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Abstract

Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to

the case when their optical properties are determined by the interplay of quantum effects in the

constituent ’artificial atoms’ with the electromagnetic field modes in the system. The theoretical

investigation of these structures demonstrated that a number of new effects (such as quantum bire-

fringence, strongly nonclassical states of light, etc) are to be expected, prompting the efforts on

their fabrication and experimental investigation. Here we provide a summary of the principal fea-

tures of quantum metamaterials and review the current state of research in this quickly developing

field, which bridges quantum optics, quantum condensed matter theory and quantum information

processing.
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I. INTRODUCTION

The turn of the century saw two remarkable developments in physics. First, several types

of scalable solid state quantum bits were developed, which demonstrated controlled quan-

tum coherence in artificial mesoscopic structures1–4 and eventually led to the development

of structures, which contain hundreds of qubits and show signatures of global quantum co-

herence (see5,6 and references therein). In parallel, it was realized that the interaction of

superconducting qubits with quantized electromagnetic field modes reproduces, in the mi-

crowave range, a plethora of effects known from quantum optics (in particular, cavity QED)

with qubits playing the role of atoms (’circuit QED’,7–9). Second, since John Pendry10

extended the results by Victor Veselago11, there was an explosion of research of classical

metamaterials resulting in, e.g., cloaking devices in microwave and optical range12–14. The

logical outcome of this parallel development was to ask, what would be the optical properties

of a ”quantum metamaterial” - an artificial optical medium, where the quantum coherence

of its unit elements plays an essential role?

As could be expected, this question was arrived at from the opposite directions, and the

term quantum metamaterial was coined independently and in somewhat different contexts.

In refs.15–17 it was applied to the plasmonic properties of a stack of 2D layers, each of them

thin enough for the motion of electrons in the normal direction to be completely quantized.
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Therefore the wavelike nature of matter had to be taken into account at a single-electron

level, but the question of quantum coherence in the system as a whole did not arise. In

refs.18,19 the starting point was the explicit requirement that the system of artificial atoms

(qubits) maintained quantum coherence on the time scale of the electromagnetic pulse propa-

gation across it, in the expectation that the coherent quantum dynamics of qubits interacting

with the electromagnetic field governed the optical properties of the metamaterial.

Currently the term quantum metamaterial is being used in both senses (see, e.g.,20–25).

We will follow the more restrictive usage and call quantum metamaterials (in the narrow

sense) such artificial optical (in the broad sense) media that23 (i) are comprised of quantum

coherent unit elements with desired (engineered) parameters; (ii) quantum states of (at least

some of) these elements can be directly controlled; and (iii) can maintain global coherence

for the duration of time, exceeding the traversal time of the relevant electromagnetic signal.

The totality of (i)-(iii) (in short: controlled macroscopic quantum coherence) that makes a

quantum metamaterial a qualitatively different system, with a number of unusual properties

and applications.

A conventional metamaterial can be described by effective macroscopic parameters, such

as its refractive index. (The requirement that the size of a unit cell of the system be much less

- in practice at least twice less - than the wavelength of the relevant electromagnetic signal, is

implied in its definition as an optical medium, and is inherited by quantum metamaterials.)

From the microscopic point of view, these parameters are functions of the appropriately

averaged quantum states of individual building blocks. In a quantum metamaterial, these

states can be directly controlled and maintain phase coherence on the relevant spatial and

temporal scale.

The full treatment of such a system should start from quantum description of both the

electromagnetic field and the ”atoms”. In case when their role is played by qubits (that is,

two-level quantum systems), a general enough Hamiltonian of a quantum metamaterial is

given by21,26

Ĥ =
∑

j

h̄ωjb
+
j bj −

1

2

∑

k

(

ǫkσ
(k)
z +∆kσ

(k)
x

)

+ i
∑

jk

ξjkσ
(k)
z

(

bj − b+j
)

, (1)

where the first term describes unperturbed photon modes, the second the qubit degrees of

freedom, and the third their interaction. The direct control over (at least some) qubits is

realized through the qubit Hamiltonian parameters (the bias ǫ or, sometimes, the tunneling
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matrix element ∆).

