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Admissible subsets and Littelmann paths in affine

Kazhdan-Lusztig theory

Jérémie Guilhot

Abstract

The center of an extended affine Hecke algebra is known to be isomorphic to the ring of symmetric functions
associated to the underlying finite Weyl group W0. The set of Weyl characters sλ forms a basis of the center and
Lusztig showed in [11] that these characters act as translations on the Kazhdan-Lusztig basis element Cw0 where
w0 is the longest element of W0, that is we have Cw0sλ = Cw0tλ . As a consequence, the coefficients that appear
when decomposing Cw0tλsτ in the Kazhdan-Lusztig basis are tensor multiplicities of the Lie algebra with Weyl
group W0. The aim of this paper is to explain how admissible subsets and Littelmann paths, which are models to
compute such multiplicities, naturally appear when working out this decomposition.

1 Introduction

Let We be an extended affine Weyl group with underlying finite Weyl group W0. Then We = W0 ⋉ P
where P denotes the set of weights associated to W0. Let H be the generic affine Hecke algebra of We

defined over A the ring of Laurent polynomials with one indeterminate q and let {Cw | w ∈ We} be the
Kazhdan-Lusztig basis of H. The center of the affine Hecke algebra H associated to We is known to be
isomorphic to the ring of symmetric functions A[P ]W0 . The set of Weyl characters {sλ | λ ∈ P+} forms
a basis of A[P ]W0 and we have Cw0sλ = Cw0tλ where tλ denotes the translation by λ ∈ P+ in We; see
[11, 13] and the references therein.

Denote by V (τ) the irreducible highest weight module of weight τ ∈ P+ for the simple Lie algebra over
C with Weyl group W0 and weight lattice P . Then the character of V (λ) is sλ and for all τ, λ ∈ P+

we have sλsτ =
∑

mµ
λ,τ sµ where mµ

τ,λ is the multiplicity of V (µ) in the tensor product V (λ) ⊗ V (τ).

Computing the multiplicities mµ
τ,λ is one of the most basic question in representation theory of simple Lie

algebras over C. Littelmann showed [9] that such multiplicities can be determined by counting certain
kind of paths in the weight lattice P constrained to stay in the fundamental chamber. Later on, Lenart and
Postnikov [7, 8] showed that these multiplicities can be determined using admissible subsets associated to
a fix reduced expression of tτ ∈ We. In [7] they used a geometric approach based on equivariant K-theory
while in [8] their approach is more axiomatic and is based on the fact that their model satisfies a set of
axioms, introduced by Stembridge in [16], that encode the combinatorics of Weyl characters. The model
of Lenart and Postnikov can be viewed as a discrete counterpart of Littelmann paths model and they
explicitly constructed a bijection between admissible subsets and Lakshmibai-Seshadri paths (which are
certain kind of Littelmann paths).

In the extended affine Hecke algebra, we must have

Cw0tλsτ = Cw0sλsτ =
∑

mµ
λ,τCw0tµ .

The aim of this paper is to explain how admissible subsets (and thus Littelmann paths) naturally appear
when decomposing Cw0tλsτ in the Kazhdan-Lusztig basis. Ultimately, this will be a consequence of a
multiplication formula for two standard basis elements in the extended affine Hecke algebra [2, proof of
Proposition 5.1]. More precisely, we will, for all λ, τ ∈ P+

1. construct elements hτ ∈ Ttτ +
∑

y<tτ
q−1Z[q−1]Ty such that Cw0hτ = Cw0tτ = Cw0sτ ;

2. show that Cw0tλhτ is a Z-linear combination of Kazhdan-Lusztig basis elements;

3. show that determining the expansion in (2) is equivalent to finding terms of maximal degree in
products of the form Tw0tλvTtτ (v ∈ W0) expressed in the standard basis;

4. show that the maximal terms in (3) are indexed by admissible subsets J associated to a reduced
expression of tτ as defined by Lenart and Postnikov.
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2 Affine Weyl groups 2

The paper is organised as follows. In Section 2, we introduce all the needed material on (extended) affine
Weyl groups. In Section 3, we present Kazhdan-Lusztig theory for affine Hecke algebras with unequal
parameters and we describe the center of these algebras. In Section 4 we prove (1)–(3) above: this will
essentially be a consequence of results on the lowest two-sided cells in [5]. We will prove Statement (4) in
Section 5. In Section 6, following [8], we study the connections between our work and the results of Lenart
and Postnikov and we describe the bijection between admissible subsets and Lakshmibai-Seshadri paths.

2 Affine Weyl groups

Let V be an Euclidean space with scalar product (·, ·). We denote by V ∗ the dual of V and by 〈 , 〉 :
V ×V ∗ −→ R the canonical pairing. Let Φ be a root system and let Φ∨ be the dual root system. If α ∈ Φ
then α∨ ∈ Φ∨ is defined by 〈x, α∨〉 = 2(x, α)/(α, α). We fix a set of positive roots Φ+ and a simple system
∆ = {α1, . . . , αN} such that ∆ ⊂ Φ+.

2.1 Geometric presentation of an affine Weyl group

We denote by Hα,n the hyperplane defined by the equation 〈x, α∨〉 = n and by F the collection of all such
hyperplanes. We will say that an hyperplane H is of direction α ∈ Φ+ if there exists a pair (α, n) ∈ Φ+×Z

such that H = Hα,n. We then write H = α. For any subset F ⊂ F we set F := {H | H ∈ F} ⊂ Φ+.

Playing with notations yields {H} = {H}.

Let Wa be the group generated by the set of orthogonal reflections sα,n with respect to Hα,n where α ∈ Φ
and n ∈ Z. The group Wa is an affine Weyl group of type Φ∨ and it is isomorphic to W0 ⋉Q where Q is
the lattice generated by Φ. For λ ∈ Q, we will denote by tλ the translation by λ in Wa. It is well known
that Wa is generated by the set S := {sαi,0 | α ∈ ∆} ∪ {sα̃,1} where α̃∨ is the highest root of Φ∨. We will
simply write sαi

for sαi,0 where 1 ≤ i ≤ N and sα0 for sα̃,1. Let W0 be the stabiliser of 0 in Wa and w0

be the longest element of W0. Clearly W0 = 〈S0〉 where S0 = {sα1 , . . . , sαN
}. We will denote by id the

identity element in Wa.

The set of alcoves, denoted Alc(F), is the set of connected components of V \F . The fundamental alcove
A0 is defined by

A0 = {x ∈ V | 0 < 〈x, α∨〉 < 1, ∀α ∈ Φ+}

= {x ∈ V | 0 < 〈x, α∨〉 < 1, ∀α ∈ ∆}.

The set of hyperplanes bounding A0 is equal to {Hα,0 | α ∈ ∆} ∪ {Hα̃,1}: these are called the walls of A0.
A face of A0 (that is a codimension 1 facet) is said to be of type sαi

if it is contained in the hyperplane
Hαi,0 and of type sα0 if it is contained in the hyperplane Hα̃,1.

The group Wa acts simply transitively on the set of alcoves and we can extend the definition of walls and
faces to all alcoves. Two alcoves A and A′ are then said to be s-adjacent where s ∈ S if they share a face
f of type s and we write A ∼s A′. In other words, A and A′ are s-adjacent if there exists w ∈ Wa such
that wf is the face of type s of A0. We will denote by Ay the alcove yA0.

Remark 2.1. It is important to notice that the alcoves Aw and Aws are s-adjacent for all w ∈ Wa and
all s ∈ S. Therefore, any expression ~w = s1 . . . sn (si ∈ S) of w ∈ Wa defines a sequence of adjacent
alcoves starting at the fundamental alcove A0 and finishing at the alcove Aw:

e ∼s1 As1 ∼s2 As1s2 ∼s3 . . . ∼sn As1...sn = Aw.

