = h and h = " a, T, mod Ho where a, € Z. Then h =3 a,C,

Proof. We know [12, §5.2.(e)] that if i/ € Ho satisfies i/ = h then h’ = 0. The lemma is an easy
consequence of this result setting ' = h — > a,C,. O
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As a consequence, in order to determine the decomposition of Cy,¢, h; in the Kazhdan-Lusztig basis, we
need to determine which product q’L(”)TwothtT can actually give rise to a non zero term modulo H .
In other words, we need to determine which terms in the decomposition of Ty, 1%, in the standard basis
has a coefficient of (maximal) degree L(v).

The remainder of this section is devoted to set up the notation in order to study the product Tyt v 1%, -
Let z,y € W, and let ¥ = s1...s,a be a reduced expression of y where a € II and s; € S for all i.
Let J = {i1,...,ip} be a subset of {1,...,n}. For all 1 </, k < n, we set

n k n
7 = H sy la, §7em = H s, and  §7en) = H sy | a.
r=1,r¢J r=0,r¢J r=0,r¢J

When J is empty we will simply write #je,k] instead of 7?[¢,k] for the product sy ... sy and §i¢,n] instead of
72 [¢,n]. Finally we denote by p;(z; %) the sequence of alcoves (Azg711,k))1<k<n We see that
. there can be repetitions in this sequence (see below);

. any two consecutive alcoves are either equal or adjacent.
We can therefore represent p;(x;%) by a path going through the sequence of alcoves (Auzr(14))1<k<n
and which folds on the s;-face of A,zs1 ;1) for all i € J (and hence goes twice through the alcove

Aggini—1 = Aggop,g). We will say that the path p;(z;%) is included in a certain subset of V' if all the
alcoves that appear in py(z;¢) lie in this subset.

Let J, 5 the set of all subsets {i1,...,4,} of {1,...,n} such that 1 <i; <... < i, <nand
xf’ (1,i0-1]s;, < 2§ [1,i—1) for all £ € {1,...,p}.

For J = {i1,...,ip} in Ty 7, we set & = [[h_; &s,, so that we have [2, Proof of Proposition 5.1]

T,T, = Z 1Ty
Jejm,g

Let Hyp (o € @1) be the hyperplane that separates Apiiniig—1) and Aggip i, —1)s,, - By definition of J, 7
e

we have x5/ [1,i,—1]s;, < 27’ [1,i,—1] and therefore

. Azg‘][l,i,gfl] S H;n and AIgJ[l,igfl]sié S HOJZ if n S 0,

n

. Afng[lqilfl] S Hatn and AIQ‘J[L”,”S” S HOZ if n > 0.

n

We fix a reduced expression . of t, and we set

Tner =7, and IV = {J €30, | deg(&s) = L(v)}

;wov,{,-
so that according to (1) and the fact that the leading term of £; is q“®) we have

— —L —
Cuptr hr = wotryr T E q (U)Twotvatr = E E Twot;vti mod H<o.
veEWo\{id} vEWo JETNY

and

Cwot)\hr = Z Z C’wotxvti'

veEWo JeTR2ax

A, T
5 Description of 772 in terms of admissible subsets

Once and for all in this section, we fix 7 € PT and a reduced expression tr = s1...58,a where a € II and
s; € 5. Let (B1,...,Bn) € (®T)" and (Ny,...,Ni) € N™ be such that the unique hyperplane separating

Ag, s, and As, s, is Hg, n,. Following [8], we now introduce the concept of admissible subsets.

k—1 k

Definition 5.1. A subset J = {i1,...,i,} of {1,...,n} will be called an admissible subset if
id < Sﬂip < Sﬂip Sﬂip,l < ... < Sgip SBip71 <88,

is a saturated chain in the Bruhat order on Wy. We set vy := sg, 5B; 4 e Sy
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Saying that the chain is saturated in the Bruhat order on Wy is equivalent to say that {(sg, ...ss, ) =
p—k+1foralll <k <p. Wenote that if {i1,...,7,} is an admissible subset then so is {ig,...,i,} for all
£ < p and we denote this subset by Jy,_; so that Jy = J and J, = &. Then we have v;, , = SBi, -+ 5B,

Example 5.2. Let W be of type G as in Example 2.3 and let 7 = 204 + 3as € PT. We fix the following
reduced expression

lr = SapSasSar SasSagSasSar SasSar Sas-
The sequence of roots (f1, ..., B10) associated to t, is
(a1 + 202, a1 + a2, 201 + 3az, a1 + 2a2, a1 + a2, a1 + 3az, a1 + 2a2, 201 + 3az, a1 + a2, a1).