Forming photon wave packets with characteristic size Λ ≫ a (where a is the unit cell size)

and averaging over the quantum states of qubits on the scale of Λ, one should eventually

arrive at the effective equation of motion for the ”Λ-smooth” density matrix. It will describe

the state of both the electromagnetic field and the quantum metamaterial, characterized by

a nondiagonal, nonlocal, state- and position-dependent ”refractive index” matrix.

Following through with this program involves significant technical difficulties, and the

task is not brought to conclusion yet. Nevertheless certain key effects in quantum metama-

terials can be investigated at a more elementary level using an approximate wave function

(e.g.,26–29), or treating the electromagnetic field classically18,19,30,31. The latter is like the

standard quasi-classical treatment of the atom-light interaction32, but is more conveniently

done using the lumped-elements description (see, e.g.,30, Section 2.3). The state of a system

of M nodes connected by capacitors, inductors and, if necessary, Josephson junctions, is de-

scribed by a Lagrangian L({Φ, Φ̇}). Here the ”node fluxes” Φj(t) = c
∫ t

dt′ Vj(t
′) are related

to the node voltages Vj(t) and completely describe the classical electromagnetic field degrees

of freedom (the current-voltage distribution) in the system. The lumped-elements descrip-

tion is appropriate, since we are interested in signals with a wavelength much larger than the

dimension of a unit element of the circuit (the condition of its serving as a metamaterial).

Qubits are introduced in this scheme through their own Hamiltonians and coupling terms

(e.g., flux qubits can be coupled inductively - through the magnetic flux penetrating their

loop, - or galvanically - through sharing a current-carrying conductor with the circuit), which

are usually cast in the form

Ĥq = −1

2

[

ǫqσ
z
q +∆qσ

x
q

]

+ Jq(Φ, Φ̇)σ
z
q . (2)

The ”quantum Routhian”,

R̂({σ}, {Φ, Φ̇}) =
∑

q

Ĥq −L({Φ, Φ̇}), (3)

plays the role of the Hamiltonian for qubits (in Heisenberg representation), and its expec-

tation value R = 〈R̂〉 produces the equations of motion for the classical field variables Φ,

where we have included the dissipative function Q to take into account resistive losses in

the circuit (see Refs.30, 2.3.3, and33):

d

dt

∂R
∂Φ̇j

− ∂R
∂Φj

=
∂Q
∂Φ̇j

. (4)
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If one approximates the quantum state of the qubit subsistem by a factorized function,

one can take the continuum limit and, switching to the Schrödinger representation, obtain

coupled systems of equations for the field variable Φ(r, t) and the qubit two-component

”macroscopic wave function” Ψ̂(r, t). At any convenient stage the electromagnetic modes

can be canonically quantized via Φ → Q̂ ∼ (b + b†), Φ̇ → P̂ ∼ i(b − b†), leading back to a

certain approximation of an approach based directly on Eq.(1).

II. SUPERCONDUCTING QUANTUM METAMATERIALS

The above scheme is most often applied - though not limited - to the case of supercon-

ducting metamaterials based on various types of superconducting qubits (see, e.g., Ref.30,

Ch.2). The simplest case is given by the experimental setup of Ref.34 (Fig.1a). There a

single artificial atom (a flux qubit) is placed in a transmission line, and transmission and

reflection coefficients for the microwave signal are measured. Here the equations (4) for the

field in the continuum limit will yield free telegraph equations for the voltage and current

everywhere except the point x = 0, where the qubit is situated:

∂V (x, t)

∂x
=

L̃

c2
∂I(x, t)

∂t
; (5)

∂I(x, t)

∂x
= C̃

∂V (x, t)

∂t
, (6)

where L̃, C̃ are the inductance and capacitance per unit length of the transmission line.

