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Abstract. Inland waterway networks are likely to go through heavy
changes due to a will in increasing the boat traffic and to the effects of cli-
mate change. Those changes would lead to a greater need of an automatic
and intelligent planning for an adaptive and resilient water management.
A representative model is proposed and tested using MDPs with promis-
ing results on the water management optimization. The proposed model
permits to coordinate multiple entities over multiple time steps in or-
der to avoid a flood in the waterway network. However, the proposed
model suffers a lack of scalability and is unable to represent a real case
application. The advantages and limitations of several approaches of the
literature are discussed according to our case study.

Keywords: Markov Decision Process, Inland waterway network, Large
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1 Introduction

Climate change is a main concern in our modern society. In the last years, the
effects of global change on the inland waterway network has been studied. The
general agreement is that the intensity and the occurrence of flood and drought
periods will increase [17].

In parallel, the use of inland navigation to decongest road and railway traffic
is in vogue. An increase of ships traffic is thus expected in the coming years. All
these evolutions tend to complicate the water management in inland waterway
networks and make human planning less and less relevant.

An inland waterway network is an artificial water system interacting with the
natural environment. Most of these interactions are only partially known: illegal
discharges, exchanges with groundwater tables, local weather influence, . . . The
control of a such a network is thus subjected to uncertainties and a stochastic
modeling seems therefore more adapted.

Markov Decision Processes (MDPs) are widely used for planning on stochas-
tic models and provide plan for all configurations of the model. To the best of
our knowledge, MDPs have not yet been used to model the inland waterway net-
work in order to make them resilient and more stable. However previous work
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has been made on this topic, using flow network with the strong hypothesis of a
deterministic model [16].

MDP framework permits to model the evolution of an uncertain system but
induces intractable model in most of the applications. Those large MDPs make
the policies of an optimal control hard to compute and require specific algo-
rithms [3,15]. A stochastic modeling of the network is proposed, allowing to plan
a coordination of all entities in the network. The main complexity comes from
the distribution of water transfer possibilities over a territory. An optimal con-
trol represents all possible join water transfers considering all complete network
situations. This paper aims to draw back the limitations of such an optimal cen-
tralized model applied to waterway network and to discuss about approaches
that take advantage of distributed control.

In this paper, the problem of inland waterway network management in a
context of climate change is presented in section 2. A naive modeling of the
network using MDP is proposed in section 3 and some results and the limitations
are shown in section 4. Finally a description and comparison of MDP approaches
for large scale and distributed model is proposed in section 5 with regard to
inland waterway network supervision.

2 Waterway Network Supervision

An inland waterway network, see figure 1a is a large scale system, mostly used
for navigation. It provides both economic and environment benefits [13,14] while
providing quiet, efficient and safe transports of goods [5]. It is mostly composed of

(a) Small part north of France inland waterway net-
work

 Navigation Rectangle

NNL
HNL

LNL

(b) Navigation rectangle

canalized rivers and artificial channels, and is divided by locks. Any part between
two locks is called a navigational reach. For the sake of simplicity, navigational
reach will be called reach on the rest of this paper.

The water level of a reach must respect the conditions of the navigation
rectangle, see figure 1b, and be as close as possible from the Normal Navigation
Level (NNL). The lower and upper boundaries of the rectangle are respectively



III

the Lower and Higher Navigation Level (LNL & HNL). The main concern of the
operator consists in maintaining acceptable water level in all the reaches of the
inland waterway network.

In normal situation, having a boat crossing a lock is the main disturbance
of the water level, since using a lock drains water from the upstream reach and
release water to the downstream reach. Furthermore the water level is affected by
ground exchanges, natural rivers, weather and other unknown factors, like illegal
discharges. Locks are not dedicated to control the water level, so gates are used
to send water downstream and pumps can be used to send some upstream.

At the moment, the navigation is only allowed during daytime, with few ex-
ceptions, notably on Sunday. Reaches management is based on human expertise
gathered over the time. But in a context of climate change, that will increase
the effect of floods and droughts, and with a will to increase the traffic, notably
by allowing 24 hours a day traffic, those methods start to show their limits.

The objective is to determine a global planning, to maintain the navigation
conditions in the entire network, by taking into account uncertainties of the
problem, such as weather and traffic in a context of climate change and increasing
navigation traffic. Planning over multiple time steps allows a better anticipation
of possible events and a better reaction over unexpected events, using real-time
information of the network using level sensors spread through the reaches.