Following [8, Example 10.12], we know that there are 14 admissible subsets and we describe these sets in
the table below. In the column saturated chains, we only put the extremal element and one can recover
the full chain by adding to the chain all the elements above in the same column: for instance, the saturated
chain associated to the admissible subset {3,9,10} is id < Sa; < Sa;Sar+as < SasSar+asS2a;+3as-

Saturated chains Reduced expression admissible subset
1 1 [
Saq Saq {10}
Say Saq tag SagSay {9, 10}, {5, 10}, {2, 10}
Say SaqtanS2aq +3an Saq Sag Saq {8,9,10}, {3,9,10}, {3, 5, 10}

{7,8,9,10}, {4,8,9, 10},
Sy Saqtag 20 +3asSaq +2asg SagSaq Sag Sa {1,8,9,10}, {1, 3,9, 10},

{1,3,5,10}

SaqSajtagS2a1+3agSajd2agSai+3ag | SaySagsSagSagsay {6,7,8,9,10}

Remark 5.3. Our definition of admissible subset is slightly different than the one in [8] where they work
with reduced expressions of ¢t_,. The connection between those two definitions will be made clear in the
next section.

Recall the definition of L(3) (8 € ®*) and C, (v € W) in Section 2.2 and 2.4 respectively.
Definition 5.4. Let J = {i1,...,4,} be an admissible subset. We say that J is

1. A-dominant for A € P if the p;(t\v; t_;) c Cyq,

2. maximal if L(s;,) = L(f;,) for all 1 < /¢ < p.

Recall that we always assume that 0 is an L-weight so that L(vy) = Y 7_; L(;,) for all J. In particular,
if J € J3%Y, then J must be maximal in order to satisfy deg({s) = L(v.).

We are now ready to state the main result of this paper. Recall the notations introduced at the end of the
previous section.

Theorem 5.5. Let A € PT and v € W,.

1. If J is admissible, A\-dominant and mazimal then J € T39™ .

2. If J € IX5Y, then v = vy, J 1s admissible, A-dominant and mazimal.

The rest of this section is devoted to the proof of this theorem.
Proposition 5.6. Letv e Wy, A€ P and fir k € {1,...,n}.
1. The hyperplane separating the alcoves tyxvt [1.k—1]Ag and tyxvt, [1.k]Ag is Hy := Hyg, Nyt (008, V) -

2. We have tyvt,.[1,k—1]Ag = tx V't [1,k] Ay where v/ =wvsg, and N = sg, A\ where sy, denotes the affine
reflection with respect to Hy,.

Proof. The hyperplane separating vt [1,k—1]Ag and vt_[1,k]Ag is vHg, N, = Hyp,,n,. Hence the hyperplane
Hy = H,p, N,+(x0py) Separates the two alcoves tyvt, [1,k-1]Ag and t\vt, [1,k]Ag. We have

tavt [1,k—-1]Ag = tavt, [1,k]s1Ag
= SHkt,\UtT[l,k]Ao
= tSHkASUﬁkvtT[l’k]AO

= tsy, A0St [1,6] Ao.
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Let (A\,v) € Px Wy and J = {i1,...,ip} C{1,...,n}. For all 0 < ¢ < p we define the elements vy, A, and
Jo by

e Vg =v and vy = Ve-158,,;
« Ao =Aand A\ = sy, A\p—1 Where H; := H’”l—lﬁi[1Ni[+<A7'Ui[—1ﬁilv>;
. Jg = {’L’g_;,_l, e ,’L'p}.

Note that the path py,(tx,ve;t,) folds exactly p — £ times and the first fold occurs at position iz on
the hyperplane Hyy;. By a straightforward induction using Proposition 5.6, we see that we have for all
1<4<p

tavt![Li-1]Ag = tx,vsp,, ... Sp St Ao =ty vt [1ie] Ao.