Of course, for such a simple structure these equations can be written down directly. The

influence of the flux qubit, which is coupled to the transmission line through the effective

mutual inductance M (taking into account both magnetic and kinetic inductance) is through

the matching conditions at x = 0,

V (+0, t) = V (−0, t)− M

c

∂〈Îq(t)〉
∂x

; (7)

I(+0, t) = I(−0, t). (8)

The qubit current operator Îq = Ipσ
z is governed by the qubit Hamiltonian (2) with the cou-

pling term Jq = I(0, t)M/c2. An explicit solution for the reflection/transmission amplitudes

was found to be in a very good agreement with the experimental data in Ref.34 (Fig.1b).

For a structure, where the role of the ”artificial atom” between 1D transmission lines is

played by a single qubit surrounded by an array of N coupled photonic cavities29 the calcu-
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FIG. 1: (a) A ”proto-metamaterial”: a single artificial atom (flux qubit) in a transmission line.
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lations in the one-excitation approximation (with electromagnetic modes treated quantum

mechanically) show that in such a structure arise long-living quasi-bound states of photons

and the qubit, manifested as ultra-narrow resonances in the transmission coefficient.

Going from these ”proto-metamaterials” to QMMs containing many artificial atoms, we

return to the classical treatment of the electromagnetic field. Though 2D and 3D ver-

sions of superconducting QMMs are feasible23,24 (Fig. 2a), they do not operate yet in a

quantum coherent regime. Most of the research at the moment concentrates on the 1D

case, which already promises interesting results. In theoretical papers18,31,35 is considered

a QMM formed by a set of superconducting charge qubits placed in the transmission line

(Fig.2b). The equations of motion for the field and qubits were solved, using a factorized

approximation of the quantum state vector of the qubit subsystem. For the realistic choice

of qubit and transmission line parameters, the figures of merit β =
√

EEM/∆ ∼ 30 and

ν = h̄max(Γqb,ΓTL)/∆ ∼ 10−3 (Ref.18) ensure that the continuum approximation is justi-

fied, and that in the first approximation the effects of decoherence can be neglected. Here

EEM is the electromagnetic field energy per unit cell, ∆(Eq.(1)) gives the qubit energy scale,

β is the dimensionless signal velocity in the transmission line (units cells per h̄/EJ), and

Γqb,ΓTL are the decoherence rates in a qubit and in the transmission line respectively. Some

of the results are shown in Fig.3.

Dimensionless equations of motion for the field vector-potential in the lowest order in

field-qubits interaction yield the wave equation

α̈(ξ, τ)− β2∂
2α(ξ, τ)

∂ξ2
+ V (ξ, τ)α(ξ, τ) = 0, (9)

where V (ξ, τ) ∝ 〈Ψ̂(ξ, τ)| cosφ|Ψ̂(ξ, τ)〉. The tunneling matrix element of the charge qubit

Hamiltonian (φ being the qubit superconducting phase) is determined by the qubit state

|Ψ̂(ξ, τ)〉 at the given point. The dispersion law is thus directly dependent on the QMM

quantum state, as expected. For example, if the qubit state is a periodic function of the

coordinate, Ψ̂(x + Λ) = Ψ̂(x), the QMM behaves as a photonic crystal, with gaps opening

in the electromagnetic spectrum18,35, which can be manipulated by controlling the quantum

state of qubits. For example, if qubits are placed in a spatially periodic superposition of

their eigenstates,

|Ψ̂(x, t)〉 = A(x)|g〉+B(x)|e〉e−iωt, (10)

where A(x), B(x) are periodic functions and h̄ω is the energy splitting between the ground
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(|g〉) and excited (|e〉) state of the qubit. Quantum beats between these states will produce

a ”breathing” photonic band structure (Fig.3a); external control of qubit states allows to

trap a portion of radiation in a pocket of such a structure and move it across the QMM

at a desired speed18. In the absence of direct control over individual qubit states (apart

from their initialization in the ground state) it is still possible to create a photonic crystal

structure35 by sending into the QMM specially shaped ”priming” electromagnetic pulses

from the opposite directions (Fig. 3b). Exiting the QMM, they leave behind a spatially

periodic pattern of the probability of finding a qubit in the ground (excited) state.