3 Using Markov Decision Process

Markov Decision Process (MDP) is a generic framework modeling control possi-
bility of stochastic dynamic system as probabilistic automaton. The framework
is well adapted to Waterway Network Supervision while the state of the network
is fully observable (in term of water volumes) and the control is uncertain due
to uncontrolled water transit.

3.1 MDP model

A MDP is defined as a tuple 〈S,A, T,R〉 with S and A respectively, the state
and the action sets that define the system and its control possibilities. T is the
transition function defined as T : S×A×S → [0, 1]. T (s, a, s′) is the probability
to reach the state s′ from s by doing action a ∈ A. The reward function R is
defined as R : S×A×S → R, R(s, a, s′) gives the reward obtained by attaining
s′ after executing a from s.

A policy function π : S → A assigns an action to each system state. Optimally
solving a MDP consists in searching an optimal policy π∗ that maximizes the
expected reward. π∗ maximizes the value function of Bellman equation [1] defined
on each state:

V π(s) =
∑
s′∈S

T (s, a, s′)× ( R(s, a, s′) + γV π(s′) ) with a = π(s) (1)

π∗(s) = arg max
a∈A

(
∑
s′∈S

T (s, a, s′)× ( R(s, a, s′) + γV π
∗
(s′) ) ) (2)
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The parameter γ ∈ [0, 1] balances the importance between future and imme-
diate rewards. With γ set close to 0 the immediate action with the maximal re-
ward will be taken while a γ close to 1 will permit the control to accept penalties
if future gains could be important. Multiple algorithms exist to solve optimally
a MDP, a notable version is Value Iteration [19]. It constructs iteratively the
value function V , using equation 3, until convergence or until a specified number
of iterations has been done. The last Vi obtained is then used to generate the
optimal policy with equation 2. The first value function, V0 is initialized at 0.

Vi+1(s) = max
a∈A

(
∑
s′∈S

T (s, a, s′)× ( R(s, a, s′) + γVi(s
′) ) ) (3)

3.2 Naive Waterway Network Control

The objective is to plan the best course of actions for the whole network over t
time steps, knowing that some conditions may differ on each time step and can
affect the inland navigation. For instance the weather might become rainy which
will increase the water volume of affected reaches or more boats than expected
could traverse the reach resulting in an higher lock usage.

N represents the number of reaches in the network. Since large time steps
are used, we make the assumption that the water level is the same or nearly
same at all point in a reach.

A state of the model is defined as an assignation of volume for all the reaches
in the network at a given time. Similarly an action is defined as an assignation of
volume for each controlled point of transfer (locks, pumps and gates). The MDP
formalism requires discrete set of states and actions, but since the volumes are
continuous, we discretized them using intervals.

Each reach is divided in intervals, all of the same size, except the first and the
last intervals which gather values that are outside of the navigation rectangle.
Those two are considered to be of infinite size and represents everything that
must be avoided at all cost. The water transfer points use a similar partition as
the reaches, except that there is no infinite size intervals, since it is supposed to
be fully controlled. More formally, the set of states S of the model is defined as
the combination of all possible reaches volumes intervals for all time steps.

For a reach i, the intervals result from a regular discretization of volumes from
less water than minimal authorized 0 to more than the maximal authorized riout .

S = {1, . . . , t} ×
N∏
i=1

[0, riout ] (4)

In a similar way, we define the set of actions A as the discretized volumes
planed for transfer between between two adjacent reaches. Action is time inde-
pendent, so we simply have

A =
∏

i,j∈[0,N ]2

Li,j (5)
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where Li,j represent the set of all possible volume transfer of the transfer point
linking reach i to reach j and reach 0 represents external rivers linked to the
reaches. In fact, there is only a limited number of transfer points and most of
the Li,j do not permit any controlled transfer (Li,j = ∅).

We denote ai,j ∈ Li,j the transfer volume planed from reach i to reach j
in the action a ∈ A. To simplify the notation, ai defines the part of the action
affecting the reach i as

ai =

N∑
j=0

( ai,j � aj,i ) (6)

We define two operators ⊕ and � on (R ∪ I)2 → R, that can respectively
add and substract intervals of numbers and/or numbers, the result being alway
a real.
I being the set of all possible intervals of our network. Our operators are

respectively a simple addition and subtraction using the value of the member if
it is a real, or its average value if it is an interval.

Our transition function T (s, a, s′) represent the probability to reach the state
s′ by doing action a from the state s and taking into account the possible tem-
poral variation. It results from discussions with experts of the north of France
waterway network. Trivially, for s at time step t and s′ at time step t′, s′ is only
reachable if t′ = t+ 1.