Further, there exists a unique pair (α, k) ∈ Φ+ × Z such that the hyperplane Hα,k separates the alcoves
Aw and Aws and we have sα,kAw = Aws.

Any hyperplane Hα,n where α ∈ Φ+ divides the space V into two half spaces

H+
α,n = {λ ∈ V | 〈λ, α∨〉 > n} and H−

α,n = {λ ∈ V | 〈λ, α∨〉 < n}.

We say that an hyperplane H ∈ F separates the alcoves A and B if and only if A ∈ Hǫ and B ∈ H−ǫ

where ǫ = ±. Given two alcoves A,B ∈ Alc(F), we set

H(A,B) = {H ∈ F | H separates A and B}.

For all A ∈ Alc(F), α ∈ Φ and n ∈ Z, we write n < A[α] (respectively n > A[α]) if and only if for all
λ ∈ A we have n < 〈λ, α∨〉 (respectively n > 〈λ, α∨〉). For two alcoves A and A′, we write A[α] < A′[α] if
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and only if 〈λ, α∨〉 < 〈µ, α∨〉 for all (λ, µ) ∈ A × A′. For all alcoves A and all roots α ∈ Φ, there exists a
unique n ∈ Z such that n < A[α] < n+ 1.

The following proposition gathers some well known results about the length function and the action of Wa

on the set of alcoves. A standard reference for these results is [6].

Proposition 2.2. Let w ∈ Wa. We have

1. ℓ(w) = |H(A0, Aw)|

2. Let s ∈ S and let Hα,n where α ∈ Φ+ be the unique hyperplane separating w and ws. We have
ws < w if and only one of the following statement holds:

(a) Aw ∈ H+
α,n, Aws ∈ H−

α,n and n > 0,

(b) Aw ∈ H−
α,n, Aws ∈ H+

α,n and n ≤ 0.

3. We have H(A0, Av) = {α ∈ Φ+ | v−1α ∈ Φ−} for all v ∈ W0.

Example 2.3. Let Φ be a root system of type G2 and let ∆ = {α1, α2} be a simple system in Φ such
that α2 is the short root so that

Φ = ±{α1, α2, α1 + α2, α1 + 2α2, α1 + 3α2, 2α1 + 3α2}.

Then Φ∨ is also of type G2 and the coroot of α1 + 2α2 is 2α∨
1 + 3α∨

2 which is the highest root of Φ∨. In
Figure 1a, we represent the root system Φ. In Figure 1b, we represent the alcoves A0, Aw0 and the alcove
Aw where w = sα0sα1sα2sα1sα2sα0 .

α2

α1 + 2α2

α1

(a) Root system Φ

A0

Aw0

Aw

(b) Action on A0

Fig. 1: Roots, hyperplanes and alcoves in type G2

The set of hyperplanes that separates A0 and Aw is

H(A0, Aw) = {Hα2,2, Hα1+2α2,2, Hα1+3α2,1, Hα2,1, Hα1,0, Hα0,1}

and these are represented with dashed lines. Note that the cardinal of H(A0, wA0) is indeed the length
of w. The alcoves of the sequence

(A0, As0 , As0s1 , As0s1s2 , As0s1s2s1 , As0s1s2s1s2 , Aw)

are colored in light gray. Finally we have

sα0sα1sα2sα1sα2sα0A0 = sα2,2sα1+2α2,2sα1+3α2,1sα2,1sα1,0sα0,1A0.

2.2 Weight functions and special points

Let L be a positive weight function on Wa, that is a function L : Wa −→ N such that L(ww′) =
L(w) + L(w′) whenever ℓ(ww′) = ℓ(w) + ℓ(w′). To determine a weight function, it is enough to give its
values on the conjugacy classes of generators of S. From now on, we fix such a positive weight function L
on Wa.

Let H be an hyperplane in F . We say that H is of weight L(s) if it contains a face of type s ∈ S. This is
well-defined since if H contains a face of type s and s′ then s and s′ are conjugate and L(s) = L(s′) see [2,
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Lemma 2.1]. We denote the weight of an hyperplane H by L(H). If α ∈ Φ, we set L(α) = maxH=α L(H).
For any λ ∈ V we set

L(λ) =
∑

H,λ∈H

L(H).

Let ν = maxλ∈V L(λ). We call λ an L-weight if L(λ) = ν and we denote by P the set of L-weights. Further
we denote by P+ the set of dominant L-weights that is P+ = {λ ∈ P | 〈λ, α∨〉 ≥ 0 for all α ∈ Φ+} and
by P− the set of anti-dominant weights, that is P− = −P+. Without loss of generality, we will always
assume that 0 ∈ V is an L-weight. The action of the longest element w0 ∈ W0 on the set of weights is an
involution that sends P+ onto P− and we set λ∗ = w0λ for all λ ∈ P .

2.3 Extended affine Weyl groups

The extended affine Weyl group is defined by We = W0 ⋉P ; it acts naturally on the set of alcoves Alc(F)
but the action is no longer faithful. If we denote by Π the stabiliser of A0 in We then we haveWe = Π⋉Wa.
Note that Π permutes the weight that belong to the closure of A0. Further the group Π is isomorphic to
P/Q, hence it is abelian and its action on Wa is given by an automorphism of the Dynkin diagram; see
Planches I–IX in [1]. We denote tλ where λ ∈ P the translation by λ in We.

An extended alcove is a pair (A, µ) where A ∈ Alc(F) and µ is a vertex of A which lies in P . We denote
by Alce(F) the set of extended alcoves. The group We acts naturally on Alce(F) and the action is faithfull
and transitive. Indeed, if (A, µ) ∈ Alce(F), there exists w ∈ Wa such that wA = A0 and wµ = µ′ where
µ′ ∈ A0. If we let π ∈ Π be such that πµ′ = 0 we obtain πw(A, µ) = (A0, 0) as required. To simplify the
notation, we will simply write A0 for (A0, 0) and for all w ∈ We we set Aw = wA0.

All the notions and notations for alcoves in Alc(F) can be extended to Alce(F). We just omit the part
with the weight when needed. For instance if A′ = (A, λ) ∈ Alce(F), we write A′[α] < 0 to mean
A[α] < 0. The length function, the weight function, the Bruhat order all naturally extend to We by setting
ℓ(aw) = ℓ(w), L(aw) = L(w) and aw < a′w′ if and only if a = a′ and w < w′ where a, a′ ∈ Π and
w,w′ ∈ Wa.

2.4 Quarter of vertex λ

The quarters of vertex λ ∈ V are the connected components of

V \
⋃

H∈F ,λ∈H

H.

Given λ ∈ P and v ∈ W0, we denote by Cλ,v the quarter of vertex λ which contains tλv. When we consider
a quarter with vertex 0 we will omit the 0 in the notation. The set of Weyl chambers is then {Cw | w ∈ W0}
and the fundamental Weyl chamber is Cid. We have

Cid := {x ∈ V | 〈x, α∨〉 > 0 for all α ∈ Φ+} and

Cw0 := {x ∈ V | 〈x, α∨〉 < 0 for all α ∈ Φ+}.

Let X0 be the set of right coset representatives of minimal length of W0 in We. Then X0 is the set of
x ∈ We that satisfies ℓ(w0x) = ℓ(w0) + ℓ(x) and

x ∈ X0 ⇐⇒ Ax ∈ Cid ⇐⇒ Ax[α] > 0 for all α ∈ ∆.

Any element w of We can be uniquely written under the form w = vx where v ∈ W0 and x ∈ X0. For
all x ∈ X0, λ ∈ P and v ∈ W0, the alcove tλvx lies in Cλ,v.

For λ ∈ V and α ∈ Φ+ we set λα = 〈λ, α∨〉. Let C be a quarter of vertex λ ∈ P and fix α ∈ Φ+. We have
either

{〈x, α∨〉 | x ∈ C} =]λα,+∞[ or {〈x, α∨〉 | x ∈ C} =]−∞, λα[.

