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Université de Toulouse

CSIRO Chile International Centre of Excellence4

December 8, 2017

Abstract

This paper is focused on the statistical analysis of probability measures ν1, . . . ,νn on
R that can be viewed as independent realizations of an underlying stochastic process. We
consider the situation of practical importance where the random measures νi are absolutely
continuous with densities f i that are not directly observable. In this case, instead of the
densities, we have access to datasets of real random variables (Xi,j)1≤i≤n; 1≤j≤pi organized
in the form of n experimental units, such that Xi,1, . . . , Xi,pi

are iid observations sampled
from a random measure νi for each 1 ≤ i ≤ n. In this setting, we focus on first-order
statistics methods for estimating, from such data, a meaningful structural mean measure.
For the purpose of taking into account phase and amplitude variations in the observations,
we argue that the notion of Wasserstein barycenter is a relevant tool. The main contribution
of this paper is to characterize the rate of convergence of a (possibly smoothed) empirical
Wasserstein barycenter towards its population counterpart in the asymptotic setting where
both n and min1≤i≤n pi may go to infinity. The optimality of this procedure is discussed
from the minimax point of view with respect to the Wasserstein metric. We also highlight
the connection between our approach and the curve registration problem in statistics. Some
numerical experiments are used to illustrate the results of the paper on the convergence rate
of empirical Wasserstein barycenters.
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1 Introduction

In this paper, we are concerned with the statistical analysis of a set of absolutely continuous
measures ν1, . . . ,νn on the real line R, with supports included in (a possibly unbounded) interval
Ω ⊂ R, that can be viewed as independent copies of an underlying random measure ν. In this
setting, it is of interest to define and estimate a mean measure ν0 of the random probability
measure ν. The notion of mean or averaging depends on the metric that is chosen to compare
elements in a given data set. In this work, we consider the Wasserstein metric dW associated to
the quadratic cost for the comparison of probability measures and we define ν0 as the population
Wasserstein barycenter of ν, given by

ν0 = arg min
µ∈W2(Ω)

E
[
d2
W (ν, µ)

]
,

where the above expectation is taken with respect to the distribution of ν, and W2(Ω) denotes
the space of probability measures with support included in Ω and with finite second moment.
A Wasserstein barycenter corresponds to the Fréchet mean [Fré48] that is an extension of the
usual Euclidean mean to non-linear metric spaces. Throughout the paper, the population mean
measure ν0 is also referred to as the structural mean of ν, which is a terminology borrowed from
curve registration (see [ZM11] and references therein). We choose to work with the Wasserstein
metric because it has been shown to be successful in the presence of phase variation (we refer
to Section 2 for more explanations).

Data sets leading to the analysis of absolutely continuous measures appear in various re-
search fields. Examples can be found in neuroscience [WS11], demographic and genomics studies
[Del11, ZM11], economics [KU01], as well as in biomedical imaging [PM16]. Nevertheless, in
such applications one does not directly observe raw data in the form of absolutely continuous
measures. Indeed, we generally only have access to random observations sampled from different
distributions, that represent independent subjects or experimental units.

Thus, we propose to study the estimation of the structural mean measure ν0 (the popula-
tion Wasserstein barycenter) from a data set consisting of independent real random variables
(Xi,j)1≤i≤n; 1≤j≤pi organized in the form of n experimental units, such that (conditionally on
νi) the random variables Xi,1, . . . , Xi,pi are iid observations sampled from the measure νi with
density f i, where pi denotes the number of observations for the i-th subject or experimental
unit. The main purpose of this paper is to propose nonparametric estimators of the structural
mean measure ν0 and to characterize their rates of convergence with respect to the Wasserstein
metric in the asymptotic setting, where both n and min1≤i≤n pi may go to infinity.
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1.1 Main contributions

Two types of nonparametric estimators are considered in this paper. The first one is given by
the empirical Wasserstein barycenter of the set of measures ν̃1, . . . , ν̃n, with ν̃i = 1

pi

∑pi
j=1 δXi,j

for 1 ≤ i ≤ n. This estimator will be referred to as the non-smoothed empirical Wasserstein
barycenter. Alternatively, since the unknown probability measures νi are supposed to be abso-
lutely continuous, a second estimator is based on a preliminary smoothing step which consists in
using standard kernel smoothing to construct estimators f̂ i of the unknown densities f i for each
1 ≤ i ≤ n. Then, an estimator of ν0 is obtained by taking the empirical Wasserstein barycenter
of the measures ν̂i, . . . , ν̂n, with ν̂i(A) :=

∫
A f̂i(x)dx, A ⊂ R measurable. We refer to this class

of estimators as smoothed empirical Wasserstein barycenters whose smoothness depend on the
choice of the bandwidths in the preliminary kernel smoothing step.

The rates of convergence of both types of estimators are derived for their (squared) Wasser-
stein risks, defined as their expected (squared) Wassertein distances from ν0, and their optimality
is discussed from the minimax point of view. Finally, some numerical experiments with simulated
data are used to illustrate these results.

1.2 Related work in the literature

The notion of barycenter in the Wasserstein space, for a finite set of n probability measures
supported on Rd (for any d ≥ 1), has been recently introduced in [AC11] where a detailed
characterization of such barycenters in terms of existence, uniqueness and regularity is given
using arguments from duality and convex analysis. However, the convergence (as n → ∞) of
such Wasserstein barycenters is not considered in that work.

In the one dimensional case (d = 1), computing the Wasserstein barycenter of a finite set of
probability measures simply amounts to averaging (in the usual way) their quantile functions.
In statistics, this approach has been referred to as quantile synchronization [ZM11]. In the
presence of phase variability in the data, quantile synchronization is known to be an appropriate
alternative to the usual Euclidean mean of densities to compute a structural mean density that
is more consistent with the data. Various asymptotic properties of quantile synchronization are
studied in [ZM11] in a statistical model and asymptotic setting similar to that of this paper with
min1≤i≤n pi ≥ n. However, other measures of risk than the one in this paper are considered in
[ZM11], but the optimality of the resulting convergence rates of quantile synchronization is not
discussed.

The results of this paper are very much connected with those in [PZ16] where a new frame-
work is developed for the registration of multiple point processes on the real line for the purpose
of separating amplitude and phase variation in such data. In [PZ16], consistent estimators of
the structural mean of multiple point processes are obtained by the use of smoothed Wasser-
stein barycenters with an appropriate choice of kernel smoothing. Also, rates of convergence
of such estimators are derived for the Wasserstein metric. The statistical analysis of multiple
point processes is very much connected to the study of repeated observations organized in sam-
ples from independent subjects or experimental units. Therefore, some of our results in this
paper on smoothed empirical Wasserstein barycenters are built upon the work in [PZ16]. Nev-
ertheless, novel contributions include the derivation of an exact formula to compute the risk
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of non-smoothed Wasserstein barycenters in the case of samples of equal size, and new upper
bounds on the rate of convergence of the Wasserstein risk of non-smoothed and smoothed em-
pirical Wasserstein barycenters, together with a discussion of their optimality from the minimax
point of view.

The construction of consistent estimators of a population Wasserstein barycenter for semi-
parametric models of random measures can also be found in [BK17] and [BLGL15], together
with a discussion on their connection to the well known curve registration problem in statistics
[RL01, WG97].

1.3 Organization of the paper

In Section 2, we first briefly explain why using statistics based on the Wasserstein metric is
a relevant approach for the analysis of a set of random measures in the presence of phase
and amplitude variations in their densities. Then, we introduce a deformable model for the
registration of probability measures that is appropriate to study the statistical properties of
empirical Wasserstein barycenters. The two types of nonparametric estimators described above
are finally introduced at the end of Section 2. The convergence rates and the optimality of
these estimators are studied in Section 3. Some numerical experiments with simulated data are
proposed in Section 4 to highlight the finite sample performances of these estimators. Section
5 contains a discussion on the main contributions of this work and their potential extensions.
The proofs of the main results are gathered in a technical Appendix. Finally, note that we use
bold symbols f ,ν, . . . to denote random objects (except real random variables).

2 Wasserstein barycenters for the estimation of the structural
mean in a deformable model of probability measures

2.1 The need to account for phase and amplitude variations

To estimate a mean measure from the data (Xi,j)1≤i≤n; 1≤j≤pi , a natural approach is the fol-

lowing one. In a first step, one uses the Xi,j ’s to compute estimators f̂1, . . . , f̂n (e.g. via kernel
smoothing) of the unobserved density functions f1, . . . ,fn of the measures ν1, . . . ,νn. Then,
an estimator of a mean density might be defined as the usual Euclidean mean f̄n = 1

n

∑n
i=1 f̂ i,

which is also classically referred to as the cross-sectional mean in curve registration. At the level
of measures, it corresponds to computing the arithmetical mean measure ν̄n = 1

n

∑n
i=1 ν̂i. The

Euclidean mean f̄n is the Fréchet mean of the f̂ i’s with respect to the usual squared distance
in the Hilbert space L2(Ω) of square integrable functions on Ω. Therefore, it only accounts for
linear variations in amplitude in the data. However, as remarked in [ZM11], in many applica-
tions it is often of interest to also incorporate an analysis of phase variability (i.e. time warping)
in such functional objects, since it may lead to a better understanding of the structure of the
data. In such settings, the use of the standard squared distance in L2(Ω) to compare density
functions ignores a possible significant source of phase variability in the data.