In the case where J is an admissible subset and v = v; we have t\vt![1,i,—1]Ag = tx,v,t,[1,i]Ag. Further
since J, = @, the path p; (tyv;t;) does not fold.

Example 5.7. Let W be of type G as in Example 2.3 and 5.2. Let 7 = 2a;+3a2 € P and fix the reduced
expression tr = SaoSas Say SasSaoSar SasSar SazSar- Let J := {3,5,10}, A € P and v = 54, 54,84, € Wo. In
Figure 2 we describe the paths pj, (ta,v; t.) for 0 < ¢ < 3 and the sequence (Ao, .., A3) obtained in the
procedure above. We write (D) for the alcove A¢,, ., (so that the path py, (tx,ve; t.) starts at the alcove ()
and the light gray alcoves represent At%e‘

o

~
[uy

Fig. 2. Sequences associated to the set J = {3,5,10}.

We are now ready to prove the first part of Theorem 5.5.
Proposition 5.8. Let A € P*. If J is admissible, A\-dominant and maximal then J € TN
Proof. In order to prove that J = {i1,...,i,} € J € NS +,» since J is maximal, we need to show that
wot\v st [1i0—1]85, < wotrvstl[1,i,—1] for all 1 < £ < p.
We have
1. wotav st [1ic—1] = wotx,_, vy, ,t [1ic—1];
2. vy, , =8p, -8, 50 that vy, ,B;, € ®~ and wovy, ,B;, € P¥;
3. the hyperplane separating
Wotxn, Vg, bt [1,ie-1]Ap and wotx,_,vj,_ t [1,i0—1]8:, A0
is equal to Huwgu,,  g,,,m where m <0 since J is A-dominant.

We have vi{lwowov_]klﬁil =B, € ®* which implies that the quarter CALl,wOUJ[il is oriented toward
~+00 in the direction wovy, ,Bi,. It follows that

wotxn,_ Vg, b, [1,ie-1]Ap € H and

wovJ,_, Biy,m

. +
Wotr, VI, 1tr [1’”_1]Sie Ao € Hw0”~fzf1 Bi,m

hence the result by Proposition 2.2 since m < 0. O
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We now focus on the second part. We start by proving some technical lemmas. Recall the definitions of
Ala] < n and Ala] < A’[a] at the end of Section 2.1 and of H, ,, for ,y € W, in Section 3.2.

Lemma 5.9. Let A € Pt and v € Wy. We have Hy,. oo, C {6 € ®T | v wod € T},
Proof. Let § € ®* be such that

Hé,N S Ht>\* wov,tr — H(Ao, Atk* wov) N H(Atv Wov s Atk* wovt,-)-

First, since A € Pt we have Ay,. w,0[0] < 1. Next since Hs n € H (Ao, Aty wov), it follows that Ay, g0 [0] <
N < 0. If the quarter Cx« .0 is oriented towards —oo in the direction 6 then N > Ay, w,0[0] > At,.woot, [0]
but in this case we cannot have Hsn € H(At,.wov, Atyewovt, ). This shows that the quarter Cx« wqo is
oriented towards +oo in the direction § and thus v~ twyd € ®* as required. O

We remark that if A € PT and Ay, wov ¢ Cuw, then Ay, ¢ Cig and there exists a simple root o;; € T such
that v"la; € @~ and —1 < Ay, »[ai] < 0. Equivalently —wpa; € ®F and 0 < Ay, 0[—woci] < 1. This
implies, considering the positive root —wga; € @, that the inclusion

Hiwout, C {6 € ®T | v wpd € @}

max

is strict and JY'}* has to be empty by Theorem 3.1.

max

Ao to be non-empty.