Solving the coupled equations for the classical field and qubits numerically (still in the

approximation of factorized qubit state) allows to investigate lasing in a QMM31. If the

qubits are initialized in the excited state (e.g. by sending a priming pulse through the QMM),

an initial pulse triggers a coherent transition of energy from qubits to the electomagnetic field

(Fig. 3c. Remarkably, not only the process has a precipitous character, but its onset starts

the sooner the greater the amplitude of the triggering pulse:
√
field amplitude × τonset ≈

const.

In equilibrium a fully quantum treatment of a superconducting QMM becomes possible,

which allows the investigation of phase transitions in the photon system26. The chosen model

of a QMM (a series of RF SQUIDS coupled to the transmission line and considered in two-

level approximation) lead to a generic Hamiltonian (1), with only parameters being model

dependent. Using the instanton approach, the effective action of the photon subsystem was

obtained as a function of the photon field momentum P (in imaginary time).

In case when P0 is independent on the imaginary time τ , the photon system may undergo

a second order classical phase transition: above a critical temperature T ⋆ the momentum

P = 0, while below it the system can choose between two values ±P0. The transition details

depend on the level of disorder in the qubit chain, which is modeled here by the random

distribution of tunneling matrix elements ∆. In the case of a low disorder, ∆k ≈ ∆0, the

transition occurs at the critical temperature

T ⋆
n =

mη2N

kB
, (11)

where m is the transmission line inductance per unit cell, η parametrizes the qubit-field

interaction, and N is the total number of qubits in the QMM. This phase transition occurs

only if ∆0 < kBT
⋆
n . In the case of strong disorder with ∆k distributed from zero to some
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FIG. 2: (a) A 2D superconducting quantum metamaterial24. Fig.3 of24 (b) A realization of a 1D

superconducting quantum metamaterial: charge qubits in a transmission line31.
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FIG. 3: (a) Breathing photonic crystal18. (b) Creating a photonic crystal without a direct control

of a QMM35. (c) Lasing in a QMM31.
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∆0, the transition temperature

T ⋆
w =

∆0 exp [−∆0/mη2N ]

kB
, (12)

and the transition occurs only if ∆0 > mη2N . As the authors of Ref.26 note, the first case is

similar to the metal-ferromagnet phase transition, while the second one is reminiscent of the

normal metal-superconductor or Peierls metal-insulator transition. In either case a coherent

state of the photon field emerges, with nonzero value of the order parameter P0, which in

the case of low disorder is proportional to the number of qubits in the system, N .

It turns out that there is the possibility of a quantum transition as well, into a state

representing a superposition of semiclassical states ±P0. Then the order parameter becomes

a periodic function of τ . In the case of low disorder and strong field-qubit coupling it occurs

below the temperature (Fig.4)

TQOP
n ∝

[

∆2
0mη2N

π2

]1/3
1

kB
, (13)

while in the opposite case it is given by

TQOP
n =

∆0

kBπ
exp

[

−∆0/mη2N
]

. (14)

The estimates of Ref.26 for the transition temperatures T ⋆ ∼ 0.1 . . . 50 K let us hope for

direct observation of photon phase transitions in a superconducting QMM, when the number

of qubits, the homogeneity of their parameters and their coherence times are improved as

compared to the existing QMM prototype36,37. The prototype (Fig.5a) consists of 20 flux

qubits placed in a coplanar waveguide resonator. The inductive coupling of qubits to the

resonator and each other was comparable, but strong decoherence (decoherence time of the

order of a few nanoseconds) effectively suppressed qubit-qubit coupling. Nevertheless the

transmission measurements in the resonant regime showed the formation of three ensembles

of interacting qubits (two of four qubits each and one of eight qubits). This interaction

through the electromagnetic modes is the key element of the operation of a QMM. In order

to improve the operation of a QMM it is suggested to increase the qubit-qubit coupling, in

order to counteract the effects of qubit parameter dispersion.