In the first case we say that C is oriented toward +∞ in the direction α and we write C[α] = +∞. In the
second case we say that C is oriented toward −∞ in the direction α and we write C[α] = −∞.

Lemma 2.4. Let λ ∈ P and v ∈ W0. We have for all α ∈ Φ+ :

Cλ,v[α] =

{

+∞ if v−1α ∈ Φ+,

−∞ if v−1α ∈ Φ−.

Proof. Let x ∈ Cλ,v. There exist x0 ∈ Cv and y0 ∈ Cid such that x = x0 + λ and x0 = vy0. We have

〈x, α∨〉 = 〈x0 + λ, α∨〉 = 〈vy0, α
∨〉+ λα = 〈y0, (v

−1α)∨〉+ λα.

Since y0 ∈ Cid we have 〈y0, (v−1α)∨〉 ≥ 0 if and only if v−1α ∈ Φ+ as required.
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3 Affine Hecke algebra with unequal parameters

3.1 Affine Hecke algebra

Let A = C[q, q−1] where q is an indeterminate. The Iwahori-Hecke algebra H associated to We is the
free A-module with basis (Tw)w∈We

and relations given by

TuTv = Tuv whenever ℓ(uv) = ℓ(u) + ℓ(v)

and
(Ts − qL(s))(Ts + q−L(s)) = 0 if s ∈ S.

From this relation, we easily find that for all s ∈ S and all w ∈ W , we have

TsTw =

{

Tsw if ℓ(sw) > ℓ(w),

Tsw + ξsTw if ℓ(sw) < ℓ(w)
where ξs = qL(s) − q−L(s).

The basis (Tw)w∈We
is called the standard basis. We write fx,y,z for the structure constants with respect

to this basis:
TxTy =

∑

z∈We

fx,y,zTz.

The elements fx,y,z are polynomials in {ξs | s ∈ S} with positive coefficients. The degree of fx,y,z will be
denoted deg(fx,y,z) and is the highest power of q that appears in fx,y,z.

3.2 Multiplication of the standard basis

In this section, we present a result of [4] on a bound on the degree of the polynomials fx,y,z. Recall that for
two alcoves A,B ∈ Alce(F), we have set H(A,B) = {H ∈ F | H separates A and B}. Then for x, y ∈ We

we set

Hx,y = H(A0, Ax) ∩H(Ax, Axy) and cx,y(α) := max
H∈Hx,y

H=α

LH .

Then according to [4, Theorem 2.4] we have:

Theorem 3.1. The degrees of the polynomials fx,y,z are bounded by
∑

α∈Hx,y
cx,y(α).

We obtain the following corollary [5, Proposition 5.3] which will be crucial in the following section.

Corollary 3.2. Let x ∈ X−1
0 , v ∈ W0 and y ∈ X0. We have

deg(fxv,y,z) ≤ L(w0)− L(v).

3.3 Kazhdan-Lusztig basis

Let ¯ be the ring involution of A which takes q to q−1. This involution can be extended to a ring involution
of H via the formula

∑

w∈We

awTw =
∑

w∈We

awT
−1
w−1 (aw ∈ A).

We set
A<0 = q−1Z[q−1] , H<0 =

⊕

w∈We
A<0Tw

A≤0 = Z[q−1] and H≤0 =
⊕

w∈We
A≤0Tw.

For each w ∈ We there exists a unique element Cw ∈ H (see [12, Theorem 5.2]) such that (1) Cw = Cw

and (2) Cw ≡ Tw mod H<0. For any w ∈ We we set

Cw =
∑

y∈We

Py,wTy where Py,w ∈ A<0.

The coefficients Py,w are called the Kazhdan-Lusztig polynomials. It is well known ([12, §5.3]) that
Py,w = 0 whenever y � w and that Pw,w = 1. It follows that (Cw)w∈We

forms an A-basis of H known as
the Kazhdan-Lusztig basis. According to [12, Theorem 6.6] we have

∀w ∈ We, ∀s ∈ S, Px,y = q−L(s)Pxs,y whenever x < xs and ys < y.
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Remark 3.3. Using Corollary 3.2 and the definition of the Kazhdan-Lusztig basis, one can show that the
element Cw0tλTy lies in H≤0 for all λ ∈ P+ and y ∈ X0; see Proposition 5.3 in [5]. Indeed we have

Cw0tλTy =
∑

x≤w0tλ

Px,w0tλTxTy

=
∑

x0∈X0,v∈W0

Px−1
0 v,tλ∗w0

Tx−1
0 vTy

=
∑

x−1
0 v≤w0tλ

qL(v)−L(w0)Px−1
0 w0,tλ∗w0

Tx−1
0 vTy

The result follows since deg(fx−1
0 v,y,z) ≤ L(w0)− L(v) for all z ∈ We.

3.4 The center of the affine Hecke algebra

In this section we follow the presentation of Nelsen and Ram [13] and we refer to it and the references
therein for details and proofs. We start by introducing another presentation of the affine Hecke algebra
which is more convenient to describe its center Z(H). For each λ ∈ P , we set eλ := TtµT

−1
tν where

µ, ν ∈ P+ are such that µ− ν = λ. This can be shown to be independent of the choice of µ and ν. Then
H is generated by the sets {Ts | s ∈ S0} and {eλ | λ ∈ P} and we have the relations

eλeµ = eλ+µ = eµeλ and eλTsi = Tse
siλ + ξs

eλ − esiλ

1− e−αi
.

Let A[P ] be the subalgebra of H generated by {eλ | λ ∈ P}. Then W0 acts naturally on A[P ] via w · eλ =
ewλ.

Theorem 3.4. The sets (eλTw)λ∈P,w∈W0 and (Twe
λ)w∈W0,λ∈P are A-basis of H and the center of H is

Z(H) = {f ∈ A[P ] | w · f = f for all w ∈ W0}.

We define the Weyl characters sλ as follows

aλ :=
∑

w∈W0

(−1)ℓ(w)ewλ and sλ =
aλ+ρ

aρ
where ρ =

1

2

∑

α∈Φ+

α.

Then (sλ)λ∈P+ form a basis of Z(H). According to [13, Theorem 2.9], the element sλ acts as translation
on the Kazhdan-Lusztig element Cw0 .

Theorem 3.5. We have sλCw0 = Cw0sλ = Cw0tλ for all λ ∈ P+ and

Cw0tλsτ = Cw0sλsτ =
∑

µ

mµ
λ,τCw0tµ .

4 Decomposition into the Kazhdan-Lusztig basis

The aim of this section is to show that in order to determine the decomposition of Cw0tλsτ in the Kazhdan-
Lusztig basis, it is enough to determine the terms of maximal degree in the products Tw0tλvTtτ where
v ∈ W0. This will be done in 3 steps:

1. we construct some special elements hτ such that Cw0tλsτ = Cw0tλhτ and hτ ∈ Ttτ +
⊕

y<tτ ,y∈X0

A<0Ty,

2. we show that Cw0tλhτ ≡
∑

axTx mod H<0 where ax ∈ Z,

3. we show that Cw0tλhτ = Cw0tλhτ and therefore Cw0tλhτ =
∑

axCx.

Let x ∈ X0 and set hx :=
∑

x′∈X0
Pw0x′,w0xTx′ . Following [18, Lemma 2.5] we get

Cw0x =
∑

y∈We

Py,w0xTy

=
∑

x′∈X0,u∈W0

Pux′,w0xTux′

=
∑

x′∈X0,u∈W0

qL(u)−L(w0)Pw0x′,w0xTuTx′

=

(
∑

u∈W0

qL(u)−L(w0)Tu

)
∑

x′∈X0

Pw0x′,w0xTx′

= Cw0hx.
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When τ ∈ P+, we know that tτ ∈ X0 and we will write hτ instead of htτ . For all τ, λ ∈ P+ we have

Cw0sτ = Cw0hτ and Cw0tλsτ = sλCw0sτ = sλCw0hτ = Cw0tλhτ .