The next lemma generalises the idea above and gives some restrictions for the set J

Lemma 5.10. Let A € P and v € Wy. Let k € N be such that Ay . ot 1,5] € Cuw, and let J =
{i1,...,ip} € Tnu,r be such that iy > k. We have

1. Hyyowovt, (18]t (k1,n) € {0 € @T [0 wpd € @T};

P
2. if Aty wgut, [1i1-1) € Cuo then &5 = L(s;,) < L(v).
k=1
Proof. Let § € ®T be such that Hs y € Hi\wout, [1,6],¢ [k+1,n)- Assume first that the quarter Cx« woo is
oriented towards —oo in the direction §. Then we must have

Aty won[0] = At wovt (1,6[0] = At wwout (1,641)[0] = At yuwout [0]-
—_— —
<0

But Hs n € H(Ao, Aty woot,[1,6]) implies that 0 > N > Ay 0t [1,k)[6]. Therefore in this case we cannot
have Hs n € H(A,. wovt, [Lk+1]s Atye wout., ). This shows that the quarter Cx« ., has to be oriented towards
+00 in the direction § that is v lwgd € ®+.

We prove (2). Since J € Jy,,r, there is a term of degree Y 1_; L(s;,) that appear in the product
Tt wov, Tt - Further, for all k such that k < i1, there is also a term of degree Y-} _; L(s;,) in product
Tiswovst, (1) e, (k41,n]- Let ko < i1 be the index such that Ay, wyve, [1,k0—1] € Cwy a0 At s wgut. [1,k] ¢ Cuy
and let o € A be the direction of the hyperplane that separates those two alcoves. The quarter Cx« g0
has to be oriented toward +oo in the direction a so that v~ wpa € ®1. Next

Hi e wovt [1,kolst. [ko+1,n] = Heyewovt [1ko—1],t, [kon] — 10}

C{6€P+|v—Twoocd+}

Theorem 3.1 now implies that the maximal degree that can appear in the product Ttiwmj‘]tf[LkO]TtT[kOJan]

is strictly less than L(v). But there is a term of degree Y »_, L(s;, ), hence the result.
O

Lemma 5.11. Let v € Wy, A € P and fiz k € {1,...,n} such that
tax-wout [1k=1]s < tx-wovt, [1k—1] and Ay woor, (1,k-1] € Cup-
Then wovB; € ®T. In particular wovsg, > wov and vsg, < v.

Proof. The hyperplane H that separates A, wovt, [1,k—1] a0d A¢ s wgvt, [1,k—1]sy, 18 H = Hupgup Not+ (A% ,wovBe V) -
Since A, wovt, [1,k—1] € Cuwy, We must have

At)\*wgvt,_[l,kfl] € H™ and Atvwgvtﬂ_[l,kfl]sk € H+a

which means that the quarter Cx» . has to be oriented toward +oo in the direction |wovB| € &t where
|wovBk| denotes the unique positive root colinear to wovB;. According to Lemma 2.4, since wov ™ lwov By =
Br € ®T, we have wovB; € 7. O
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We are now ready to prove the second statement of Theorem 5.5. Let A € PT, v € W, and assume that
J={i1,...,ip} € TP2* . We need to show that J is admissible, A-dominant and that v = v;.

A, T

By maximality of J, we have Y 7_ L(s;,) = L(v) and the second statement of Lemma 5.10 implies

Atv wovt, [1,41—1] — At*

A1'11)0U1157_[1,i1] S ng-

Note also that J; € Ty, 4,,+.. Applying Lemma 5.10 to J; and iz > i1 we get

—1
His wount, [Lialt, lin+1,0) © {0 € @7 [ v wod € @7}

Then Theorem 3.1 implies that
> L(si,) < L(v).
k=2

But vy = vsp, which is strictly less than v by Lemma 5.11. From there we see that L(v1) < L(v) — L(f1) =
L(v) — L(s;,) the last equality coming from the fact that J is maximal. Putting everything together, we
get

L(v) — L(si,) = Y L(si,) < L(v1) < L(v) — L(sy,).
k=2
It follows that we have equality throughout. Further, deg(€;,) = L(v1) also implies that Aty wovnt,[1,i2-1] €
Cu, by Lemma 5.10. At this stage, we have

J2 € Ty 0at, and Atilwovltf[l,ig—l] = At;zwovgtT[ug] € Cuy-
We can therefore argue by induction to show that for all £ € {1,...,p} we have
I
Asg wovet, [1is] € Cuwo and - L(vg) = L(v) ~ > L(si,)-
k=1
In particular, we have v, = id. But v, = vsg, ...sg, sov=sg, ...sp, =0
We have also seen that forall 1 </<p-—1