11



FIG. 4: Classical and quantum phase transition in the state of photons in a 1D superconducting

quantum metamaterial26. The photon order parameter P0(τ) as a function of imaginary time τ

is either constant (classical phase transition, red line, P0 ∝ N) or proportional to sin[P0(T )τ ]

(quantum phase transiion, blue line, P ∝ N1/3). The low disorder case is shown: ∆k ≈ ∆0 = 4K;

T ⋆
n = 20K.

III. OPTICAL QUANTUM METAMATERIALS

The domain of quantum metamaterials in the optical, or near IR, region of the spectrum

is still in its infancy. As it has already been stated, some authors use the term quantum

metamaterial to denote a structure in which quantum degrees of freedom are inserted15. In

some other cases, it is the expression ”quantum dots metamaterials” that is used: this is to

stress that, although quantum dots are inserted in a metamaterial, one is not interested in the

quantum coherence of the dots, but rather on the gain that they provide, to counteract the

losses due to the presence of metallic inclusions38. In other proposals, it is quantum wells that

12



FIG. 5: Quantum metamaterial prototype36. (a) Twenty flux qubits placed in a resonator. The

signal wavelength is of the order of the resonator length (23 mm) and greatly exceeds the qubit

size (approx. 2 × 6 µm). The ensemble average level spacing and persistent current in the qubits

are 5.6 GHz and 74 nA respectively. (b) The QMM in the resonant regime. Three distinct qubit

ensembles are seen.

are inserted in a photonic structures. The quantum well are described electromagnetically

by a permittivity allowing some control over the behavior of the structure. In ref.17, a layered

metamaterial is investigated, in which the period comprises two GaAs quantum wells. This

structure results in an effective permittivity tensor allowing to obtain a negative refraction.

The effective properties strongly depend upon the 2D electron density in the quantum well.

In ref.15 the same kind of structure is investigated in order to control plasmon propagation,

13



FIG. 6: A cavity array metamaterial, taken from28

allowing to obtain ultra-long propagation distances.

An original proposal was made in39 to extend the concept of metamaterial to quantum

magnetism. The idea is to use molecular engineering or organic synthesis to fabricate mag-

netic quantum metamaterials. It is shown theoretically, by ab initio calculations, that Cu-

CoPc2 (a chain of copper-phtalocyanine (CuPc) and cobalt phtalocyanine (CoPc)) possesses

a relatively strong ferromagnetic interaction.

In the specific meaning used in this review, a proposal was made in (21,28) to study the full

quantum processes that occurs between the quantized electromagnetic field and two-level

atoms. The system studied there is a 2D network of coupled atom-optical cavities, called

a cavity array metamaterial (CAM). The authors propose to realize the model by using a

two-dimensional photonic crystal membrane. The quantum oscillators could be quantum

dots or substitution centers. Under reasonable assumptions, this system can be described

by a Jaynes-Cummings-Hubbard Hamiltonian40. The system exhibits a quantum phase

transitions21,41 and it was proposed that it could be used as a quantum simulator. The effects

of cloaking and negative refraction were also demonstrated. Quite naturally, the excitations

of the system are hybrids of photonic and atomic states, namely polaritons. This kind of

result is very well-known since the pioneering work of J. J. Hopfield42. Continuing along this

14
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FIG. 7: The dielectric function of a core-shell quantum dot46

way, an effective permittivity that is non-local in time and space could be derived, in exactly

the same way as for natural material. This is the line followed in a series of papers by G.

Weick where a collection of metallic nanoparticles is shown to exhibit collective plasmonic

modes43–45. However, a genuine quantum metamaterial requires more than that, namely

the active coherent control of the quantum state of the ”atoms” inserted in the photonic

structure, so as to induce a control over the collective properties of the medium.