This concludes part (1) since the elements hτ have the required form. Similarly, we can construct elements
gx for all x ∈ X−1

0 such that gxCw0 = Cxw0 . Setting gtτ = gτ (τ ∈ P−) we have Cw0hτ = Cw0tτ =
Ctτ∗w0 = gτ∗Cw0 .

Let τ, λ ∈ P+. Using Remark 3.3 and the fact that Pw0x,w0tτ ∈ A<0 whenever x < tτ , we get

Cw0tλhτ = Cw0tλTtτ +
∑

x<tτ ,x∈X0

Pw0x,w0tτCw0tλTx
︸ ︷︷ ︸

∈H<0

≡ Cw0tλTtτ mod H<0

and

Cw0tλTtτ = Tw0tλTtτ +
∑

y<w0tλ

Py,w0tλTyTtτ .

Let y ∈ We and (yr, y0) ∈ X−1
0 ×W0 be such y = yry0. On the one hand Py,w0tλ = qL(y0)−L(w0)Pyrw0,tλ∗w0

and on the other hand, by Corollary 3.2, the maximal degree that can appear in Tyry0Ttτ is L(w0)−L(y0).
Therefore if yrw0 < tλ∗w0 we get that Py,w0tλTyTtτ ∈ H<0 and

Cw0tλTtτ ≡
∑

y0∈W0

qL(y0)−L(w0)Tt∗
λ
y0Ttτ ≡

∑

v∈W0

q−L(v)Tt∗
λ
w0vTtτ mod H<0.

Finally

Cw0tλhτ ≡
∑

v∈W0

q−L(v)Tw0tλvTtτ
︸ ︷︷ ︸

∈H≤0

mod H<0 (1)

as claimed in statement (2).

We now prove Statement (3).

Lemma 4.1. For all λ, τ ∈ P+, the elements Cw0tλhτ are stable under the -̄involution.

Proof. First we have Cw0tλhτ = Cw0hλhτ = gλ∗gτ∗Cw0 so that Cw0tλhτ lies in the intersection of HCw0

and Cw0H. Next
HCw0 = 〈Cxw0 | x ∈ X−1

0 〉A and HCw0 = 〈Cw0x | x ∈ X0〉A

from where we get
HCw0 ∩ Cw0H = 〈Cw0tν | ν ∈ P+〉A

sinceX−1
0 w0∩w0X0 = {w0tν | ν ∈ P+}. Therefore there exist bν ∈ A such that Cw0tλhτ =

∑

ν∈P+ bνCw0tν .

At this stage, in order to show that Cw0tλhτ = Cw0tλhτ it is now enough to show that bν ∈ Z since
Cw0tν = Cw0tν . The following argument is inspired by [17, Proof of Theorem 6.2]. We have

hw0,w0,w0Cw0tλhτ = Ctλ∗w0Cw0hτ

= Ctλ∗w0Cw0tτ

=
∑

z∈We

htλ∗w0,w0tτ ,zCz

=
∑

ν∈P+

bνhw0,w0,w0Cw0tν

where hx,y,z ∈ A denote the structure constants with respect to the Kazhdan-Lusztig basis. According to
[12, §13.4], the degree of hx,y,z is bounded by L(w0) for all x, y, z ∈ We. Therefore deg(hτ−1w0,w0tτ ,z) ≤
L(w0) and since deg(hw0,w0,w0) = L(w0), this forces bν ∈ Z as required.

Statement (3) now follows using the following lemma.

Lemma 4.2. Let h ∈ H be such that h̄ = h and h ≡
∑

axTx mod H<0 where ax ∈ Z. Then h =
∑

axCx.

Proof. We know [12, §5.2.(e)] that if h′ ∈ H<0 satisfies h̄′ = h then h′ = 0. The lemma is an easy
consequence of this result setting h′ = h−

∑
axCx.
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As a consequence, in order to determine the decomposition of Cw0tλhτ in the Kazhdan-Lusztig basis, we
need to determine which product q−L(v)Tw0tλvTtτ can actually give rise to a non zero term modulo H<0.
In other words, we need to determine which terms in the decomposition of Tw0tλvTtτ in the standard basis
has a coefficient of (maximal) degree L(v).

The remainder of this section is devoted to set up the notation in order to study the product Tw0tλvTtτ .
Let x, y ∈ We and let ~y = s1 . . . sna be a reduced expression of y where a ∈ Π and si ∈ S for all i.
Let J = {i1, . . . , ip} be a subset of {1, . . . , n}. For all 1 ≤ ℓ, k < n, we set

~yJ =





n∏

r=1,r /∈J

sr



 a, ~yJ [ℓ,k] =

k∏

r=ℓ,r /∈J

sr and ~yJ [ℓ,n] =





n∏

r=ℓ,r /∈J

sr



 a.

When J is empty we will simply write ~y[ℓ,k] instead of ~y∅[ℓ,k] for the product sℓ . . . sk and ~y[ℓ,n] instead of
~y∅[ℓ,n]. Finally we denote by pJ(x; ~y) the sequence of alcoves (Ax~yJ [1,k])1≤k≤n. We see that

• there can be repetitions in this sequence (see below);

• any two consecutive alcoves are either equal or adjacent.

We can therefore represent pJ(x; ~y) by a path going through the sequence of alcoves (Ax~yJ [1,k])1≤k≤n

and which folds on the si-face of Ax~yJ [1,i−1] for all i ∈ J (and hence goes twice through the alcove
Ax~yJ [1,i−1] = Ax~yJ [1,i]). We will say that the path pJ (x; ~y) is included in a certain subset of V if all the
alcoves that appear in pJ(x; ~y) lie in this subset.

Let Ix,~y the set of all subsets {i1, . . . , ip} of {1, . . . , n} such that 1 ≤ i1 < . . . < ip ≤ n and

x~yJ [1,iℓ−1]siℓ < x~yJ [1,iℓ−1] for all ℓ ∈ {1, . . . , p}.

For J = {i1, . . . , ip} in Ix,~y, we set ξJ =
∏p

k=1 ξsik so that we have [2, Proof of Proposition 5.1]

TxTy =
∑

J∈Ix,~y

ξJTx~yJ .

Let Hα,n (α ∈ Φ+) be the hyperplane that separates Ax~yJ [1,iℓ−1] and Ax~yJ [1,iℓ−1]siiℓ
. By definition of Jx,~y

we have x~yJ [1,iℓ−1]siℓ < x~yJ [1,iℓ−1] and therefore

• Ax~yJ [1,iℓ−1] ∈ H−
α,n and Ax~yJ [1,iℓ−1]siℓ ∈ H+

α,n if n ≤ 0;

• Ax~yJ [1,iℓ−1] ∈ H+
α,n and Ax~yJ [1,iℓ−1]siℓ ∈ H−

α,n if n > 0.

We fix a reduced expression ~tτ of tτ and we set

Iλ,v,τ = It∗
λ
w0v,~tτ

and Imax
λ,v,τ = {J ∈ Iλ,v,τ | deg(ξJ ) = L(v)}

so that according to (1) and the fact that the leading term of ξJ is qL(v) we have

Cw0tλhτ ≡ Tw0tλ+τ
+

∑

v∈W0\{id}

q−L(v)Tw0tλvTtτ ≡
∑

v∈W0

∑

J∈Imax
λ,v,τ

Tw0tλvtJτ
mod H<0.

and

Cw0tλhτ =
∑

v∈W0

∑

J∈Imax
λ,v,τ

Cw0tλvtJτ
.

5 Description of Imax
λ,v,τ in terms of admissible subsets

Once and for all in this section, we fix τ ∈ P+ and a reduced expression ~tτ = s1 . . . sna where a ∈ Π and
si ∈ S. Let (β1, . . . , βn) ∈ (Φ+)

n
and (N1, . . . , Nk) ∈ Nn be such that the unique hyperplane separating

As1...sk−1
and As1...sk is Hβk,Nk

. Following [8], we now introduce the concept of admissible subsets.