To better account for phase variability in the data, it has been proposed in [ZM11] to
introduce the so-called method of quantile synchronization as an alternative to the cross sectional
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mean f̄n. It amounts to computing the mean measure ν⊕n (and, if it exists, its density f⊕n ) whose
quantile function is

F̄
−
n =

1

n

n∑
i=1

F−i , (2.1)

where F−i denotes the quantile function of the measure νi with density f i.
The statistical analysis of quantile synchronization, as studied in [ZM11], complements the

quantile normalization method originally proposed in [BIAS03] to align density curves in mi-
croarray data analysis. This method is therefore appropriate for the registration of density
functions and the estimation of phase and amplitude variations as explained in details in [PZ16].

Let us now assume that ν1, . . . ,νn are random elements taking values in the set of absolutely
continuous measures contained in W2(Ω). In this setting, it can be checked (see e.g. Proposition
2.1 below) that quantile synchronization corresponds to computing the empirical Wasserstein
barycenter of the random measures ν1, . . . ,νn, namely

ν⊕n = arg min
µ∈W2(Ω)

1

n

n∑
i=1

d2
W (νi, µ).

Therefore, the notion of averaging by quantile synchronization corresponds to using the Wasser-
stein distance dW to compare probability measures, which leads to a notion of measure averaging
that may better reflect the structure of the data than the arithmetical mean in the presence of
phase and amplitude variability.

To illustrate the differences between using Euclidean and Wasserstein distances to account
for phase and amplitude variation, let us assume that the measures ν1, . . . ,νn have densities
f1, . . . ,fn obtained from the following location-scale model: we let f0 be a density on R having
a finite second moment and, for (ai, bi) ∈ (0,∞) × R, i = 1, . . . , n, a given set of iid random
vectors, we define

f i(x) := a−1
i f0

(
a−1
i (x− bi)

)
, x ∈ R, 1 ≤ i ≤ n. (2.2)

The sources of variability of the densities from model (2.2) are the variation in location along the
x-axis, and the scaling variation. In Figure 1(a), we plot a sample of n = 100 densities from model
(2.2) with f0 being the standard Gaussian density, ai ∼ U([0.8, 1.2]) and bi ∼ U([−2, 2]), where
U([x, y]) denotes the uniform distribution on the interval [x, y]. In this numerical experiment,
there is more variability in phase (i.e. location) than in amplitude (i.e. scaling), which can also
be observed at the level of quantile functions as shown by Figure 1(b).

In the location-scale model (2.2), it can be checked, e.g. using the quantile averaging formula
(2.1), that the empirical Wasserstein barycenter ν⊕n is the probability measure with density

f⊕n (x) = ā−1
n f0

(
ā−1
n (x− b̄n)

)
,

where ān = 1
n

∑n
i=1 ai and b̄n = 1

n

∑n
i=1 bi. Hence, if we assume that E(a1) = 1 and E(b1) = 0,

it follows that d2
W (ν⊕n , ν0) converges almost surely to 0 as n→∞, meaning that ν⊕n is a consis-

tent estimator of ν0 as shown by Figure 1(f). On the contrary, the arithmetical mean measure
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Figure 1: An example of n = 100 random densities (a) with quantile functions (b)
sampled from the location-scale model (2.2) with f0 the standard Gaussian density,
ai ∼ U([0.8, 1.2]) and bi ∼ U([−2, 2]). (c,d) The solid-black curves are the Euclidean
mean f̄n and its quantile function. (e,f) The solid-red curves are the structural mean
f⊕
n given by quantile synchronization and the quantile function of the empirical Wasser-

stein barycenter ν⊕
n . In all the figures, the dashed-blue curves are either the density

f0 or its quantile function in the location-scale model (2.2).
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ν̄n is clearly not a consistent estimator of ν0, as it can be observed in Figure 1(d).

Remark 2.1. It is clear that, in the above location-scale model, one may easily prove that f⊕n
converges almost surely to f0 as n → ∞ for various distances between density functions as
illustrated by Figure 1(e). However, in this paper, we restrict our attention to the problem of
how the structural mean measure ν0 can be estimated from empirical Wasserstein barycenters
with respect to the Wasserstein distance between probability measures. Showing that the density
(if it exists) of such estimators converges to the density f0 of ν0 is not considered in this work.

2.2 Barycenters in the Wasserstein space

Let Ω be an interval of R, possibly unbounded. We let W2(Ω) be the set of probability measures
over (Ω,B(Ω)), with finite second moment, where B(Ω) is the σ-algebra of Borel subsets of Ω.
We also denote by W ac

2 (Ω) the set of measures ν ∈ W2(Ω) that are absolutely continuous with
respect to the Lebesgue measure on R. The cumulative distribution function (cdf), the quantile
function and the density function (if ν ∈W ac

2 (Ω)) of ν are denoted respectively by Fν , F−ν and
fν .

Definition 2.1. The quadratic Wasserstein distance dW in W2(Ω) is defined by

d2
W (µ, ν) :=

∫ 1

0
(F−µ (α)− F−ν (α))2dα, for any µ, ν ∈W2(Ω). (2.3)

It can be shown that W2(Ω) endowed with dW is a metric space, usually called Wasserstein
space. For a detailed analysis of W2(Ω) and its connection with optimal transport theory, we
refer to [Vil03].

A W2(Ω)-valued random probability measure ν is a measurable function from an abstract
probability space to (W2(Ω),B (W2(Ω)), where B (W2(Ω)) is the Borel σ-algebra of W2(Ω). We
denote by P the probability on W2(Ω), induced by ν.

Definition 2.2 (Square-integrability). The random measure ν is said to be square-integrable if

E(d2
W (µ,ν)) =

∫
W2(Ω)

d2
W (µ, ν)dP(ν) < +∞

for some (thus for every) µ ∈W2(Ω).

Observe that the expectation in the definition above is well defined since ν 7→ dW (µ, ν)
is continuous and therefore, measurable. In the rest of the paper we assume that random
measures ν are square integrable, in the sense of the previous definition, and so, this property is
not explicitly stated in definitions or results involving ν . We use the notations F , F− and f to
denote respectively the cumulative distribution function, the quantile function and the density
function (if it exists) of ν.

Definition 2.3 (Population and empirical Wasserstein barycenters). A population Wasserstein
barycenter of ν is defined as a minimizer of

µ 7→
∫
W2(Ω)

d2
W (µ, ν)dP(ν) over µ ∈W2(Ω).
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An empirical Wasserstein barycenter of ν1, . . . , νn ∈W2(Ω) is defined as a minimizer of

µ 7→ 1

n

n∑
i=1

d2
W (µ, νi) over µ ∈W2(Ω).

Proposition 2.1.

(i) There exists a unique barycenter of ν, denoted ν0.

(ii) F−ν0
= E

[
F−
]
.

(iii) Var(ν) := E
[
d2
W (ν, ν0)

]
=
∫ 1

0 Var
(
F−(α)

)
dα <∞.

Proof. Observe that F− is measurable, considered as a random element of L2(0, 1) (the space
of real valued functions on (0, 1), square-integrable wrt Lebesgue’s measure), since the map
ν ∈W2(Ω) 7→ F−ν ∈ L2(0, 1) is continuous, because of (2.3). Assertions (i) and (ii) are contained
in Proposition 4.1 in [BGKL17]. Let us prove (iii). From (2.3) and Fubini’s theorem, we have

Var (ν) = E
[∫ 1

0

(
F−(α)− F−ν0

(α)
)2
dα

]
=

∫ 1

0
E
[(
F−(α)− F−ν0

(α)
)2]

dα =

∫ 1

0
Var

(
F−(α)

)
dα.

Finiteness of Var (ν) is immediate from the square-integrability of ν.

2.3 A deformable model of probability measures

Let ν1, . . . ,νn be independent copies of the random measure ν, with barycenter ν0. We consider
a deformable model of random probability measures satisfying the following assumptions:

Assumption 2.1. ν ∈W ac
2 (Ω) a.s.

Assumption 2.2. ν0 ∈W ac
2 (Ω).

Assumption 2.3. Conditionally on νi, the observations Xi,1, . . . , Xi,pi are iid random variables
sampled from νi, where pi ≥ 1 is a known integer, for 1 ≤ i ≤ n.

Remark 2.2. Similar assumptions are considered in [PZ16] to characterize a population barycen-
ter in W2(Ω) for the purpose of estimating phase and amplitude variations from the observations
of multiple point processes. For examples of parametric models satisfying the Assumptions 2.1-
2.3, we refer to [BK17] and [BLGL15]. The main restriction of this deformable model is that ν0

is assumed to be absolutely continuous.