Such a system could be implemented by considering, as above, a photonic crystal in

which quantum oscillators are inserted, under the guise of quantum dots for instance. The

quantum dots can be described semi-classically by a dielectric function εQD that reads as46:

εQD(ω) = εb + (fc(Ee)− fv(Eh))
a

ω2 − ω2
0 + 2iωγ

(15)

The prefactor (fc(Ee)− fv(Eh)) representing the difference between the populations of the

levels can be either positive or negative. In the first case, it is in the absorption regime

while in the latter it is in the emission (amplifying) regime. The graph of εQD(ω) is given

in fig. 7. The quantum dots can be grown inside dielectric nanopillars, and the nanopillars

can be organized into a 2D periodic array, resulting into a photonic crystal with quantum

dots. The bare photonic crystal is then tuned in such a way as to present a photonic

band gap at the emission frequency of the quantum dots. The idea is then to realize a

pump/probe experiment, where the pump controls the state of the quantum dots (absorption

15
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in the emission regime (in red). The peak corresponds to the transition of the quantum dots.

or emission). When the quantum dots are in the emission regime, a transmission peak

appears in the transmission spectrum of the probe (Fig. 8). This somewhat simplified

model shows a macroscopic property, a conduction band, results from the quantum states

of the microscopic quantum components. A full quantum treatment should be performed in

order to address properly the quantum coherence of the system of the field coupled to the

”atoms” of the metamaterial. As compared to the situations encountered in cavity quantum

electrodynamics, the quantization of the electromagnetic field in open space comes with

severe technical difficulties, if one follows the usual mode-decomposition path, abundantly

described in all the literature devoted to field quantization. In fact, for open systems,

Maxwell equations do not lead to hermitian eigenvalue problems and thus the eigenfunctions

are not normalizable. A recent interesting approach is to use the so-called ”quasi-normal

modes” of the system47.
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FIG. 9: A schematic view of a possible quantum metamaterial in optics, made by several quantum

dots embedded in semiconducting nanowires surrounded by metallic spheres.

IV. A REVIEW OF THE THEORETICAL TOOLS FOR QUANTUM METAMA-

TERIALS IN OPTICS

Here we review the tools of quantum optics for the description of the quantum dynamics

of a collection of emitters (e.g. quantum dots) in a complex electromagnetic environment

that can be constituted by dielectric and/or metallic elements as depicted in Fig: 9

For a single emitter in free space, the interaction with light is given by the minimal-

coupling Hamiltonian that reads48:

H =
1

2m
(p− eA)2 + eV (r) +

∫

d3r′E⊥2 +B2

where p is the electron momentum, A the vector-potential, V (r) the binding potential for

the electron, B the magnetic field and E⊥ the transverse part of the electric field, satisfying

∇.E⊥ = 0 (c.f.49 p. 254). The emitters are coupled to each other through the electromagnetic

field that comprises both radiating and evanescent terms.

For neutral emitters in a complex electromagnetic environment, one may need a meso-

scopic description, where the emitters are described through their multipole moments instead

of the dynamics of the electric charges. Moreover, it can be convenient to describe the elec-

tromagnetic environment by polarization and magnetization fields instead of charge and

current densities50. Last but not least, a Hamiltonian involving the physical fields E and B

rather than the potentials ϕ(~r) and A(~r) can also be more convenient. Applying the Power-

Zienau-Wooley transform to the previous Hamiltonian48,50,51 (see also52 p. 282) fulfills these

requirements. The Power-Zienau-Wooley transform leads to the following Hamiltonian(see

17



Milonni53 p.121):

H = Hmat +Hfield +Hint (16)

where

• Hmat =
p

2m
+V (r)+

∫

d~r P⊥2

2ε0
is the Hamiltonian describing the dynamics of the atom

variables, P is the polarization field. Even if the term
∫

d~r P⊥2/2ε0 is important to

reproduce the correct dynamics of the emitter48, it is usually neglected when studying

the interaction between the emitter and light. It is usually argued that this term merely

shifts the energy levels, an effect that can be accounted for by a correct renormalization

of the emitter energy levels. Nevertheless in the ultra-strong coupling regime, this

term has to be taken into account54. It leads to a decoupling of matter and light

states because of a screening of the incident light by the polarization field P, resulting

for example in a reduction of the Purcell factor, while increasing the coupling between

the field and the emitter54.