Definition 5.1. A subset J = {i1, . . . , ip} of {1, . . . , n} will be called an admissible subset if

id < sβip
< sβip

sβip−1
< . . . < sβip

sβip−1
. . . sβi1

is a saturated chain in the Bruhat order on W0. We set vJ := sβip
sβip−1

. . . sβi1
.
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Saying that the chain is saturated in the Bruhat order on W0 is equivalent to say that ℓ(sβip
. . . sβik

) =
p− k+1 for all 1 ≤ k ≤ p. We note that if {i1, . . . , ip} is an admissible subset then so is {iℓ, . . . , ip} for all
ℓ ≤ p and we denote this subset by Jℓ−1 so that J0 = J and Jp = ∅. Then we have vJℓ−1

= sβip
. . . sβiℓ

.

Example 5.2. Let W be of type G̃2 as in Example 2.3 and let τ = 2α1 +3α2 ∈ P+. We fix the following
reduced expression

~tτ = sα0sα2sα1sα2sα0sα2sα1sα2sα1sα2 .

The sequence of roots (β1, . . . , β10) associated to ~tτ is

(α1 + 2α2, α1 + α2, 2α1 + 3α2, α1 + 2α2, α1 + α2, α1 + 3α2, α1 + 2α2, 2α1 + 3α2, α1 + α2, α1).

Following [8, Example 10.12], we know that there are 14 admissible subsets and we describe these sets in
the table below. In the column saturated chains, we only put the extremal element and one can recover
the full chain by adding to the chain all the elements above in the same column: for instance, the saturated
chain associated to the admissible subset {3, 9, 10} is id < sα1 < sα1sα1+α2 < sα1sα1+α2s2α1+3α2 .

Saturated chains Reduced expression admissible subset

1 1 ∅

sα1 sα1 {10}

sα1 sα1+α2
sα2sα1 {9, 10}, {5, 10}, {2, 10}

sα1sα1+α2
s2α1+3α2

sα1sα2 sα1 {8, 9, 10}, {3, 9, 10}, {3, 5, 10}

{7, 8, 9, 10}, {4, 8, 9, 10},

sα1sα1+α2
s2α1+3α2

sα1+2α2
sα2sα1sα2 sα1 {1, 8, 9, 10}, {1, 3, 9, 10},

{1, 3, 5, 10}

sα1sα1+α2
s2α1+3α2

sα1+2α2
sα1+3α2

sα1sα2sα1 sα2sα1 {6, 7, 8, 9, 10}

Remark 5.3. Our definition of admissible subset is slightly different than the one in [8] where they work
with reduced expressions of t−τ . The connection between those two definitions will be made clear in the
next section.

Recall the definition of L(β) (β ∈ Φ+) and Cv (v ∈ W0) in Section 2.2 and 2.4 respectively.

Definition 5.4. Let J = {i1, . . . , ip} be an admissible subset. We say that J is

1. λ-dominant for λ ∈ P+ if the pJ(tλv;~tτ ) ⊂ Cid,

2. maximal if L(siℓ) = L(βiℓ) for all 1 ≤ ℓ ≤ p.

Recall that we always assume that 0 is an L-weight so that L(vJ) =
∑p

k=1 L(βik) for all J . In particular,
if J ∈ Imax

λ,v,τ then J must be maximal in order to satisfy deg(ξJ ) = L(vJ).

We are now ready to state the main result of this paper. Recall the notations introduced at the end of the
previous section.

Theorem 5.5. Let λ ∈ P+ and v ∈ W0.

1. If J is admissible, λ-dominant and maximal then J ∈ Imax
λ,vJ ,τ

.

2. If J ∈ Imax
λ,v,τ then v = vJ , J is admissible, λ-dominant and maximal.

The rest of this section is devoted to the proof of this theorem.

Proposition 5.6. Let v ∈ W0, λ ∈ P and fix k ∈ {1, . . . , n}.

1. The hyperplane separating the alcoves tλvtτ [1,k−1]A0 and tλvtτ [1,k]A0 is Hk := Hvβk,Nk+〈λ,vβk
∨〉.

2. We have tλvtτ [1,k−1]A0 = tλ′v′tτ [1,k]A0 where v′ = vsβk
and λ′ = sHk

λ where sHk
denotes the affine

reflection with respect to Hk.

Proof. The hyperplane separating vtτ [1,k−1]A0 and vtτ [1,k]A0 is vHβk,Nk
= Hvβk,Nk

. Hence the hyperplane
Hk = Hvβk,Nk+〈λ,vβ∨

k
〉 separates the two alcoves tλvtτ [1,k−1]A0 and tλvtτ [1,k]A0. We have

tλvtτ [1,k−1]A0 = tλvtτ [1,k]skA0

= sHk
tλvtτ [1,k]A0

= tsHk
λsvβk

vtτ [1,k]A0

= tsHk
λvsβk

tτ [1,k]A0.
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Let (λ, v) ∈ P ×W0 and J = {i1, . . . , ip} ⊂ {1, . . . , n}. For all 0 ≤ ℓ ≤ p we define the elements vℓ, λℓ and
Jℓ by

• v0 = v and vℓ = vℓ−1sβiℓ
;

• λ0 = λ and λℓ = sHℓ
λℓ−1 where Hℓ := Hvℓ−1βiℓ

,Niℓ
+〈λ,viℓ−1βiℓ

∨〉;

• Jℓ := {iℓ+1, . . . , ip}.

Note that the path pJℓ
(tλℓ

vℓ;~tτ ) folds exactly p − ℓ times and the first fold occurs at position iℓ+1 on
the hyperplane Hℓ+1. By a straightforward induction using Proposition 5.6, we see that we have for all
1 ≤ ℓ ≤ p

tλvt
J
τ [1,iℓ−1]A0 = tλℓ

vsβi1
. . . sβiℓ

tτ [1,iℓ]A0 = tλℓ
vℓtτ [1,iℓ]A0.

In the case where J is an admissible subset and v = vJ we have tλvt
J
τ [1,iℓ−1]A0 = tλℓ

vJℓ
tτ [1,iℓ]A0. Further

since Jp = ∅, the path pJp
(tλv;~tτ ) does not fold.

Example 5.7. LetW be of type G̃2 as in Example 2.3 and 5.2. Let τ = 2α1+3α2 ∈ P+ and fix the reduced
expression tτ = sα0sα2sα1sα2sα0sα1sα2sα1sα2sα1 . Let J := {3, 5, 10}, λ ∈ P and v = sα1sα2sα1 ∈ W0. In
Figure 2 we describe the paths pJℓ

(tλℓ
vℓ;~tτ ) for 0 ≤ ℓ ≤ 3 and the sequence (λ0, . . . , λ3) obtained in the

procedure above. We write ℓ© for the alcove Atλℓ
vℓ (so that the path pJℓ

(tλℓ
vℓ;~tτ ) starts at the alcove ℓ©)

and the light gray alcoves represent Atλℓ
.

λ0 0©

λ1

1©

λ2

2©

λ3

3©

Fig. 2: Sequences associated to the set J = {3, 5, 10}.

We are now ready to prove the first part of Theorem 5.5.

Proposition 5.8. Let λ ∈ P+. If J is admissible, λ-dominant and maximal then J ∈ Imax
λ,vJ ,tτ

.

Proof. In order to prove that J = {i1, . . . , ip} ∈ J ∈ Imax
λ,vJ ,tτ

, since J is maximal, we need to show that

w0tλvJ t
J
τ [1,iℓ−1]siℓ < w0tλvJ t

J
τ [1,iℓ−1] for all 1 ≤ ℓ ≤ p.