Remark 2.3. Observe that Assumption 2.1 requires W ac
2 (Ω) to be a measurable subset of W2(Ω).

The proof of this technical result will appear in a forthcoming paper.
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2.4 Non-smoothed empirical barycenter

To estimate the structural mean measure ν0 from the data (Xi,j)1≤i≤n; 1≤j≤pi , a first approach
consists in computing straightaway the barycenter of the empirical measure ν̃1, . . . , ν̃n where
ν̃i = 1

pi

∑pi
j=1 δXi,j (δx denotes the Dirac mass at point x ∈ Ω). The non-smoothed empirical

barycenter is thus defined as

ν̂n,p
¯

= arg min
µ∈W2(Ω)

1

n

n∑
i=1

d2
W (ν̃i, µ), (2.4)

where p
¯

= (p1, . . . , pn). In the case p1 = p2 = . . . = pn = p, we have the following procedure
for computing the non-smoothed empirical barycenter. For each 1 ≤ i ≤ n, we denote by
X∗i,1 ≤ X∗i,2 ≤ . . . ≤ X∗i,p the order statistics corresponding to the i-th sample of observations
(Xi,j)1≤j≤p, and define

X̄∗j =
1

n

n∑
i=1

X∗i,j , for all 1 ≤ j ≤ p.

Thanks to Proposition 2.1, the quantile function of the empirical Wasserstein barycenter is the
average of the quantile functions of ν̃1, . . . , ν̃n, and thus we obtain the formula

ν̂n,p =
1

p

p∑
j=1

δX̄∗
j
. (2.5)

Note that we use ν̂n,p instead of ν̂n,p
¯

to denote the non-smoothed empirical barycenter in the
case p1 = p2 = . . . = pn = p.

2.5 Smoothed empirical barycenter

An alternative approach is to use a smoothing step to obtain estimated densities and then
compute the barycenter.

1. In a first step we use kernel smoothing to obtain estimators f̂
h1

1 , . . . , f̂
hn
n of f1, . . . ,fn,

where h1, . . . , hn are positive bandwidth parameters, that may be different for each subject
or experimental unit. In this paper we investigate a non-standard choice for the kernel
function, proposed in [PZ16], to analyze the convergence of smoothed empirical barycenter
in W2(Ω). In Section 3 we give a precise definition of the resulting estimators. However,
at this point it is not necessary to go into such details.

2. In a second step, an estimator of ν0 is given by ν̂hn,p
¯
, defined as the measure whose quantile

function is given by

F̂
−
h (α) =

1

n

n∑
i=1

F̂
−
i (α), α ∈ [0, 1], (2.6)

where F̂
−
i denotes the quantile function of the density f̂

hi
i , 1 ≤ i ≤ n. If we denote by ν̂hii

the measure with density f̂
hi
i then, by Proposition 2.1, one has that ν̂hn,p

¯
is also defined as
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the following smoothed empirical Wasserstein barycenter

ν̂hn,p
¯

= arg min
µ∈W2(Ω)

1

n

n∑
i=1

d2
W (ν̂hii , µ). (2.7)

3 Convergence rate for estimators of the population Wasserstein
barycenter

In this section we discuss the rates of convergence of the estimators ν̂n,p
¯

and ν̂hn,p
¯
, that are

respectively characterized by equations (2.4) and (2.7). Some of the results presented below
are using the work in [BL17], on a detailed study of the variety of rates of convergence of an
empirical measure on the real line toward its population counterpart in the Wasserstein metric.
Then, we discuss the optimality of these estimators from the minimax point of view following
the guidelines in nonparametric statistics to derive optimal rates of convergence (see e.g. [Tsy09]
for an introduction to this topic).

3.1 Non-smoothed empirical barycenter in the case of samples of equal size

Let us first characterize the rate of convergence of ν̂n,p, in the specific case where samples of
observations per unit are of equal size, namely when p1 = p2 = . . . = pn = p. In what follows,
we let Y1, . . . , Yp be iid random variables sampled from the population mean measure ν0 (inde-
pendently of the data (Xi,j)1≤i≤n; 1≤j≤p), and we denote by µp = 1

p

∑p
k=1 δYk the corresponding

empirical measure.

Theorem 3.1. If Assumptions 2.1, 2.2 and 2.3 are satisfied and if p1 = p2 = . . . = pn = p,
then the estimator ν̂n,p satisfies

E
[
d2
W (ν̂n,p, ν0)

]
=

1

n
Var(ν) +

1

pn

p∑
j=1

Var
(
Y ∗j
)

+

p∑
j=1

∫ j/p

(j−1)/p

(
E
[
Y ∗j
]
− F−0 (α)

)2
dα,

=
1

n
Var(ν) +

1− n
pn

p∑
j=1

Var
(
Y ∗j
)

+ E
[
d2
W (µp, ν0)

]
, (3.1)

where Y ∗1 ≤ Y ∗2 ≤ . . . ≤ Y ∗p denote the order statistics of the sample Y1, . . . , Yp.

Theorem 3.1 provides exact formulas to compute the rate of convergence (for the expected
squared Wasserstein distance) of ν̂n,p. Formula (3.1) relies on the computation of the variances
of the order statistics of iid variables Y1, . . . , Yp sampled from the population mean measure ν0,
and on the computation of the rate of convergence of E

[
d2
W (µp, ν0)

]
. However, deriving a sharp

rate of convergence for ν̂n,p using inequality (3.1) requires computing the variances of the order
statistics of iid random variables. To the best of our knowledge, obtaining a sharp estimate

for Var
(
Y ∗j

)
for any 1 ≤ j ≤ p remains a difficult task except for specific distributions. For

example, if ν0 is assumed to be a log-concave measure, then it is possible to use the results in
Section 6 in [BL17] which provide sharp bounds on the variances of order statistics for such

10



probability measures. We discuss below some examples where equality (3.1) may be used to
derive a sharp rate of convergence for ν̂n,p.

The case where ν0 is the uniform distribution on [0, 1]. In this setting, it is known (see
e.g. Section 4.2 in [BL17]) that

Var
(
Y ∗j
)

=
j(p− j + 1)

(p+ 1)2(p+ 2)
and thus

p∑
j=1

Var
(
Y ∗j
)

=
p

6(p+ 1)
.

Moreover, from Theorem 4.7 in [BL17], it follows that E
[
d2
W (µp, ν0)

]
= 1

6p . Therefore, thanks
to (3.1) we obtain

E
[
d2
W (ν̂n,p, ν0)

]
=

1

n
Var(ν) +

1− n
6n(p+ 1)

+
1

6p

=
1

n
Var(ν) +

1

6

(
1

n(p+ 1)
+

1

p(p+ 1)

)
. (3.2)

Equality (3.2) thus shows that, when ν0 is the uniform distribution on [0, 1], the rate of conver-
gence of ν̂n,p is given by

E
[
d2
W (ν̂n,p, ν0)

]
� 1

n
+

1

np
+

1

p2
, (3.3)

and this rate is sharp.

Beyond the specific case where ν0 is a uniform distribution, it is in general difficult to compute
E
[
d2
W (µp, ν0)

]
. Nevertheless, thanks to Theorem 4.3 in [BL17], we have the following bounds

1

2p

p∑
j=1

Var
(
Y ∗j
)
≤ E

[
d2
W (µp, ν0)

]
≤ 2

p

p∑
j=1

Var
(
Y ∗j
)
, (3.4)

for any distribution ν0 ∈W2(Ω).

The case where ν0 is the one-sided exponential distribution. Combining inequality (3.4)
with (3.1), it follows that

E
[
d2
W (ν̂n,p, ν0)

]
≤ 1

n
Var(ν) +

1 + n

pn

p∑
j=1

Var
(
Y ∗j
)
. (3.5)

Now (using e.g. Remark 6.13 in [BL17]) one has that if ν0 is the one-sided exponential distribution
(with density e−x, for x ≥ 0) then

p∑
j=1

Var
(
Y ∗j
)

=

p∑
j=1

1

j
∼ log p, as p→∞.

11



Therefore, there exist a constant c > 0 such that

E
[
d2
W (ν̂n,p, ν0)

]
≤ 1

n
Var(ν) + c

(
1 +

1

n

)
log p

p
, (3.6)

for all sufficiently large p. Hence, when ν0 is the exponential distribution the above inequalities

show that the rate of convergence of ν̂n,p is O
(

1
n +

(
1
np + 1

p

)
log p

)
.

The case where ν0 is a Gaussian distribution. By Theorem 4.3 and Corollary 6.14 in
[BL17] there exist constants c1, c2 > 0 such that

c1
log log p

p
≤ 1

p

p∑
j=1

Var
(
Y ∗j
)
≤ c2

log log p

p
. (3.7)

Therefore, combining the above upper bound with (3.5), one finally has that

E
[
d2
W (ν̂n,p, ν0)

]
≤ 1

n
Var(ν) + c2

(
1

n
+ 1

)
log log p

p
. (3.8)

when ν0 is the standard Gaussian. In this setting, the rate of convergence is thusO
(

1
n +

(
1
np + 1

p

)
log log p

)
.