Since the transition of each reach is independent from other reach, it only
depends on the previous state and its incoming and outgoing water. A first
source of uncertainty comes from the uncontrolled water modeled as a list of the
temporal variations, noted Var .

Temporal variations are local changes to one or more reaches or transfer
points during one or more time steps with some probabilities, for example rain
on a reach is a temporal variation. Since those temporal variations are not repre-
sented in the action space nor in the state space, they only affect the transition
function. The uncontrolled volume of water affecting the reach i is noted vi ∈ Var
and P (vi|t) represents the probability that the random variable vi occurs in time
step t. P (vi|t) is built based on data of uncontrolled water displacement com-
bined with weather forectasts.

The second source of uncertainty results from the discretization in interval
of volume, causing an approximation in the state representation.

Let define P (ris′ |ris, ai + vi) the probability that the volume of water in
reach i at time step ts + 1 will be included in interval ris′ if the action ai is
performed and with vi uncontrolled transfer on i:

P (ris′ |ris, ai + vi) =


p= if ris ⊕ ai + vi ∈ ris′
p+ if ris ⊕ ai + vi ∈ ris′ + 1
p− if ris ⊕ ai + vi ∈ ris′ − 1
0 else

(7)

where p= is the probability to get the expected volumes by taking into account
intervals approximations and, p+ (resp. p−) is the probability to get the interval
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corresponding to a superior (resp. inferior) water level, with respect to

p+ + p− + p= = 1 and p+ = p−

The transition function states the product of the two sources of uncertainty:

T (s, a, s′) =

N∏
i=1

( ∑
∀vi∈Var

P (vi|t)× P (ris′ |ris, ai + vi)

)
(8)

Finally, we define a reward function, representing the current goal of the
operators, to greatly penalize the distance to the normal navigation level for
each reach with a small cost for all water movement. More formally we define :

R(s, a, s′) = −1×

(
N∑
i=1

(NNLi � ris′)
2 + ai

)
(9)

where NNLi is the volume corresponding to reach i being at normal navigation
level. If ris′ is outside the navigation rectangle we replace it by a large value c
and half this value if ris′ is only partially outside the navigation rectangle.

4 Test on a network

To test this approach, we made a realistic waterway network (see figure 2), with
two reaches and six transfer points. Then the MDP is solved and the policy is
tested on several scenarios.

Fig. 2: Waterway network

4.1 Network characteristics

On figure 2, the reaches represented by squares, with a specified volume range, in
units of volume, and the arcs correspond to the transfer point with a minimum
and maximum capacity. A negative value meaning this transfer point can be
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used to import and export water. We simulate this network for 8 day and night
periods, with locks closed during the night, giving us 16 time steps.

The two reaches volumes are divided in 9 intervals, 7 of size 20 and 2 of
infinite size. The points of transfer 1, 2 and 4 are divided in intervals of size
5 (respectively 6, 5 and 2 intervals). The points of transfer 0, 3 and 5 transfer
a constant amount of water. Since we were planning on 16 time steps, we had
9×9×(16+1) = 1377 states. An extra time step is added to mark the end of the
last planning step, all states within this time step are absorbing, which means
T (s, a, s) = 1 and have R(s, a, s) = 0 to have no influence on the planning. In a
similar way, the number of actions is 6× 5× 2 = 60.

We used c = 10000 as an arbitrary large value for being outside of the
navigation rectangle. To valide the performances of our model, the probabilities
of the intervals has been set arbitrarily to p= = 0.9 and p+ = p− = 0.05.

4.2 Some results

To analyze empirically the quality of the policy generated, we made a few simu-
lations. We made 4 scenarios, the first one being an ideal scenario : both reaches
start from their NNL and there is no perturbation. The second scenario consists
of the first reach starting from its lowest bound and the second from its highest
bound, still with no temporal perturbation. The third one is the opposite of
the second one first reach from its highest, second from its lowest. And finally
the last scenario is similar to the first one, except that during one time step an
heavy rain may happen, with high probability, and would overflow the first reach
if nothing is done to prevent it.

Since the policy actions are intervals, we decided to test our scenarios using
random values from the chosen intervals to apply to the transfer points, rather
than the best at the moment or the average value of the interval to test the
quality of the chosen interval. Running each simulation 5 times allowed us to
reduce the randomness impact while preserving clarity. It is important to note
that the simulations use a continuous modeling of the systems, in both reaches
volumes and transfered volumes.