We have

1. w0tλvJ t
J
τ [1,iℓ−1] = w0tλℓ−1

vJℓ−1
tτ [1,iℓ−1];

2. vJℓ−1
= sβip

. . . sβiℓ
so that vJℓ−1

βiℓ ∈ Φ− and w0vJℓ−1
βiℓ ∈ Φ+;

3. the hyperplane separating

w0tλℓ−1
vJℓ−1

tτ [1,iℓ−1]A0 and w0tλℓ−1
vJℓ−1

tτ [1,iℓ−1]siℓA0

is equal to Hw0vJℓ−1
βiℓ

,m where m < 0 since J is λ-dominant.

We have v−1
Jℓ−1

w0w0vJℓ−1
βiℓ = βiℓ ∈ Φ+ which implies that the quarter Cλ∗

ℓ−1,w0vJℓ−1
is oriented toward

+∞ in the direction w0vJℓ−1
βiℓ . It follows that

w0tλℓ−1
vJℓ−1

tτ [1,iℓ−1]A0 ∈ H−
w0vJℓ−1

βiℓ
,m and

w0tλℓ−1
vJℓ−1

tτ [1,iℓ−1]siℓA0 ∈ H+
w0vJℓ−1

βiℓ
,m

hence the result by Proposition 2.2 since m < 0.
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We now focus on the second part. We start by proving some technical lemmas. Recall the definitions of
A[α] < n and A[α] < A′[α] at the end of Section 2.1 and of Hx,y for x, y ∈ We in Section 3.2.

Lemma 5.9. Let λ ∈ P+ and v ∈ W0. We have Htλ∗w0v,tτ ⊂ {δ ∈ Φ+ | v−1w0δ ∈ Φ+}.

Proof. Let δ ∈ Φ+ be such that

Hδ,N ∈ Htλ∗w0v,tτ = H(A0, Atλ∗w0v) ∩H(Atλ∗w0v, Atλ∗w0vtτ ).

First, since λ ∈ P+ we have Atλ∗w0v[δ] < 1. Next since Hδ,N ∈ H(A0, Atλ∗w0v), it follows that Atλ∗w0v[δ] <
N ≤ 0. If the quarter Cλ∗,w0v is oriented towards−∞ in the direction δ then N > Atλ∗w0v[δ] ≥ Atλ∗w0vtτ [δ]
but in this case we cannot have Hδ,N ∈ H(Atλ∗w0v, Atλ∗w0vtτ ). This shows that the quarter Cλ∗,w0v is
oriented towards +∞ in the direction δ and thus v−1w0δ ∈ Φ+ as required.

We remark that if λ ∈ P+ and Atλ∗w0v /∈ Cw0 then Atλv /∈ Cid and there exists a simple root αi ∈ Φ+ such
that v−1αi ∈ Φ− and −1 < Atλv[αi] < 0. Equivalently −w0αi ∈ Φ+ and 0 < Aw0tλv[−w0αi] < 1. This
implies, considering the positive root −w0αi ∈ Φ+, that the inclusion

Htλ∗w0v,tτ ⊂ {δ ∈ Φ+ | v−1w0δ ∈ Φ+}

is strict and Imax
λ,v,τ has to be empty by Theorem 3.1.

The next lemma generalises the idea above and gives some restrictions for the set Imax
λ,v,τ to be non-empty.

Lemma 5.10. Let λ ∈ P and v ∈ W0. Let k ∈ N be such that Atλ∗w0vtτ [1,k]
∈ Cw0 and let J =

{i1, . . . , ip} ∈ Iλ,v,τ be such that i1 > k. We have

1. Htλ∗w0vtτ [1,k],tτ [k+1,n] ⊂ {δ ∈ Φ+ | v−1w0δ ∈ Φ+};

2. if Atλ∗w0vtτ [1,i1−1] /∈ Cw0 then ξJ =

p
∑

k=1

L(sik) < L(v).

Proof. Let δ ∈ Φ+ be such that Hδ,N ∈ Htλ∗w0vtτ [1,k],tτ [k+1,n]. Assume first that the quarter Cλ∗,w0v is
oriented towards −∞ in the direction δ. Then we must have

Atλ∗w0v[δ] ≥ Atλ∗w0vtτ [1,k]
[δ]

︸ ︷︷ ︸

<0

≥ Atλ∗w0vtτ [1,k+1][δ] ≥ Atλ∗w0vtτ [δ].

But Hδ,N ∈ H(A0, Atλ∗w0vtτ [1,k]
) implies that 0 ≥ N > Atλ∗w0vtτ [1,k]

[δ]. Therefore in this case we cannot
haveHδ,N ∈ H(Atλ∗w0vtτ [1,k+1], Atλ∗w0vtτ ). This shows that the quarter Cλ∗,w0v has to be oriented towards
+∞ in the direction δ that is v−1w0δ ∈ Φ+.

We prove (2). Since J ∈ Iλ,v,τ , there is a term of degree
∑p

k=1 L(sik) that appear in the product
Tt∗

λ
w0vJTtτ . Further, for all k such that k < i1, there is also a term of degree

∑p
k=1 L(sik) in product

Tt∗
λ
w0vJ tτ [1,k]

Ttτ [k+1,n]. Let k0 < i1 be the index such that Atλ∗w0vtτ [1,k0−1] ∈ Cw0 and Atλ∗w0vtτ [1,k0] /∈ Cw0

and let α ∈ ∆ be the direction of the hyperplane that separates those two alcoves. The quarter Cλ∗,w0v

has to be oriented toward +∞ in the direction α so that v−1w0α ∈ Φ+. Next

Htλ∗w0vtτ [1,k0],tτ [k0+1,n] = Htλ∗w0vtτ [1,k0−1],tτ [k0,n]
︸ ︷︷ ︸

⊂{δ∈Φ+|v−1w0δ∈Φ+}

− {α}.

Theorem 3.1 now implies that the maximal degree that can appear in the product Tt∗
λ
w0vJ tτ [1,k0]Ttτ [k0+1,n]

is strictly less than L(v). But there is a term of degree
∑p

k=1 L(sik), hence the result.

Lemma 5.11. Let v ∈ W0, λ ∈ P and fix k ∈ {1, . . . , n} such that

tλ∗w0vtτ [1,k−1]sk < tλ∗w0vtτ [1,k−1] and Atλ∗w0vtτ [1,k−1] ∈ Cw0 .

Then w0vβk ∈ Φ+. In particular w0vsβk
> w0v and vsβk

< v.

Proof. The hyperplaneH that separatesAtλ∗w0vtτ [1,k−1] andAtλ∗w0vtτ [1,k−1]sk isH = Hw0vβk,Nk+〈λ∗,w0vβk
∨〉.

Since Atλ∗w0vtτ [1,k−1] ∈ Cw0 , we must have

Atλ∗w0vtτ [1,k−1] ∈ H− and Atλ∗w0vtτ [1,k−1]sk ∈ H+,

which means that the quarter Cλ∗,w0v has to be oriented toward +∞ in the direction |w0vβk| ∈ Φ+, where
|w0vβk| denotes the unique positive root colinear to w0vβk. According to Lemma 2.4, since w0v

−1w0vβk =
βk ∈ Φ+, we have w0vβk ∈ Φ+.
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We are now ready to prove the second statement of Theorem 5.5. Let λ ∈ P+, v ∈ W0 and assume that
J = {i1, . . . , ip} ∈ Imax

λ,v,τ . We need to show that J is admissible, λ-dominant and that v = vJ .

By maximality of J , we have
∑p

k=1 L(sik) = L(v) and the second statement of Lemma 5.10 implies

Atλ∗w0vtτ [1,i1−1] = At∗
λ1

w0v1tτ [1,i1]
∈ Cw0 .

Note also that J1 ∈ Iλ1,v1,tτ . Applying Lemma 5.10 to J1 and i2 > i1 we get

Ht∗
λ1

w0v1tτ [1,i1],tτ [i1+1,n] ⊂ {δ ∈ Φ+ | v−1
1 w0δ ∈ Φ+}.