Upper bounds in more general cases. If one is interested in deriving an upper bound on
E
[
d2
W (ν̂n,p, ν0)

]
for a larger class of measures ν0 ∈ W2(Ω) (e.g. beyond the log-concave case),

another approach is as follows. Noting that the term 1−n
pn

∑p
j=1 Var(Y ∗j ) in equality (3.1) is

negative, a straightforward consequence of Theorem 3.1 is the following upper bound

E
[
d2
W (ν̂n,p, ν0)

]
≤ 1

n
Var(ν) + E

[
d2
W (µp, ν0)

]
. (3.9)

Then, thanks to inequality (3.9), to derive the rate of convergence of ν̂n,p, it remains to
control the rate of convergence of the empirical measure µp to ν0 for the expected squared
Wasserstein distance. This issue is discussed in detail in [BL17]. In particular, the work in
[BL17] describes a variety of rates for the expected distance E

[
d2
W (µp, ν0)

]
, from the standard

one O
(

1
p

)
to slower rates. For example, by Theorem 5.1 in [BL17], the following upper bound

holds

E
[
d2
W (µp, ν0)

]
≤ 2

p+ 1
J2(ν0), (3.10)

where, the so-called J2-functional is defined as J2 : W ac
2 (Ω)→ R+ ∪ {∞}, with

J2(ν) =

∫
Ω

Fν(x)(1− Fν(x))

fν(x)
dx, ν ∈W ac

2 (Ω). (3.11)

The J2 functional is shown to be measurable in Proposition A.1 of the Appendix.
Therefore, provided that J2(ν0) is finite, the empirical measure µp converges to ν0 at the

rate O
(

1
p

)
. Hence, using inequality (3.10), we have:

12



Corollary 3.1. Suppose that Assumptions 2.1, 2.2 and 2.3 are satisfied. Then, the estimator
ν̂n,p satisfies

E
[
d2
W (ν̂n,p, ν0)

]
≤ 1

n
Var(ν) +

2

p+ 1
J2(ν0). (3.12)

By Corollary 3.1, if J2(ν0) < ∞, then it follows that ν̂n,p converges to ν0 at the rate

O
(

1
n + 1

p

)
. Hence, in the setting where p ≥ n and J2(ν0) < ∞, ν̂n,p converges at the clas-

sical parametric rate O
(

1
n

)
. The case p ≥ n, usually refereed to as the dense case in the

literature on functional data analysis (see e.g. [LH10] and references therein), corresponds to the
situation where the number of observations per unit/subject is larger than the sample size n of
functional objects. In the sparse case (when p < n), the non-smoothed Wasserstein barycenter

converges at the rate O
(

1
p

)
, if J2(ν0) <∞.

Remark 3.1. When ν0 is the uniform distribution on [0, 1] one has that J2(ν0) < ∞, but we
have shown that E

[
d2
W (ν̂n,p, ν0)

]
� 1

n + 1
np + 1

p2 . Hence, in this setting, ν̂n,p converges at the

parametric rate O
(

1
n

)
provided that p ≥

√
n, which is a dense regime condition weaker than

p ≥ n.

To conclude this discussion on the rate of convergence of the non-smoothed Wasserstein
barycenter in the case of samples of equal size, we study in more detail the control of the rate
of convergence of the term E

[
d2
W (µp, ν0)

]
in inequality (3.9). As pointed out in many works

(see for example [dBGU05, BL17] and the references therein) the finiteness of J2(ν0) is the key
point to control the convergence of the empirical measure µp to the population measure ν0 in
the Wasserstein space. Some known facts concerning this issue are the following.

1. If J2(ν0) < ∞ then ν0 is supported on an interval of R and its density is a.e. strictly
positive on this interval.

2. If ν0 is compactly supported with a density bounded away from zero or with a log-concave
density then J2(ν0) <∞.

3. If the density of ν0 is of the form Cαe
−|x|α then J2(ν0) is finite if and only if α > 2. In

particular, J2(ν0) =∞ for the Gaussian distribution.

Some further comments can be made in the case where ν0 is Gaussian. In this setting,
one has that J2(ν0) = ∞ and the rate of convergence of E

[
d2
W (µp, ν0)

]
to zero is slower than

O
(

1
p

)
. Indeed, from Corollary 6.14 in [BL17], if ν0 is the standard Gaussian, then the rate

of convergence of E
[
d2
W (µp, ν0)

]
is O

(
log log p

p

)
, which leads to the upper bound (3.8) for the

non-smoothed Wasserstein barycenter ν̂n,p in the Gaussian case. Hence, thanks to (3.8), one
has that if p is sufficiently large with respect to n (namely when p ≥ n log log p), then ν̂n,p also
converges at the classical parametric rate O

(
1
n

)
when ν0 is the standard Gaussian distribution.

Remark 3.2. Following the work in [BL17], if ν0 has a log-concave distribution, then one may

obtain rates of convergence for E
[
d2
W (ν̂n,p, ν0)

]
that are slower than the standard O

(
1
p

)
rate

13



(e.g. for beta or exponential distributions). Moreover, it is also possible to considerer for any
q ≥ 1 and for any absolutely continuous probability ν on Ω, the functional

Jq(ν) =

∫
Ω

(Fν(x)(1− Fν(x)))q/2

fν(x)q−1
dx,

in order to control the rate of convergence of the empirical measure to ν for the q-Wasserstein
distance.

3.2 Non-smoothed empirical barycenter in the general case

Let us now consider the general situation where the pi’s are possibly different. The result below
gives an upper bound on the rate of convergence of ν̂n,p

¯
where p

¯
= (p1, . . . , pn).

Theorem 3.2. Suppose that Assumptions 2.1, 2.2 and 2.3 are satisfied. Then

E
[
dW (ν̂n,p

¯
, ν0)

]
≤ n−1/2

√
Var(ν) +

1

n

n∑
i=1

√
E
[
d2
W (ν̃i,νi)

]
,

where ν̃i = 1
pi

∑pi
j=1 δXi,j for each 1 ≤ i ≤ n.

For the random measure ν, we consider the extended random variable J2(ν) (see Proposition
A.1). Since the νi’s are independent copies of ν, by applying inequality (3.10) it follows that√

E
[
d2
W (ν̃i,νi)

]
≤
√

2E [J2(ν)]p
−1/2
i .

Hence, from Theorem 3.2, we finally obtain the following upper bound on the rate of convergence
for the non-smoothed empirical barycenter

Corollary 3.2. Suppose that Assumptions 2.1, 2.2 and 2.3 are satisfied. If J2(ν) has a finite
expectation, then

E
[
dW (ν̂n,p

¯
, ν0)

]
≤ n−1/2

√
Var(ν) +

√
2E [J2(ν)]

(
1

n

n∑
i=1

p
−1/2
i

)
.

From Corollary 3.2, one has that if min1≤i≤n pi ≥ n (dense case), then 1
n

∑n
i=1 p

−1/2
i ≤

n−1/2, and thus, the non-smoothed empirical barycenter converges at the parametric rate n−1/2

(provided that E [J2(ν)] <∞), namely

E
[
dW (ν̂n,p

¯
, ν0)

]
≤
(√

Var(ν) +
√

2E [J2(ν)]
)
n−1/2. (3.13)

Remark 3.3. Knowing if J2(ν) has a finite expectation is in general a difficult task. But, if
we assume that the density f of ν is bounded below by a non-random positive constant then
(obviously) E [J2(ν)] <∞.
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3.3 The case of smoothed empirical barycenters

In this section, we assume that Ω = [0, 1] and we discuss the rate of convergence of smoothed
empirical barycenters ν̂hn,p

¯
(note that the following results hold if Ω is any compact interval).

To choose an appropriate kernel function to study the convergence rate of the estimator ν̂hn,p
¯
,

we follow the proposal made in [PZ16]. We let ψ be a positive, smooth and symmetric density
on the real line, such that

∫
R x

2ψ(x)dx = 1. We also denote by Ψ the cdf of the density ψ and,
for a bandwidth parameter h > 0, we let ψh(x) = 1

hψ
(
x
h

)
. Then, for any y ∈ [0, 1] and h > 0,

we denote by µyh the measure supported on [0, 1] whose density fµyh
is defined as

fµyh
(x) = ψh(x−y)+2b2ψh(x−y)11{x−y>0}+2b1ψh(x−y)11{x−y<0}+4b1b2, x ∈ [0, 1], (3.14)

where b1 = 1 − Ψ ((1− y)/h) and b2 = Ψ (−y/h). Then, for each 1 ≤ i ≤ n, we construct a

kernel density estimator of f i by defining f̂
hi
i as the density associated to the measure

ν̂hii =
1

pi

pi∑
j=1

µ
Xi,j
hi

, (3.15)

where hi > 0 is a bandwidth parameter depending on i. For a discussion on the intuition for
this choice of kernel smoothing, we refer to [PZ16]. A key property to analyze the convergence
rate of ν̂hn,p

¯
is the following lemma which relates the Wasserstein distance between ν̂hii and the

empirical measure ν̃i = 1
pi

∑pi
j=1 δXi,j .