We created our network so that the optimal policy of the first scenario would
allow to maintain both NNL at all time steps. We can see in figure 3a, that we
are only close from it. This is caused by our discretization. Since we represent
an interval by its average value, it is possible for a reach to reduce or increase
its level while not changing its state causing the reach to continue to decrease
or increase its level.

The reaction of the network to some event that put the two reaches on the
extremity of their navigation levels, is visible in figure 3b and 3c. We notice that
the recovery is way faster in the second case because the upstream reach has to
empty itself and the downstream needs to be filled unlike the second case where
the opposite scenario is happening and each reach has to maintain a minimum
impact on the other one to avoid making the other outside of its navigation level.

In the last scenario, heavy rain is supposed to happen between step 7 and 8
causing the first reach to overflow if it is close to its NNL. And to prevent that we
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(a) From NNL no perturbation (b) From LNL & HNL no perturbation

(c) From HNL & LNL no perturbation (d) From NNL with perturbation

Fig. 3: Different scenarios

see that, few time steps before the event, the first reach will empty itself in the
second reach, making it go further from its NNL but by doing that preserving
the integrity of the system, if the perturbation happens.

4.3 Limitations in scaling up

A naive implementation of the transition function consists in creating a |S|2×|A|
matrix, which would contain 13772× 60 = 1.137 677 40× 108 values, assuming 8
bytes to store each value would mean approximatively 0.91 GB of memory space
only for the transition function.

Since, doing an action means that the time step will change, except on the

dummy time step, only a small subset of the states, containing at most |S|
t+1

states can be reached. A sparse matrix would allow us to reduce drastically the
size of the matrix, since only non zero values and their indices has to be stored,
so as long as more than half of the matrix is empty, using the sparse matrix is
beneficial. By calculating the optimal policy of our example, we have been able to
observe a few results. Firstly it converges very fast and works as intended but the
construction of the transition function takes most of the time. Since time isn’t
cyclic, it is possible to find the optimal action for all states corresponding to a
certain time step, if it is the last one or if the next one already has optimal action
for the states. This allow us to add a max bound to the number of iterations
required to find the optimal policy to the number of time steps, here 17.
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5 Approaches to Workaround Naive Model Limitation

By increasing the size of our example or its precision, we quickly encounter
memory limitations. Furthermore, the state domain, by construction, grows ex-
ponentially in the number of reaches and, real application such as the inland
waterway network in north of France contains around 50 reaches. Our naive
approach wouldn’t be able to calculate an optimal policy for this application.

To workaround spatial limitations, some extensions of the MDP have been
defined in the literature such as a factored representation of the model. An other
technique consist in decomposition where the MDP is split into local sub-MDPs.

Investigation focus on approaches permitting to plan a policy covering the
entire state space. For now, we are not interested in approximation as based on
Monte-Carlo tree-search [11] where the computed policy fit only probable states.
This approach requires to know the initial states and a continuous mechanism
if the system derives toward uncover states.

5.1 Factored MDP

The factored MDP approach aims to represent in a compact way the transition
and reward functions, as introduced by Boutilier, Dearden, Goldszmidt et al. [4].
For that purpose states are represented by an assignation of variables. Every
variables may have no influence on the value of a specific variable at the next
time step. The idea behind factored MDPs is to explode the state space to group
similar part of states in the transition and reward functions.

Hoey, St-Aubin, Hu and Boutilier [10] use algebraic decision diagram (ADD)
to represent in a more compact way transition, reward and value functions by
capturing regularity in the respective function.

Guestrin, Koller and Parr used factored MDP to solve multi agent planning
in [8]. They approximate the value function as a linear combination of localized
value functions. Their method exploits both state and action space structure.
This allows to solve problems with over 1028 states and a 109 actions. Fur-
thermore agents need a coordination graph, to decide their action on runtime.
However this approach assumes that agents interact only with a few of other
agents.

This limitation is bypassed by a rule-based approach introduced by Guestrin,
Venkataraman and Koller in [9], this approach worst case being faster than the
previous approach worst case, nevertheless in some case the previous approach
is faster. Furthermore the rule-based approach doesn’t require the rules to be
mutually exclusive unlike tree or ADD representation.

In our case, the state space (resp. action space) results in the cartesian prod-
uct of the state space (resp. action space) of each reach. But the state of a reach
usually doesn’t depends directly on the state of nearby reaches, only their ac-
tion matters, when a reach receive water, the volume of the source isn’t used to
determine its new level. Since we assume moving water is always possible, reach
never full nor empty, because such action are forbidden in the model, the state
of reaches are independant and we could exploit it to factorize our MDP.
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5.2 Decomposed MDP

The decomposition of an MDP permits to decrease the complexity of the policy
computation by building a hierarchy between local problems and a global so-
lution [3,7]. It is particularly efficient in spatial problems as it is based on the
topological aspect of transitions.