• Hfield =
∫

D2(~r)
2ε0

+ B2(~r)
2µ0

is the Hamiltonian describing the electromagnetic field dynam-

ics.

• Hint = −
∫

P(~r).D(~r) d~r is the Hamiltonian describing the interaction between light

and matter.

D(~r) is the displacement vector. Note that the Hamiltonian given by the equation eq.(16)

is exact. It is completely equivalent to the minimal-coupling hamiltonian (Cohen52 p.298).

From Hamiltonian eq.(16), with the help of the Heisenberg equation, one can find the dy-

namical equations satisfied by each operators (field and matter operators).

Concerning the field operators, it is assumed that they are related to each other through

Maxwell equations. This assumption implies that there exists some commutators between

the field operators (p.18 in55): [D(~r, t),A(~r′, t)] = ih̄
ε0

δT (~r− ~r′) where δT (~r) is the transverse

delta distribution (See also52 p. 233). Finally, one gets the following set of equations between

the field operators:

∇×E = −∂tB

∇×B = µ0∂tP+ 1
c2
∂2
t2E

18



One arrives at the well-known wave equations satisfied by the electric-field operator:

∇×∇×E− 1

c2
∂2E

∂t2
= −µ0

∂2P

∂t2
(17)

Concerning the dynamics of the matter degrees of freedom, some usual approximations

are done. We write the polarization field as a sum of a polarization field due to the atoms

Pa and a polarization field due to the electromagnetic environment Pind: P = Pa + Pind.

We assume that the polarization field due to the electromagnetic environment Pind responds

linearly and locally to the electric field. It reads as56

Pind(~r, t) =

∫ +∞

−∞

ε0χ(~r, t
′)E(~r, t′)dt′

where χ(~r, t′) is the susceptibility at position ~r and time t.

Concerning the polarization field due to emitters, we work in the usual dipole approxima-

tion and approximate the polarization field by keeping only the first term in the multipolar

expansion even if this approximation can be crude for quantum dots57. If there are Nα emit-

ters, the polarization field due to the emitters is then written as Pa(~r) =
∑Nα

α=1 d
αδ(~r− ~rα)

where dα and ~rα are respectively the dipole-moment operator and the position of the emit-

ter labeled by α, and δ(~r) is the usual Dirac distribution. It is convenient to express all

matter-operators with the help of the basis defined by the eigenstates of the matter hamil-

tonian Hmat. The matter hamiltonian Hmat is written as Hmat =
∑Nα

α=1H
α
mat where Hα

mat

is the hamiltonian of the αth emitter. We note {|α, i〉} the eigenbasis constructed from

the eigenstates of Hα
mat that satisfied Hmat |α, i〉 = Eα

i |i〉 and the completeness condition
∑

i |α, i〉 〈α, i| = Iαd , where I
α
d is the identity matrix acting on the subspace of the αth emitter.

We now assume that emitters are two-level systems. The ground state is labelled by i = −
whereas the excited level is labelled by i = +. Applying twice the completeness condition

on the hamiltonian Hα
mat, one finds Hα

mat =
E−+E+

2
Iαd + h̄ωα

2
σα
z where h̄ωα = Eα

+ − Eα
− and

σα
z = |α,+〉 〈α,+| − |α,−〉 〈α,−|. σα

z acts on the subspace defined by the eigenvectors of

the αth emitter and measured its population difference between the excited and the ground

state. The first term in Hα
mat is a constant that can be omitted by choosing correctly the

reference of the energy. We then write the matter hamiltonian as (see58 p. 23 and53 p.128):

Hmat =

Nα
∑

α=1

h̄ωα

2
σα
z

.
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The polarization field due to the emitters can also be written with the help of the eigen-

basis of each emitter by writing the dipole-moment operator in this basis:

dα = ~dα+− |α,+〉 〈α,−|+ ~dα−+ |α,−〉 〈α,+|

where ~dα+− = 〈α,+|dα |α,+〉 is the projection of the dipole-moment operator in the basis