Remark 3.4. The results in [PZ16] strongly depend on the assumption that Ω is compact. To
go beyond this assumption, one should be able to extend (in an appropriate way) the density
fµyh

(x) to a non-compact setting, which we believe to be a difficult task. Nevertheless, it should
be remarked that our results on non-smoothed empirical Wasserstein barycenter hold in the
general case where Ω = R.

Lemma 3.1. Let 1 ≤ i ≤ n. Suppose that 0 < hi ≤ 1/4, then one has the following upper bound

d2
W (ν̂hii , ν̃i) ≤ 3h2

i + 4Ψ(−1/
√
hi), 1 ≤ i ≤ n. (3.16)

Furthermore, if there exist constants C > 0 and α ≥ 5 satisfying

ψ(x) ≤ Cx−α, for all sufficiently large x, (3.17)

then
d2
W (ν̂hii , ν̃i) ≤ Cψh

2
i ,

for hi small enough and some constant Cψ > 0 depending only on ψ.

Proof. The upper bound (3.16) follows immediately from Lemma 1 in [PZ16] and the symmetry
of ψ. Then, by applying inequality (3.17) and since ψ is symmetric, it follows that for h small
enough

Ψ(−1/
√
h) =

∫ −1/
√
h

−∞
ψ(x)dx =

∫ +∞

1/
√
h
ψ(x)dx ≤ C

∫ +∞

1/
√
h
x−αdx =

C

α− 1
h(α−1)/2.
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Hence, the second part of Lemma 3.1 is a consequence of the above inequality, the fact that
α ≥ 5, and the upper bound (3.16), which completes the proof.

The result below gives a rate of convergence for the estimator ν̂hn,p
¯
.

Theorem 3.3. Suppose that Assumptions 2.1, 2.2 and 2.3 are satisfied, and that the density
ψ, used to define kernel smoothing in (3.15), satisfies inequality (3.17). If J2(ν) has a finite
expectation, and the bandwidth parameters hi are small enough, then we have

E
[
dW (ν̂hn,p

¯
, ν0)

]
≤ n−1/2

√
Var(ν) +C

1/2
ψ

(
1

n

n∑
i=1

hi

)
+
√

2E [J2(ν)]

(
1

n

n∑
i=1

p
−1/2
i

)
. (3.18)

Theorem 3.3 can then be used to discuss choices of bandwidth parameters that may lead
to a parametric rate of convergence. For example, if 0 < hi ≤ n−1/2 for all 1 ≤ i ≤ n and
min1≤i≤n pi ≥ n (dense case), then Theorem 3.3 implies that (for sufficiently large n to ensure
that max1≤i≤n{hi} is small enough)

E
[
dW (ν̂hn,p

¯
, ν0)

]
≤
(√

Var(ν) + C
1/2
ψ +

√
2E [J2(ν))

)
n−1/2. (3.19)

Remark 3.5. In the dense case (namely min1≤i≤n pi ≥ n) it can be seen, by comparing the
upper bounds (3.13) and (3.19), that a preliminary smoothing step of the data (namely kernel
smoothing the empirical measures ν̃i = 1

pi

∑pi
j=1 δXi,j ) does not improve the parametric rate

of convergence n−1/2. Moreover, the bandwidth values have to be small to ensure the rate of

convergence n−1/2 for E
[
dW (ν̂hn,p

¯
, ν0)

]
. This result comes from the fact that we evaluate the risk

of empirical barycenters at the level of measures in W2(Ω), and that we do not aim to control
an estimation of the density f0 of the population mean measure ν0.

Remark 3.6. Theorem 3.3 shares similarities with the results from Theorem 2 in [PZ16], which
gives the rate of convergence for smoothed Wasserstein barycenters, computed from the real-
izations of multiple Poisson processes in a deformable model of measures similar to that of this
paper. The main difference in [PZ16] is that the number pi of observations for each experimental
unit are independent Poisson random variables with expectation E(pi) = τn for each 1 ≤ i ≤ n
(they are not deterministic integers). From such observations and under similar assumptions, it
is proved in [PZ16] that the following upper bound holds (in probability)

dW (ν̂hn,p
¯
, ν0) ≤ OP

(
1√
n

)
+OP

(
1

n

n∑
i=1

hi

)
+OP

(
1

4
√
τn

)
. (3.20)

The upper bound (3.20) is very similar to (3.18), proposed in this paper. Both approaches
essentially split the distance dW (ν̂hn,p

¯
, ν0) into three terms:

1. a parametric term of the order
√
n coming from the observation of a sample of size n of

the random measure ν,

2. a term involving kernel smoothing and
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3. a term involving the Wasserstein distance between ν0 and its empirical counterpart µp =
1
p

∑p
k=1 δYk , with Y1, . . . , Yp iid ν0-distributed random variables.

Under the conditions that τn ≥ O(n2) and max1≤i≤n hi ≤ OP
(
n−1/2

)
, it follows from Theorem

2 in [PZ16] that ν̂hn,p
¯

converges at the parametric rate O
(
n−1/2

)
, for the Wasserstein distance.

The quantity τn represents the averaged number of points observed for each Poisson process. As
remarked in [PZ16] the condition τn ≥ O(n2) corresponds to a dense sampling regime where the
number n of observed Poisson processes should not grow too fast with respect to the expected
number of points observed for each process. Comparing the upper bounds (3.18) and (3.20),
the main difference in the control of the risk of ν̂hn,p

¯
between our approach and the one in

[PZ16] is that we use the condition E [J2(ν)] < ∞. Under such an assumption, the smoothed
Wasserstein barycenter (for the model considered in this paper) may be shown to converge at
the rate O

(
n−1/2

)
, for the expected Wasserstein distance, under the dense case setting p :=

min{pi, 1 ≤ i ≤ n} ≥ n which is somehow a weaker condition than E(pi) ≥ n2 for all 1 ≤ i ≤ n,
as in [PZ16]. Therefore, it might be argued that there is a sort of “optimality gap” in [PZ16],
and that the results in this paper are a first step towards closing this gap. But, on the other
hand, the result in [PZ16] is more general because nothing is assumed about the finiteness of
the functional J2. In particular, the upper bound (3.20) given in [PZ16] also holds when J2 is
infinite, which is not the case for the upper bound (3.18) in this paper.

3.4 A lower bound on the minimax risk

In the rest of this section, we show that, in the dense case and for the expected squared Wasser-
stein distance, the rate of convergence O

(
n−1

)
for non-smoothed empirical Wasserstein barycen-

ters is optimal from the minimax point of view over a large class of random measures ν satisfying
the deformable model defined in Section 2.3 through Assumptions 2.1, 2.2 and 2.3.

Definition 3.1. For ν0 ∈W ac
2 (Ω) and σ > 0, we define D(Ω, ν0, σ

2) as the class of W2(Ω)-valued
random measures ν that satisfy the deformable model defined in Section 2.3 with Var(ν) < σ2.

Definition 3.2. Let A > 0. We denote by F(R, A) ⊆ W ac
2 (R) a given set of measures with

variance bounded by A, which contains at least all Gaussian distributions with variance bounded
by A.

Then, by inequality (3.9), we obtain the following corollary giving a uniform rate of conver-
gence for the non-smoothed empirical barycenter in the case of samples of equal size.

Corollary 3.3. Let A > 0 and σ > 0. Suppose that p1 = p2 = . . . = pn = p. Then, if there
exists a constant c0 > 0 such that

sup
ν0∈F(R,A)

E
[
d2
W (µp, ν0)

]
≤ c0

n
, (3.21)

it follows that

sup
ν0∈F(R,A)

sup
ν∈D(R,ν0,σ2)

E
[
d2
W (ν̂n,p, ν0)

]
≤ σ2 + c0

n
. (3.22)
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The condition (3.21) may be interpreted as the generalization of the dense case setting that
has been discussed in the previous sections as it is valid only if p is sufficiently large with respect
to n. As an example, let A ≥ 0 and suppose that the set F(R, A) can be partitioned as

F(R, A) = F0(R, A) ∪ G(R, A),

where F0(R, A) denotes a set of measures ν0 ∈W ac
2 (R) with variance bounded by A satisfying

A0 := sup
ν0∈F0(R,A)

J2(ν0) < +∞,

while G(R, A) denotes the set of Gaussian distributions with variance bounded by A. For this
example, it follows from inequalities (3.4), (3.7) and (3.10) in Section 3.1 (with samples of equal
size) that

sup
ν0∈F(R,A)

E
[
d2
W (µp, ν0)

]
≤ max

(
A0

2

p+ 1
, c2A

log log p

p

)
≤ max(2A0, c2A)

log log p

p
,

provided that log log p ≥ 1, where c2 is a constant from inequality (3.7). Hence, if p is such that
p ≥ n log log p then condition (3.21) is satisfied with

c0 = max(2A0, c2A) = max

(
2 sup
ν0∈F0(R,A)

J2(ν0), c2A

)
.