Then Theorem 3.1 implies that
n∑

k=2

L(sik) ≤ L(v1).

But v1 = vsβi1
which is strictly less than v by Lemma 5.11. From there we see that L(v1) ≤ L(v)−L(β1) =

L(v) − L(si1) the last equality coming from the fact that J is maximal. Putting everything together, we
get

L(v)− L(si1) =

n∑

k=2

L(sik) ≤ L(v1) ≤ L(v)− L(si1).

It follows that we have equality throughout. Further, deg(ξJ1) = L(v1) also implies that At∗
λ1

w0v1tτ [1,i2−1] ∈

Cw0 by Lemma 5.10. At this stage, we have

J2 ∈ Iλ2,v2,tτ and At∗
λ1

w0v1tτ [1,i2−1] = At∗
λ2

w0v2tτ [1,i2]
∈ Cw0 .

We can therefore argue by induction to show that for all ℓ ∈ {1, . . . , p} we have

At∗
λℓ

w0vℓtτ [1,iℓ]
∈ Cw0 and L(vℓ) = L(v)−

ℓ∑

k=1

L(sik).

In particular, we have vp = id. But vp = vsβi1
. . . sβip

so v = sβip
. . . sβi1

= vJ .

We have also seen that for all 1 ≤ ℓ ≤ p− 1

At∗
λℓ

w0vℓtτ [1,iℓ]
︸ ︷︷ ︸

=A
t∗
λ
w0vtJτ [1,iℓ]

∈ Cw0 and At∗
λℓ

w0vℓtτ [1,iℓ+1−1]
︸ ︷︷ ︸

=A
t∗
λ
w0vtJτ [1,iℓ+1−1]

∈ Cw0

hence showing that for all k ≤ ip we have At∗
λ
w0vtJτ [1,k]

∈ Cw0 . For the last values of k we simply note that

At∗
λ
w0vtJτ [1,ip]

= At∗
λp

w0tτ [1,ip]
∈ Cw0 (since vp = id)

and since τ ∈ P+ we must have At∗
λp

w0tτ [1,k]
∈ Cw0 for all k ≥ ip. It follows that J is λ-dominant.

It remains to show that J is admissible. Applying the proof above in the case where L is the usual length
function ℓ shows that ℓ(v) = p. We have proved that

id < vsβi1
. . . sβip

< . . . < vsβi1
sβi2

< vsβi1
< v

which implies that
id < sβip

< sβip
sβip−1

< . . . < sβip
. . . sβi2

sβi1
.

This sequence is of length p+ 1 hence it has to be saturated. This completes the proof of Theorem 5.5.

Corollary 5.12. Let λ ∈ P+ and τ ∈ P+. We have

Cw0tλsτ = Cw0tλhτ =
∑

J

Cw0tλvJ tJτ

where the sum is taken over all λ-dominant maximal admissible subset J .

Remark 5.13. If we are working in the case of equal parameters or when W is not of type C̃n or Ã1, we
can remove the condition of maximality since all parallel hyperplanes have same weights and therefore all
admissible subsets are maximal.
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Any element in We can be uniquely written under the form twt(w)θ(w) where wt(w) ∈ P is called the weight
of w and θ(w) ∈ W0. In this section, we have shown that θ(vJ t

J
τ ) = id so that if we set µ(J) := wt(vJ t

J
τ ),

Corollary 5.12 now reads

Cw0tλsτ = Cw0tλhτ =
∑

J

Cw0tλ+µ(J)

where the sum is taken over all λ-dominant maximal admissible subset J .

Remark 5.14. Gaussent and Littelmann [3] have shown that the Littelmann path model is equivalent to the
gallery model and they expressed mµ

λ,τ as the number of certain galleries. In [15], Schwer has computed the

structure constants of the MacDonald spherical functions Pλ(q
−1) using galleries. The functions Pλ(q

−1)
interpolate the Weyl characters and the monomial functions as we have Pλ(0) = sλ and Pλ(1) = mλ.
Schwer then obtained a combinatorial description of mµ

λ,τ by describing which of the coefficients in the

expansion Pλ(q
−1)Pτ (q

−1) survives the specialisation q−1 = 0. The result of Schwer is indeed equivalent
to our result but its proof is quite different : it uses the link between the combinatorics of positive folded
galleries of Gaussent and Littelmann and the action of the Bernstein basis on the periodic Hecke module
of Lusztig [10]. Another approach to computing structure constants of MacDonald spherical functions can
be found in [14] where Parkinson gives a formula in terms of intersection cardinalities in affine buildings.

6 Admissible subsets and Littelmann paths

In this section we compare our result with the result of Lenart and Postnikov and then explain following [8,
§9] how admissible subsets give rise to Lakshmibai-Seshadri paths (which are special kind of Littelmann’s
paths).

6.1 Lenart and Postnikov result

In [7, 8], Lenart and Postnikov introduced the notion of admissible subset in order to compute the product
sτ sµ where λ, µ ∈ P+, see Theorem 6.3. In this section we explain the connection between our result. We
start by recalling their definition of admissible subset. To distinguish between those two definitions, we
will say that a subset is LP-admissible if it is admissible in the sense of [8, Definition 6.1].

Let tτ = s1 . . . sna be a fixed reduced expression and denote by Hβi,Ni
the hyperplane separating the

alcoves As1...si−1 and As1...si−1si . Let s′1 . . . s
′
na

−1 be the reduced expression of t−τ obtained by inverting
the reduced expression above and moving a−1 to the left. Then, the hyperplane separating As′1...s

′
i−1

and

As′1...s
′
i−1s

′
i
is Hβ′

i,N
′
i
where β′

i = βn−i+1 and N ′
i = Nn−i+1 − 〈τ, β∨

n−i+1〉. A set J := {j1, . . . , jp} is said to
be LP-admissible if the sequence

id < sβ′
i1

< sβ′
i1
sβ′

i2
< . . . < sβ′

i1
sβ′

i2
. . . sβ′

ip

is a saturated sequence in the Bruhat order in W0.

Remark 6.1. 1. The involution i 7→ n−i+1 of {1, . . . , n} induces a bijection J 7→ J† between admissible
subsets in the sense of Definition 5.1 and admissible subsets in the sense of Lenart and Postnikov.

2. In [8, Definition 5.2], the weight of an LP-admissible subset is defined to be wt(tJ
†

−τ ). The equal-

ity tJ
†

−τ (t
J
τ )A0 = A0 implies that wt(tJ

†

−τ ) = −wt(vJ t
J
τ ) = −µ(J) where the function µ is defined at

the end of the previous section. We set µ(J†) = µ(J).

Before being able to state the result of Lenart and Postnikov, we need to introduce some more data
associated to the LP-admissible subset J†.

Let H−γi,ℓi where γi ∈ Φ+ be the hyperplane that separates the alcoves A
tJ

†
−τ [1,i]

and A
tJ

†
−τ [1,i+1]

for all

1 ≤ i ≤ n. Let α be a simple root and ℓα∞ = 〈µ(J), α∨〉. Following [8], we set

I(J†, α) = {i | γi = α}

L(J†, α) =
{
ℓi | i ∈ I(J†, α)

}
∪ {ℓα∞}

M(J†, α) = maxL(J†, α).

Example 6.2. We keep the setting of Example 5.2. Consider the admissible subset J := {3, 5, 10} and
the corresponding LP-admissible subset J† := {1, 6, 8}. We have µ(J) = α2 so that ℓα2

∞ = 2 and ℓα1
∞ = −1.

Next we compute
I(J†, α2) = {2, 6, 10} and I(J†, α1) := {1, 8}
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so that
L(J†, α2) = {0, 1, 2} and L(J†, α1) := {0,−1}.