Ati[wowt,[l,n] € Cy, and At’;\[wgwtﬂ,[l,iprlfl] € Cuy

—_————
=A

wovtd [1,ig] =Aut wootd [Lig41—1)

hence showing that for all k£ < i, we have At’;wovti[l, k] € Cuy,- For the last values of k we simply note that
At;wovti[l,i,,] = AtipUJotT[Lip] € Cyy, (since v, = id)

and since 7 € PT we must have At; wot, [1,k] € Cuw, for all k > ip,. It follows that J is A-dominant.

It remains to show that J is admissible. Applying the proof above in the case where L is the usual length
function ¢ shows that ¢(v) = p. We have proved that

id <wvsg, ...sp

p

<...<wsg, 88, <VSg, <V

which implies that
id < 884, < 8B, Sﬂip,l << 58, 5By 5By

This sequence is of length p 4+ 1 hence it has to be saturated. This completes the proof of Theorem 5.5.
Corollary 5.12. Let A € PT and 7 € PT. We have

ngtksr = ngtx hT = E ngtxv‘]t;{
J

where the sum is taken over all A\-dominant maximal admissible subset J.

Remark 5.13. If we are working in the case of equal parameters or when W is not of type C, or Ay, we
can remove the condition of maximality since all parallel hyperplanes have same weights and therefore all
admissible subsets are maximal.
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Any element in W, can be uniquely written under the form #.(,,)0(w) where wt(w) € P is called the weight
of w and 6(w) € Wy. In this section, we have shown that 6(v,t]) = id so that if we set u(J) := wt(v tJ),
Corollary 5.12 now reads

Cwot)\s'r = UIot)\ E :Cwutxﬂt(l)

where the sum is taken over all A-dominant maximal admissible subset .J.

Remark 5.14. Gaussent and Littelmann [3] have shown that the Littelmann path model is equivalent to the
gallery model and they expressed mﬁyT as the number of certain galleries. In [15], Schwer has computed the
structure constants of the MacDonald spherical functions Py(q~!) using galleries. The functions Py(q™!)
interpolate the Weyl characters and the monomial functions as we have Py(0) = sy and P\(1) = my.
Schwer then obtained a combinatorial description of m’iT by describing which of the coefficients in the
expansion Py(q71)P-(q™!) survives the specialisation q=! = 0. The result of Schwer is indeed equivalent
to our result but its proof is quite different : it uses the link between the combinatorics of positive folded
galleries of Gaussent and Littelmann and the action of the Bernstein basis on the periodic Hecke module
of Lusztig [10]. Another approach to computing structure constants of MacDonald spherical functions can
be found in [14] where Parkinson gives a formula in terms of intersection cardinalities in affine buildings.

6 Admissible subsets and Littelmann paths

In this section we compare our result with the result of Lenart and Postnikov and then explain following [8,
89] how admissible subsets give rise to Lakshmibai-Seshadri paths (which are special kind of Littelmann’s
paths).

6.1 Lenart and Postnikov result

In [7, 8], Lenart and Postnikov introduced the notion of admissible subset in order to compute the product
s;s, where A, n € PT, see Theorem 6.3. In this section we explain the connection between our result. We
start by recalling their definition of admissible subset. To distinguish between those two definitions, we
will say that a subset is LP-admissible if it is admissible in the sense of [8, Definition 6.1].

Let t; = s1...s,a be a fixed reduced expression and denote by Hpg, n, the hyperplane separating the
alcoves Ag, 5, , and Ay, s, s, Let s7...s,a~! be the reduced expression of t_, obtained by inverting
the reduced expression above and moving a~! to the left. Then, the hyperplane separating Agr s and
Ag s, s, 18 Hp ni where B = Bn—iyr and N) = Np_j11 — (7, By _;11). Aset J:={j1,...,jp} is said to
be LP-admissible if the sequence

|d / ’ ’ v ’ I ’
< Sﬁil < Sﬁil Sﬁi2 < < Sﬁﬁ Sﬁiz Sﬁip

is a saturated sequence in the Bruhat order in Wj.