The following theorem shows that the upper bound (3.22) in Corollary 3.3 is optimal (in
term of rate of convergence) from the minimax point of view in nonparametric statistics.

Theorem 3.4. Let A > 0 and σ > 0. Then the following lower bound holds

inf
ν̂

sup
ν0∈F(R,A)

sup
ν∈D(R,ν0,σ2)

E [dW (ν̂, ν0)] ≥ e−2 min(A1/2, σ)

4
n−1/2, (3.23)

where ν̂ = ν̂ ((Xi,j)1≤i≤n; 1≤j≤pi) denotes any estimator taking values in (W2(R),B (W2(R)))
with ν̂ denoting a measurable function of the data (Xi,j)1≤i≤n; 1≤j≤pi sampled from the deformable
model defined in Section 2.3.

Now, by using inequalities (3.13) and (3.19) and Definitions 3.1 and 3.2 introduced above,
we also obtain the following corollary giving uniform rates of convergence for the non-smoothed
Wasserstein barycenter in the general situation where the p′is are possibly different.

Corollary 3.4. Let A > 0 and σ > 0. Suppose that the assumptions of Corollary 3.2 are
satisfied, and that pi ≥ n, for all 1 ≤ i ≤ n. Then, the following upper bound holds

sup
ν0∈F(R,A)

sup
ν∈D(R,ν0,σ2)

E
[
dW (ν̂n,p

¯
, ν0)

]
≤ n−1/2

(
σ +
√

2 sup
ν0∈F(R,A)

sup
ν∈D(R,ν0,σ2)

√
E [J2(ν)]

)
.
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Hence, under the assumptions made in Corollary 3.4, the estimator ν̂n,p
¯

converges at the

optimal rate of convergence n−1/2 provided that

sup
ν0∈F(R,A)

sup
ν∈D(R,ν0,σ2)

E [J2(ν)] < +∞.

We conclude this discussion by a few remarks on the rate of convergence that may be obtained
in the sparse case.

Remark 3.7. In the case of samples of equal size, the results above show that the rate of conver-
gence n−1 is optimal in the dense case (for the risk E

[
d2
W (ν̂n,p, ν0)

]
), namely when the number

p = p1 = . . . = pn of observations per units is sufficiently large with respect to n. We believe
that deriving a lower bound on the minimax risk depending on p in the sparse case (e.g. when
p < n) is more involved. Indeed, from the discussion in Section 3.1 on the rate of convergence of
the non-smoothed empirical barycenter, it appears that the exact decay of E

[
d2
W (ν̂n,p, ν0)

]
as a

function of p is difficult to establish as it depends on ν0. Indeed, from Section 3.1, one has that

- if ν0 is the uniform distribution on [0, 1], then E
[
d2
W (ν̂n,p, ν0)

]
� 1

n + 1
np + 1

p2 ,

- if ν0 is the one-sided exponential distribution, then E
[
d2
W (ν̂n,p, ν0)

]
= O

(
1
n + log p

(
1
np + 1

p

))
,

- if ν0 is the standard Gaussian distribution, then E
[
d2
W (ν̂n,p, ν0)

]
= O

(
1
n + log log p

(
1
np + 1

p

))
,

- if ν0 is such that J2(ν0) < +∞, then E
[
d2
W (ν̂n,p, ν0)

]
= O

(
1
n + 1

p

)
.

From Theorem 3.1, one has that the risk of the non-smoothed empirical barycenter may be
bounded from below as follows

sup
ν0∈F(R,A)

sup
ν∈D(R,ν0,σ2)

E
[
d2
W (ν̂n,p, ν0)

]
≥ sup

ν0∈F(R,A)

p∑
j=1

∫ j/p

(j−1)/p

(
E
[
Y ∗j
]
− F−0 (α)

)2
dα. (3.24)

The quantity
∑p

j=1

∫ j/p
(j−1)/p

(
E
[
Y ∗j

]
− F−0 (α)

)2
dα may be interpreted as a bias term when esti-

mating the unknown measure by the nonparametric estimator µp = 1
p

∑p
j=1 δYj . Therefore, for

samples of equal size and in the sparse case (when p < n), the lower bound (3.24) may be used
to control (as a function of p) the best rate of convergence for ν̂n,p that may be obtained over
the class of measures ν0 ∈ F(R, A).

Remark 3.8. Finally, we remark that better rates of convergence may be obtained if one assumes
a parametric model for the random measure ν. Indeed, suppose that µ0 ∈ W ac

2 (Ω) denotes a
known probability measure with expectation m0 and variance σ2

0 and consider that the data
(Xi,j)1≤i≤n; 1≤j≤pi are sampled from iid random measures ν1, . . . ,νn satisfying the location
model

F−νi(α) = F−µ0
(α) + ai, α ∈ [0, 1], 1 ≤ i ≤ n, (3.25)

where a1, . . . ,an are iid random variables with unknown expectation ā and variance γ2. In
this model, the population Wasserstein barycenter is the measure ν0 with quantile function
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F−ν0
(·) = F−µ0

(·) + ā. Since, the measure µ0 is assumed to be known, a natural estimator for ν0

is to take the measure ν̂0 with quantile function F−ν̂0
(·) = F−µ0

(·) + â, with

â =
1

n

n∑
i=1

1

pi

pi∑
j=1

Xij −m0.

Then, it is clear that

E
[
d2
W (ν̂0, ν0)

]
=

∫ 1

0
E
(
F−ν̂0

(α)− F−ν0
(α)
)2
dα = E (â− ā)2

=
σ2

0 + γ2

n

(
1

n

n∑
i=1

1

pi

)
+
γ2

n

(
1

n

n∑
i=1

pi − 1

pi

)
.

In the case where all the pi’s are equal to p, then the above equality simplifies to

E
[
d2
W (ν̂0, ν0)

]
=
σ2

0 + γ2

np
+
γ2

n

p− 1

p
,

and thus the parametric estimator ν̂0 converges at the rate O
(

1
n + 1

np

)
. Therefore, either in

the dense (p ≥ n) or sparse case (p < n), the parametric estimator ν̂0 converges at the rate
O
(

1
n

)
in the location model (3.25) when the “reference measure” µ0 is known. Moreover, in

the sparse case (p < n) the parametric estimator ν̂0 converges faster than the non-smoothed
empirical Wasserstein barycenter ν̂n,p, thanks to the results in Section 3.1.

4 Numerical experiments

In this simulation study we perform Monte Carlo experiments to compare the decay of the

squared Wassertein risks E
[
d2
W (ν̂hn,p

¯
, ν0)

]
and E

[
d2
W (ν̂n,p, ν0)

]
, of the smoothed and non-smoothed

empirical Wasserstein barycenters ν̂hn,p
¯

and ν̂n,p, as a function of the number n of units and the
sample size p. The theoretical results in this paper indicate that, in the dense case, both esti-
mators converge at the optimal parametric rate O

(
1
n

)
. However, in the sparse case it remains

unclear if a preliminary smoothing step may improve the quality of estimation of the population
Wasserstein barycenter. The purpose of these numerical experiments is thus to compare the be-
havior of smoothed and non-smoothed empirical Wasserstein barycenters, in these two settings,
and analyze the influence of the number n of measures and the sample size p.

We analyze the case of random samples (Xi,j)1≤i≤n; 1≤j≤p, with 10 ≤ n ≤ 200 and 10 ≤ p ≤
200. Data are generated from densities supported on a compact interval Ω that are sampled
from the following model, accounting for vertical and horizontal variations

f i(x) = a−1
i f

(
a−1
i (x− bi)

)
, x ∈ Ω, 1 ≤ i ≤ n, (4.1)

where f is either the density of the standard Gaussian law (truncated to the interval [−3, 3])
or the uniform density on the interval [0, 1], ai ∼ U([0.8, 1.2]), bi ∼ U([−2, 2]). This setting
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corresponds to the the simulation study conducted in [PM16]. For each choice of f (either the
Gaussian or Uniform case), the interval Ω is taken such that each random function f i has a
compact support included in Ω. Therefore, the population Wasserstein barycenter in model
(4.1) is the measure with density f thanks to the fact that E(bi) = 0 and E(ai) = 1. The
Gaussian case (resp. Uniform case) corresponds to the estimation of a Wasserstein barycenter
having smooth (resp. non-differentiable) density f .