Finally we obtain M(J†, α2) = 2 and M(J†, α1) = 0. In the figure below, we have drawn the path

pJ(id;~t
J†

−τ ). The set I(J†, αi) indicates when the path is crossing an hyperplane of direction αi and the
integers M(J†, αi) are such that the whole path lies in H+

αi,−M(J†,αi)
. Further, these are the minimal

integers with this property.

Fig. 3: The path pJ(id;~t
J†

−τ )

We are now ready to state Lenart and Postnikov result.

Theorem 6.3 ([8], Corollary 8.3). In a simple Lie algebra with Weyl group W0, we have for λ, τ ∈ P+

sτ sλ =
∑

J†

sλ+µ(J†) (2)

where the sum is over all LP -admissible subsets J† satisfying 〈λ + µ(J†), α∨〉 ≥ M(J†, α) for all simple
root α.

We need to check that the condition on J† above is equivalent to J being λ-dominant. It will be a
consequence of the following three observations:

1. the path pJ(Atλ ;~t
J†

−τ ) lies in the half plane H+
α,〈λ,α∨〉−M(J†,α)

and the integer 〈λ, α∨〉 −M(J†, α) is

maximal with this property;

2. J is λ-dominant if and only if the path pJ(tλvJ ; ~tτ ) lies in Cid;

3. pJ (tλvJ ; ~tτ ) is obtained from pJ(Atλ ;~t
J†

−τ ) by translating all the alcoves by µ(J) and reversing the
order.

We have

pJ(tλvJ ; ~tτ ) ⊂ Cid ⇐⇒ pJ (tλvJ ; ~tτ ) ⊂ H+
α,0 for all simple root α

⇐⇒
(

pJ(Atλ ;~t
J†

−τ )
)

tµ(J) ⊂ H+
α,0 for all simple root α

⇐⇒ pJ (Atλ ;~t
J†

−τ ) ⊂ H+
α,−〈µ(J),α∨〉 for all simple root α

⇐⇒ 〈λ, α∨〉 −M(J†, α) ≥ −〈µ(J), α∨〉 for all simple root α

⇐⇒ 〈λ + µ(J), α∨〉 ≥ M(J†, α) for all simple root α.

This theorem is equivalent to Theorem 5.5 in the equal parameter case when there is no condition on the
maximality of J .

6.2 Lakshmibai-Seshadri paths

We explain following [8, §9], how to construct an Lakshmibai-Seshadri path (LS paths for short) from an
admissible subset J . There is no new result in this section but this construction exhibits a strong link
between LS paths and our approach in the proof of Theorem 5.5: compare for instance Figure 2 and Figure
4.

A rational Wa-path of shape µ ∈ P is a pair of sequences (v, a) such that v = (v0, v1, . . . , vr) is a strictly
decreasing chain (in the Bruhat order) of minimal length left coset representatives of stabµ(W0) and
a = (a0, a1, . . . , ar+1) is an increasing sequence of rational numbers such that a0 = 0 and ar+1 = 1.
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We identify π with the path π : [0, 1] −→ V defined by

π(t) :=

j−1
∑

i=1

(ai − ai−1)viµ+ (t− aj−1)vjµ for aj−1 ≤ t ≤ aj .

The weight of π is equal to π(1).

A rational Wa-path of shape µ is called a Lakshmibai-Seshadri path if there exists a sequence of positive
roots (δ1, . . . , δr) such that

v0 > v1 = v0sδ1 > v2 = v0sδ1sδ2 > . . . > vr = v0sδ1 . . . sδr ,

ℓ(vi) = ℓ(vi−1)− 1 and ai〈viµ, δ∨i 〉 ∈ Z.

Remark 6.4. Our definition of LS paths is slightly different from the one of Littelmann in [9] but nearly
obviously equivalent. One only needs to notice that if a = aq = aq+1 = . . . = aq+r then the chain
(vq, . . . , vq+r) is an a-chain as defined by Littelmann.

For the rest of this section we will need to work with a specific reduced expression of tτ . This choice is
important in the proof of the third statement of Theorem 6.5; see [8, §9]. Fix a total order on the set of
simple roots {α1, . . . , αN} and write {ω1, . . . , ωN} for the corresponding fundamental weights. We define
the map

h : H(A0, Atτ ) −→ RN+1

Hδ,k 7−→ 1
〈τ,δ∨〉 (k, 〈ω1, δ

∨〉, . . . , 〈ωN , δ∨〉) .

The lexicographic order on RN+1 induces a total order on the set H(A0, Aτ ). Let

H(A0, Aτ ) = {Hβ1,N1 , . . . , Hβn,Nn
}

be such that Hβi,Ni
< Hβi+1,Ni+1 for all i. Then there exists a reduced expression of tτ of the form

s1 . . . sna where a ∈ Π, si ∈ S and such that Hβi,Ni
is the hyperplane separating As1...si−1 and As1...si .

Let J = {i1, . . . , ip} be an admissible subset as in Definition 5.1 and consider the pair (0, vJ) ∈ P ×W0.
Let (λ0, . . . , λp), (v0, . . . , vp) and (J0, . . . , Jp) be the sequences associated to (0, vJ) constructed in Section
5. Since J is admissible we have vℓ = sβip

. . . sβiℓ+1 = vJℓ
. We set

• τℓ = vJℓ
τ for 0 ≤ ℓ ≤ p ,

• πℓ : [0, 1] −→ V to be the straight path defined by t 7−→ µℓ + t · τℓ,

• aℓ =
Niℓ

〈τ, β∨
iℓ
〉
for 1 ≤ ℓ ≤ p.

Finally, we set v = (vJ0 , . . . , vJp
) and a = (a0, . . . , , ap+1) where a0 = 0 and ap+1 = 1. By construction, the

path π = (v, a) coincide with the path πℓ for all aℓ ≤ t ≤ aℓ+1. Then according to [8, §9] one can show the
following result where once again, we assume that we are in the equal parameter case. The choice of our
specific reduced expression for tτ plays a crucial role in the proof of Statement (3). Recall the definition
of µ(J) at the end of Section 5.

Theorem 6.5. Let J be an admissible subset, λ ∈ P+ and π = (vJ , a) be the Wa-rational path defined
above. We have

1. π is a LS-path of shape τ and weight µ(J).

2. The set of LS-paths of shape τ is in bijection with the set of admissible subsets.

3. π is λ-dominant (i.e. λ+ π(t) ∈ Cid for all t ∈ [0, 1]) if and only if the path pJ(tλvJ ; tτ ) ⊂ Cid.

As a direct consequence of this theorem and Theorem 5.5, we obtain for λ, τ ∈ P+

Cw0tλhτ =
∑

π

Cw0tλ+π(1)

where the sum is over all λ-dominant LS-paths of shape τ .
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Example 6.6. Let W be of type G2 and keep the notations of the previous examples. We compute the
different elements needed in the construction of the path πJ where J = {3, 5, 10}. Note that most of these
have already been constructed in Example 5.7.

ℓ Jℓ βiℓ vJℓ
τℓ Niℓ aℓ

0 {3, 5, 10} sα1sα2sα1 −α1 0

1 {5, 10} δ4 sα2sα1 α1 1 1/2

2 {10} δ5 σα1 α1 + 3α2 2 2/3

3 ∅ δ6 id 2α1 + 3α2 1 1

The LS-path πJ associated to J is represented by a thick line in Figure 4. The paths π1, π2 and π3 are
represented by dashed lines. We see that that

∗ πJ follows the direction −α1 for a time 1/2;

∗ πJ follows the direction α1 for a time 1/6;

∗ πJ follows the direction α1 + 3α2 for a time 1/3.

λ2 λ1

λ3

Fig. 4: LS path associated to the set J = {3, 5, 10}.

When doing the above procedure for all admissible subsets J (described in Example 5.2) we obtain the
paths described in Figure 5.

Fig. 5: LS paths in type G2.
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