{|α,+〉 , |α,−〉}. The diagonal elements are null because we assume that the emitters have

no permanent dipole. We introduce the raising σα
+ = |α,+〉 〈α,−| and lowering operators

σα
− = |α,−〉 〈α,+|. Finally, the polarization field due to the atoms reads:

Pa(~r) =

Nα
∑

α=1

(~dα+−σ
α
+ + ~dα−+σ

α
−)δ(~r − ~rα)

If we assume that the dipole moment projection ~dα+− = (~dα−+)
⋆ = ~d0α is real, the polar-

ization field simplifies with the help of the Pauli matrice σx:

Pa(~r) =
Nα
∑

α=1

~dα0σ
α
x δ(~r − ~rα)

since σx = 1
2
(σα

+ + σα
−) (see

58 p.24,59 p.35).

With the help of a Fourier transform, the hamiltonian for the free electromagnetic field can

be written Hfield =
∑

j,s h̄ωjb
+
j,sbj,s where bj , s (resp. b+j,s) is the annihilation (resp. creation

) operator of the electromagnetic mode j with polarization s. Within this decomposition

the electric field on its own reads E =
∑

j,s ej,s(bj,s− b+j,s). Finally, following these successive

approximations one finds the hamiltonian given by the equation eq.(1)

The behavior of the quantum metamaterial can be computed by solving simultaneously

the equation eq.(17) and the equations of motions for the collection of two-level ”atoms”

given by48, p.37 and59 :

σ̇α
x = −ωασα

y

σ̇α
y = ωασα

x +
2

h̄
~dα0 .E(~rα)σ

α
z

σ̇α
z = −2

h̄
~dα0 .E(~rα)σ

α
y

Where all terms proportional to P2(~r) have been neglected. These equations are non-

linear coupled differential equations since σα
x are sources of the electric field eq:(17). The
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electromagnetic environment contributes also as a source term in eq:(17). This source term

is important since it is responsible for all the unusual effects demonstrated theoretically or

experimentally with classical metamaterials. Its effect on quantum metamaterials has been

barely studied since solving this system of equations is challenging, even for a very simple

geometry60. New theoretical tools should be developed to accurately describe the behavior

of a quantum metamaterial in a complex electromagnetic environment. Nevertheless more

approximations can be done to solve these equations. One can use the single electromagnetic-

mode approximation21,28,61,62 or perform a semi-classical approximation18,19,30,31,63. In the

latter, it is assumed that there are no correlations59 between the electromagnetic field and

the matter degrees of freedom.

V. CONCLUSIONS

The field of quantum metamaterials research arose at the intersection of quantum optics,

microwave and Josephson physics, and quantum information processing. One of its rather

paradoxical feature is that, while the theoretical progress in this area still significantly

outweighs the experiment, the theoretical challenges seem more significant. Indeed, the

existing experimental techniques, especially in case of superconducting structures, already

allow creating massive arrays. The 20-qubits prototype36 is much smaller than a recently

fabricated 1000+-qubits superconducting quantum annealer D-Wave 2X. Given a simpler

structure, and less strict demands to a quantum metamaterial than to a quantum computer,

making and testing quantum metamaterials on this scale is a question of time and funding.

On the other hand, the theoretical analysis of quantum metamaterials produces promising

results, already using simple approximations. Nevertheless the understanding of the full

scale of effects which can be expected in these systems requires a more detailed analysis of

large scale quantum coherences and entanglement. Because of the well-known impossibility

to effectively simulate a large quantum system by classical means, a direct approach to this

is currently limited to structures containing (optimistically) less than a hundred qubits. New

theoretical tools need to be developed, generalizing the methods of quantum theory of solid

state5.

These challenges also present alluring opportunities. Developing and testing new theoret-

ical methods applicable to large quantum coherent systems would be valuable for the whole

21



field of quantum technologies, including quantum computing. Optical elements based on

quantum metamaterials would provide new methods for image acquisition and processing.

Last but not least, a quantum metamaterial would be a natural test bed for the investigation

of quantum–classical transition, which makes this class of structures interesting also from

the fundamental point of view.
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