For given values of n and p, we evaluate the Wasserstein risk of ν̂hn,p
¯

by repeating M = 100

times the following experiment. First, data are simulated from model (4.1). Then, for each

1 ≤ i ≤ n, we use kernel smoothing to compute the density f̂
hi
i and its associated measure

ν̂hii . We slightly deviate from the analysis carried out in Section 3, as we use a Gaussian kernel
to smooth the data (Xi,j)1≤j≤p, with bandwidth hi chosen by cross validation, instead of the
specific kernel defined in (3.14), that has been proposed for the convergence analysis of ν̂hn,p

¯
.

We found that this modification has no substantial effect on the finite sample performance of
the procedure, and a similar choice has been made in the numerical experiments in [PZ16]. In
Figure 2(a) (resp. Figure 3(a)) we display an example of densities estimated from realizations of
the model (4.1) with n = p = 100 and f the truncated Gaussian density (resp. f the Uniform
density). After computing the quantile function F−

ν̂hn,p
¯

of the empirical smoothed Wasserstein

barycenter ν̂hn,p
¯
, we approximate d2

W (ν̂hn,p
¯
, ν0) =

∫ 1
0 (F−

ν̂hn,p
¯

(α) − F−ν0
(α))2dα by discretizing the

integral over a fine grid of values for α ∈]0, 1[. This approximated value of d2
W (ν̂hn,p

¯
, ν0) is then

averaged over the M = 100 repeated experiments to approximate E
[
d2
W (ν̂hn,p

¯
, ν0)

]
.

Thanks to the explicit expression (2.5) of the non-smoothed empirical Wasserstein barycenter
ν̂n,p, its quantile function F−ν̂n,p is straightforward to compute on a grid of values for α, and the

Wasserstein risk E
(
d2
W (ν̂n,p, ν0)

)
is then approximated in the same way by using Monte Carlo

repetitions.
For values of n and p ranging from 10 to 200, we display in Figure 2(c) and 2(d) (resp. Figure

3(c) and 3(d)) these approximations of E
[
d2
W (ν̂hn,p

¯
, ν0)

]
and E

[
d2
W (ν̂n,p, ν0)

]
(in logarithmic

scale) for f the truncated Gaussian density (resp. f the Uniform density). For both estimators,
it appears that the Wasserstein risk is clearly a decreasing function of the number n of units.
To the contrary, increasing p does not lead to a significant decay of this risk. This suggest that
1
n Var(ν) is the most significant term in the upper bound (3.12) of the Wasserstein risk of ν̂n,p.

In Figure 2(b) and Figure 3(b), we also display the logarithm of the ratio

E
[
d2
W (ν̂n,p, ν0)

]
/E
[
d2
W (ν̂hn,p

¯
, ν0)

]
.

It can be observed that:

- When the population Wasserstein barycenter has a smooth density f (Gaussian case) then,
for values of p larger than 100, both estimators (smoothed and non-smoothed empirical
Wasserstein barycenters) appear to have squared Wasserstein risks of approximately the
same magnitude. This tends to confirm the results on convergence rates obtained in Section
3, in the dense case (when p is sufficiently large with respect to n), which show that a
preliminary smoothing is not necessary in this setting. For smaller values of p (between
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10 and 50), the smoothed empirical Wasserstein barycenter has a smaller Wasserstein risk.
This suggests that introducing a smoothing step through kernel smoothing of the data, in
each experimental unit, may improve the quality of the estimation of ν0, when the sample
size p is small (which corresponds to the sparse case), in the setting where the population
Wasserstein barycenter is a distribution with a smooth density. In this example, Gaussian
kernel smoothing is particularly well suited, which may explain the better performances
obtained with a smoothed empirical Wasserstein barycenter in the sparse case.

- When the population Wasserstein barycenter has a non-smooth density f (Uniform case)
then, except for very small values of p ≤ 10, the non-smoothed empirical Wasserstein
barycenter has always a lower squared Wasserstein risk, both in the sparse and dense
cases. A preliminary smoothing with a Gaussian kernel does not improve the estimation
of a Wasserstein barycenter having piecewise constant density and, in this setting, such a
step is thus not necessary.

5 Conclusion and perspectives

In this paper we have studied the rate of convergence for the (squared) Wasserstein distance
of (possibly smoothed) empirical barycenters in a deformable model of measures. The main
contributions of this work can be summarized as follows. In the case of samples of equal size,
we have derived a closed-form expression for the risk of non-smooth empirical barycenter, as a
function of n and p, which allows to derive sharp rates of convergence whose decay in p depends
on the population mean measure ν0. A second conclusion of the paper is that, in the dense
case (when the minimal number min1≤i≤n pi ≥ n of observations per unit is sufficiently large
with respect to the number n of observed measures), the non-smoothed empirical barycenter
converges at the parametric rate of convergence n−1. Moreover, this rate is shown to be a lower
bound on the decay of a novel notion of minimax risk, in the deformable model of measures
introduced in this paper. In the dense case, the numerical experiments that have been carried
out are in agreement with the theoretical results which show that, in this setting, one may only
consider the non-smoothed empirical Wasserstein barycenter and that a preliminary smoothing
step is not necessary to obtain an optimal estimator.

A first perspective would be to find a lower bound on the minimax risk depending on p in
the sparse case. However, to this end, we believe that one has to first obtain sharper rates of
convergence as a function of p, for the non-smoothed empirical barycenter.

Finally, a natural perspective is to ask how these results can be extended to higher dimen-
sional settings for measures supported on Rd, with d > 1. However, we believe that this is
far from being obvious as the results in this paper rely heavily on the closed-form formula of
Wasserstein barycenters, in the one-dimensional setting though quantile averaging. Such results
do not hold in higher-dimension, for data sets consisting of iid random vectors, sampled from
unknown random measures supported on R2 or R3, for example.
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Figure 2: Gaussian case - (a) An example of n = 100 densities estimated from
data sampled from model (4.1) with the choice of a standard Gaussian density
f truncated to the interval [−3, 3] and n = p = 100, (b) Logarithm of the ra-

tio E(d2
W (ν̂n,p, ν0))/E

[
d2
W (ν̂h

n,p
¯
, ν0)

]
, (c) Wasserstein risk of the smoothed empirical

barycenter ν̂h
n,p

¯
with kernel bandwidths chosen by cross-validation, (c) Wasserstein risk

of the non-smoothed empirical barycenter ν̂n,p. The values of n and p vary from 10 to
200 by an increment of 10.
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Figure 3: Uniform case - (a) An example of n = 100 densities estimated from data
sampled from model (4.1) with the choice of a uniform density f on the interval [0, 1]

and n = p = 100 , (b) Logarithm of the ratio E(d2
W (ν̂n,p, ν0))/E

[
d2
W (ν̂h

n,p
¯
, ν0)

]
, (c)

Wasserstein risk of the smoothed empirical barycenter ν̂h
n,p

¯
with kernel bandwidths cho-

sen by cross-validation, (c) Wasserstein risk of the non-smoothed empirical barycenter
ν̂n,p. The values of n and p vary from 10 to 200 by an increment of 10.
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A Appendix

A.1 Auxiliary results

We recall that Y1, . . . , Yp denote iid random variables sampled from the measure ν0 (indepen-
dently of the data), and that the associated empirical measure is µp = 1

p

∑p
j=1 δYj . By Corollary

4.5 in [BL17], it follows that

E
[
d2
W (µp, ν0)

]
=

1

p

p∑
j=1

Var
(
Y ∗j
)

+

p∑
j=1

∫ j/p

(j−1)/p

(
E
[
Y ∗j
]
− F−0 (α)

)2
dα, (A.1)

where Y ∗1 ≤ Y ∗2 ≤ . . . ≤ Y ∗p denote the order statistics of the sample Y1, . . . , Yp.
It is well known that the j-th order statistic Y ∗j admits the density (see e.g. [BL17])

fY ∗
j

(y) =
p!

(j − 1)!(p− j)!
f0(y)[F0(y)]j−1[1− F0(y)]p−j , y ∈ Ω. (A.2)

Moreover, under Assumption 2.2, one has, conditionally on F i, that the j-th order statistic X∗i,j
admits the density

fX∗
i,j

(x) =
p!

(j − 1)!(p− j)!
f i(x)[F i(x)]j−1[1− F i(x)]p−j , x ∈ Ω. (A.3)

Let us recall the notation X̄∗j = 1
n

∑n
i=1X

∗
i,j . Then the following result holds.

Lemma A.1. If Assumptions 2.1, 2.2 and 2.3 are satisfied, then, for each 1 ≤ j ≤ p, one has

E
[
X̄∗j
]

= E
[
Y ∗j
]
.

Moreover,

1

p

p∑
j=1

Var
(
X̄∗j
)
−Var

(
Y ∗j
)

=
1

n
Var(ν) +

1− n
pn

p∑
j=1

Var
(
Y ∗j
)
.

Proof. Let 1 ≤ j ≤ p and 1 ≤ i ≤ n. Thanks to the expression (A.3) for the density of X∗i,j , one
has that

E
[
X∗i,j |F i

]
=

∫
Ω
x

p!