Remark 6.1. 1. The involution i +— n—i+1of {1,...,n} induces a bijection .J — J' between admissible
subsets in the sense of Definition 5.1 and admissible subsets in the sense of Lenart and Postnikov.

2. In [8, Definition 5.2], the weight of an LP-admissible subset is defined to be wt(t/ TT) The equal-
ity t{i(ti)Ao = A implies that Wt(t{:_) = —wt(vst!) = —u(J) where the function y is defined at
the end of the previous section. We set u(J7) = u(J).

Before being able to state the result of Lenart and Postnikov, we need to introduce some more data
associated to the LP-admissible subset .J7.

Let H_., s, where 7; € ®1 be the hyperplane that separates the alcoves A and At gt for all

tiz—[la i) Ll1,i41]

1 <i < n. Let a be a simple root and £% = (u(J),a"). Following [8], we set
I(J',a) = {i|7i = a}
L(JYa)y={t; |ieI(J',a)} u{tL}
M(JT, o) = max L(JT, ).
Example 6.2. We keep the setting of Example 5.2. Consider the admissible subset J := {3,5,10} and
the corresponding LP-admissible subset JT := {1,6,8}. We have u(J) = o so that £22 = 2 and £&2 = —1.

Next we compute
I(J" ) = {2,6,10} and I(J', a;):={1,8}
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so that
L(J', a2) ={0,1,2} and L(J',aq):={0,—1}.
Finally we obtain M (J', o) = 2 and M(J',ay) = 0. In the figure below, we have drawn the path

pJ(id; t_ZTT) The set I(J', ;) indicates when the path is crossing an hyperplane of direction a; and the
integers M (J', ;) are such that the whole path lies in H: M) Further, these are the minimal
integers with this property.

Fig. 3: The path py(id; )

We are now ready to state Lenart and Postnikov result.

Theorem 6.3 ([8], Corollary 8.3). In a simple Lie algebra with Weyl group Wy, we have for \,7 € PT
SrS)\ = Zs/\‘f‘ﬂ('ﬁ) (2)
Jt

where the sum is over all LP-admissible subsets JT satisfying (A + p(J1),av) > M(J,a) for all simple
T00t Q1.

We need to check that the condition on JT above is equivalent to J being A-dominant. It will be a
consequence of the following three observations:

1. the path py(A, ;17 ) lies in the half plane H (\av)—M(Jt,a) a0d the integer A\ aYy — M(Jt a) is
maximal with this property;

2. J is A-dominant if and only if the path py(t\vs;t;) lies in Cig;

3. ps(tavs;t,) is obtained from py(Ay, ;¢ ) by translating all the alcoves by p(J) and reversing the
order.

We have
py(tavy;ty) C Cig <= py(tavy;ty) C H;ZO for all simple root «

— (pJ(AtA;t_Z:_)) tu) C H;ZO for all simple root «

= ps(An;t,) C HY

—(p
— (N aY) =M, a) > —(u(J),a") for all simple root a
— A+ p(J),a") > M(J', &) for all simple root c.

(J),a¥) for all simple root «

This theorem is equivalent to Theorem 5.5 in the equal parameter case when there is no condition on the
maximality of J.

6.2 Lakshmibai-Seshadri paths

We explain following [8, §9], how to construct an Lakshmibai-Seshadri path (LS paths for short) from an
admissible subset J. There is no new result in this section but this construction exhibits a strong link

between LS paths and our approach in the proof of Theorem 5.5: compare for instance Figure 2 and Figure
4.

A rational W,-path of shape p € P is a pair of sequences (v, a) such that v = (vg,v1,...,v,) is a strictly
decreasing chain (in the Bruhat order) of minimal length left coset representatives of stab,(WWy) and
a = (ag,a1,...,a,4+1) is an increasing sequence of rational numbers such that ap = 0 and a,+; = 1.
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We identify 7 with the path 7 : [0,1] — V defined by

j—1

7(t) == Z(ai —ai—1)viph + (t — aj_1)vip for aj_q1 <t < aj.
i=1

The weight of 7 is equal to 7(1).