Decomposed MDP splits the state spaces into sub-MDPs in a way the union
of sub-MDPs cover the total MDP. Dean et al. [7] proposed two approaches
to solve Decomposed MDP. The first iterative approach consists in solving each
sub-MDP iteratively until a stable point is reached. A stable point match that all
the sub-policies are coherent among each other. This solution do not guaranty to
speed-up the policy computation but guaranty the optimality of the total policy
(the union of sub-policies).

The second hierarchical approach consists in defining a set of parameters for
each sub-MDPs in order to compute a finite collection of sub-policies. Then, a
high level global MDPs is defined on “macro-states” to select the appropriates
sub-policies to apply in order to have a coherent global behavior. This solution
permits to control the policy computation but does not guaranty the optimality
of the solution. The quality of the total policy take benefit from rich parameter
definition but, with a cost on the computation resources.

In most real problems, Decomposed MDP could reduce policy computation
(with or without optimal guaranty) but require to compute a partition in the
state space [18,20]. If there are no evident decomposition, partitioning is a very
hard [2], and could penalize a decomposition approach.

Waterway MDP is not easily decomposable while each state represents a
snapshot of the entire networks. However, an option exists in considering sev-
erals levels of deterioration of navigation conditions. Each sub-MDP matching
deteriorate condition will produce a policy of supervision oriented to the normal
navigation conditions. For example with a Waterway MDP decomposed in tree
sub-MDP: normal, flood and drought, we can expect that the supervision policy
will keep the system in normal states (close to NNL) with spare dependencies be-
tween the tree sub-MDPs. This way, solving first the normal sub-MDP and them
the two deteriorate sub-MDP will speed-up the policy computation. However,
decomposition will not impact transition function construction and storage.

5.3 Distributed MDP

Distributed MDPs appear as ad-hoc solution to solve cooperative problems on
agent based modeling. Such an approach is developed to solve Decentralized
MDP [6,15] (a framework where the policy have to be distributed over agents
and performed in a decentralized way). Each agent is responsible in computing
its own policy considering its part of a mission. Protocols based mechanisms
allow the agents to adapt their policies to reach a common interest. Distributed
MDP is used for example in robotic mission to deal with traveling salesmen
coordination [12].
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This approach combines factorization and decomposition ideas. The total
MDP is split in several sub-MDP by partitioning the set of variables defining
the states and actions. Each sub-MDP is responsible for a subset of problem
variables and ignores the others. In agent based modeling, each sub-MDP will
match agent capability in the group (individual perceptions and actions).

An iterative approach is used to solve Distributed MDP while each iteration
will modify each sub-MDP structure (transition and/or reward values). The
computation is stopped when policies are stable for all the sub-MDPs (agents).
The state space explored to compute the policy could be significantly reduced.
That permit to speed-up computation, however, they are no guaranty on the
optimality of the solution.

Waterway network would be easily distributable as the transit points are
already distributed over a territory. An agent in the agent based model will be
responsible for the control of one or few connected transit points and the coordi-
nation mechanism will be based on the reaches which are common to two or more
agents. Distributed MDP seems very promising, for our problematic, because it
can significantly decrease computation complexity and it allows flexible network
definition. However, the result by using such an approach remain uncertain con-
sidering that distributed MDP solving is a young approach with mostly ad-hoc
contribution to specific application and no generic framework established yet.

6 Conclusion

In this paper, we present a MDP based approach to optimize the water manage-
ment in inland waterway network with a global view and planning on a given
horizon. This approach aims to reduce the impact of drought and flood that may
be increased by climate change in the next years.

Using MDPs, it is possible to model the dynamic and the uncertainty in
such a system to optimize navigation conditions. However, this model is quickly
limited by the size of the state space and thus we presented possible trails to
circumvent this limitation. We investigated Factored MDP, Decomposed MDP
and Distributed MDP. Factored and Distributed MDP take advantage to variable
correlations in state and action definitions. Variable correlation is relevant in
distributed problems as water management in inland navigation.

In future works, we plan to explore Distributed MDP based on an agent
modeling of the waterway network even though this solution does not guarantee
the optimality. We expect a better control of the required computation resources
which is required to handle any size of networks. Determining the probability to
reach the expected interval will also be explored, alongside the discretization.
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