A rational W,-path of shape pu is called a Lakshmibai-Seshadri path if there exists a sequence of positive
roots (d1,...,0d,) such that

Vo > V1 = VS5, > V2 = V085,865 > -+ > Up = V0S§; - - - S5,
0(v;) = L(vi—1) — 1 and a;(v;p, 8)) € Z.
Remark 6.4. Our definition of LS paths is slightly different from the one of Littelmann in [9] but nearly

obviously equivalent. Omne only needs to notice that if a = ay = aq4+1 = ... = g4, then the chain
(vgy - - Vg+r) is an a-chain as defined by Littelmann.

For the rest of this section we will need to work with a specific reduced expression of t,. This choice is
important in the proof of the third statement of Theorem 6.5; see [8, §9]. Fix a total order on the set of
simple roots {aj1,...,an} and write {w1,...,wx} for the corresponding fundamental weights. We define
the map
h: H(ApA,) — RNH!
Hs g, — ﬁ(kz, (w1,8Y), .. {wN,6Y)).

The lexicographic order on RV induces a total order on the set H(Ag, A,). Let
H(Ao, A7) = {HBth’ RE) HBn,Nn}

be such that Hg, n, < Hp, , n,,, for all i. Then there exists a reduced expression of ¢; of the form

51...5pa where a € 11, s; € S and such that Hg, y, is the hyperplane separating A, .,,_, and A, ,.

Let J = {i1,...,ip} be an admissible subset as in Definition 5.1 and consider the pair (0,v;) € P x W.
Let (Ao, ..., Ap), (vo,...,vp) and (Jo,. .., Jp) be the sequences associated to (0,v) constructed in Section
5. Since J is admissible we have vy = sg, ...sg,, ., = vj,. We set

ey =v5,Tlor0<l<p,
e 7 :[0,1] — V to be the straight path defined by ¢ — pp + ¢ - 74,

N;,
o« Qy = for 1 </ <p.
(1. 8Y)
Finally, we set v = (vy,,...,vs,) and a = (ao, .. .,,apt1) where ag = 0 and a,11 = 1. By construction, the

path m = (v, a) coincide with the path 7, for all ay <t < as41. Then according to [8, §9] one can show the
following result where once again, we assume that we are in the equal parameter case. The choice of our
specific reduced expression for ¢, plays a crucial role in the proof of Statement (3). Recall the definition
of u(J) at the end of Section 5.

Theorem 6.5. Let J be an admissible subset, A\ € PT and m = (vg,a) be the Wq-rational path defined
above. We have

1. m is a LS-path of shape T and weight u(J).
2. The set of LS-paths of shape T is in bijection with the set of admissible subsets.
3. 7 is A-dominant (i.e. X+ w(t) € Cig for all t € [0,1]) if and only if the path pj(tavy;ts) C Cig.

As a direct consequence of this theorem and Theorem 5.5, we obtain for A\,7 € P*
Cwotk h‘r = Z C'LUUt)\+7r(1)
s

where the sum is over all A-dominant LS-paths of shape 7.
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Example 6.6. Let W be of type G5 and keep the notations of the previous examples. We compute the
different elements needed in the construction of the path 7; where J = {3,5,10}. Note that most of these
have already been constructed in Example 5.7.

¢ Jo Bi, vJ, 0 Ni, | a
0| {3,510} Say Savg Say —a 0
1| {5,10} | 44 SasSay a 1 11/2
2 {10} 05 Coy o1 + 3a 2 |2/3
3 0 06 id 201 + 302 | 1 1

The LS-path 7; associated to J is represented by a thick line in Figure 4. The paths 7y, mo and 73 are
represented by dashed lines. We see that that

* 77 follows the direction —a; for a time 1/2;
x 7y follows the direction ay for a time 1/6;

x 77 follows the direction ay + 3y for a time 1/3.

A3

Fig. 4: LS path associated to the set J = {3,5,10}.

When doing the above procedure for all admissible subsets J (described in Example 5.2) we obtain the
paths described in Figure 5.

Fig. 5: LS paths in type Ga.

Acknowledgement: The author would like to thank Cédric Lecouvey and James Parkinson for many
helpful discussions and for pointing out interesting references. Thanks also to the referees for suggesting
many interesting modifications.
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