(j − 1)!(p− j)!
f i(x)[F i(x)]j−1[1− F i(x)]p−jdx

=

∫ 1

0
F−i (α)

p!

(j − 1)!(p− j)!
αj−1(1− α)p−jdα,

where we used the change of variable α = F i(x) to obtain the last equality. By Proposition 2.1,

25



E
[
F−i
]

= F−0 (α) for each 1 ≤ i ≤ n. Therefore, using Fubini’s theorem, it follows that

E
[
X∗i,j

]
= E

[
E
[
X∗i,j |F i

]]
= E

[∫ 1

0
F−i (α)

p!

(j − 1)!(p− j)!
αj−1(1− α)p−jdα

]
=

∫ 1

0
E
[
F−i (α)

] p!

(j − 1)!(p− j)!
αj−1(1− α)p−jdα

=

∫ 1

0
F−0 (α)

p!

(j − 1)!(p− j)!
αj−1(1− α)p−jdα

=

∫
Ω
y

p!

(j − 1)!(p− j)!
f0(y)[F0(y)]j−1[1− F0(y)]p−jdy = E

[
Y ∗j
]
, (A.4)

where we used the change of variable y = F−0 (α) and (A.2) to obtain the last equality above.

Given that E
[
X̄∗j

]
= 1

n

∑n
i=1 E

[
X∗i,j

]
, the first statement of Lemma A.1 follows from equality

(A.4).
Now, let us prove the second statement of Lemma A.1. Thanks to formula (A.3) for the

density of X∗i,j , one has that, for each 1 ≤ j ≤ p and 1 ≤ i ≤ n,

E
[
|X∗i,j |2

]
= E

[
E
[
|X∗i,j |2|F i

]]
= E

[∫
Ω
x2 p!

(j − 1)!(p− j)!
f i(x)[F i(x)]j−1[1− F i(x)]p−jdx

]
=

∫ 1

0
E
[∣∣F−i (α)

∣∣2] p!

(j − 1)!(p− j)!
αj−1(1− α)p−jdα, (A.5)

where, again, we use the change of variable α = F i(x), and Fubini’s theorem to obtain the last
equality. Similarly, from (A.2) it follows that, for each 1 ≤ j ≤ p,

E
[
|Y ∗j |2

]
=

∫
Ω
y2 p!

(j − 1)!(p− j)!
f0(y)[F0(y)]j−1[1− F0(y)]p−jdy

=

∫ 1

0

∣∣F−0 (α)
∣∣2 p!

(j − 1)!(p− j)!
αj−1(1− α)p−jdα. (A.6)

Since X̄∗j = 1
n

∑n
i=1X

∗
i,j , we obtain by independence that

Var
(
X̄∗j
)

=
1

n2

n∑
i=1

Var
(
X∗i,j

)
=

1

n2

n∑
i=1

E
[
|X∗i,j |2

]
−
∣∣E [X∗ij]∣∣2 .

Hence, using equalities (A.4), (A.5) and (A.6), and the fact that E
[∣∣F−i (α)

∣∣2] = E
[∣∣F−(α)

∣∣2]
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for each 1 ≤ i ≤ n, we obtain

Var
(
X̄∗j
)

=
1

n

(∫ 1

0
E
[∣∣F−(α)

∣∣2] p!

(j − 1)!(p− j)!
αj−1(1− α)p−jdα−

∣∣E [Y ∗j ]∣∣2)
=

1

n

(∫ 1

0
E
[∣∣F−(α)

∣∣2] p!

(j − 1)!(p− j)!
αj−1(1− α)p−jdα+ Var

(
Y ∗j
)
− E

[
|Y ∗j |2

])
=

1

n

(∫ 1

0

(
E
[∣∣F−(α)

∣∣2]− ∣∣F−0 (α)
∣∣2) p!

(j − 1)!(p− j)!
αj−1(1− α)p−jdα+ Var

(
Y ∗j
))

=
1

n

(∫ 1

0
Var

(
F−(α)

) p!

(j − 1)!(p− j)!
αj−1(1− α)p−jdα+ Var

(
Y ∗j
))

,

where, for the last inequalities, we used that E
[
F−
]

= F−0 by Proposition 2.1. Therefore, from
the above equality, one finally obtains

1

p

p∑
j=1

Var
(
X̄∗j
)
−Var

(
Y ∗j
)

=
1

n
Var(ν) +

1− n
pn

p∑
j=1

Var
(
Y ∗j
)
,

which completes the proof of Lemma A.1.

A.2 Proof of Theorem 3.1

By Definition 2.1 of the Wasserstein distance, and since ν̂n,p = 1
p

∑p
j=1 δX̄∗

j
, it follows by using

Fubini’s theorem that

E
[
d2
W (ν̂n,p, ν0)

]
= E

[∫ 1

0

(
F−ν̂n,p(α)− F−0 (α)

)2
dα

]

= E

 p∑
j=1

∫ j/p

(j−1)/p

(
X̄∗j − F−0 (α)

)2
dα


=

p∑
j=1

∫ j/p

(j−1)/p
E
[
X̄∗j − F−0 (α)

]2
dα

=

p∑
j=1

∫ j/p

(j−1)/p
E
[
X̄∗j − E

[
X̄∗j
]]2

+
(
E
[
X̄∗j
]
− F−0 (α)

)2
dα

=
1

p

p∑
j=1

Var
(
X̄∗j
)

+

p∑
j=1

∫ j/p

(j−1)/p

(
E
[
X̄∗j
]
− F−0 (α)

)2
dα. (A.7)
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From Lemma A.1, one has that E
[
X̄∗j

]
= E

[
Y ∗j

]
. Therefore, by combining (A.7) with (A.1),

we obtain

E
[
d2
W (ν̂n,p, ν0)

]
=

1

p

p∑
j=1

Var
(
X̄∗j
)

+

p∑
j=1

∫ j/p

(j−1)/p

(
E
[
Y ∗j
]
− F−0 (α)

)2
dα

=
1

p

p∑
j=1

(
Var

(
X̄∗j
)
−Var

(
Y ∗j
))

+ E
[
d2
W (µp, ν0)

]
=

1

n
Var(ν) +

1− n
pn

p∑
j=1

Var
(
Y ∗j
)

+ E
[
d2
W (µp, ν0)

]
(A.8)

=
1

n
Var(ν) +

1

pn

p∑
j=1

Var
(
Y ∗j
)

+

p∑
j=1

∫ j/p

(j−1)/p

(
E
[
Y ∗j
]
− F−0 (α)

)2
dα,

where the last equalities also follow from Lemma A.1 and (A.1), which completes the proof of
Theorem 3.1.

A.3 Proof of Theorem 3.2

We recall that ν⊕n denotes the measure with quantile function given by equation (2.1). By the
triangle inequality, we have that

dW (ν̂n,p
¯
, ν0) ≤ dW (ν̂n,p

¯
,ν⊕n ) + dW (ν⊕n , ν0). (A.9)

Thanks to Definition 2.1 of the Wasserstein distance, it follows by Fubini’s theorem that

E
[
d2
W (ν⊕n , ν0)

]
=

∫ 1

0
E
[
F̄
−
n (α)− F−0 (α)

]2
dα =

∫ 1

0
E

[
1

n

n∑
i=1

F−i (α)− F−0 (α)

]2

dα.

By Assumption 2.3, one has that E
[
F−i (α)

]
= F−0 (α) for any 1 ≤ i ≤ n, and thus, by indepen-

dence of the random variables F−i (α), one obtains

E
[
d2
W (ν⊕n , ν0)

]
=

1

n
Var(ν). (A.10)

Hence, by (A.10) and the inequality E [dW (ν⊕n , ν0)] ≤
√
E
[
d2
W (ν⊕n , ν0)

]
, one obtains

E
[
dW (ν⊕n , ν0)

]
≤ n−1/2

√
Var(ν). (A.11)

Now, let us remark that

dW (ν̂n,p
¯
,ν⊕n ) =

∥∥∥∥∥ 1

n

n∑
i=1

F−ν̃i −
1

n

n∑
i=1

F−i

∥∥∥∥∥ ≤ 1

n

n∑
i=1

∥∥∥F−ν̃i − F−i ∥∥∥ ,
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where F−ν̃i denotes the quantile function of the measure ν̃i = 1
pi

∑pi
j=1 δXi,j for each 1 ≤ i ≤ n,

and ‖ · ‖ denotes the usual norm in L2([0, 1], dx). Hence, the above inequality leads to the
following upper bound

E
[
dW (ν̂n,p

¯
,ν⊕n )

]
≤ 1

n

n∑
i=1

√
E
[
d2
W (ν̃i,νi)

]
. (A.12)

Therefore, Theorem 3.2 follows from inequality (A.9) combined with (A.11) and (A.12), which
completes its proof.

A.4 Proof of Theorem 3.3

The proof follows the same lines as the proof of Theorem 3.2. By the triangle inequality, we
have that

dW (ν̂hn,p
¯
, ν0) ≤ dW (ν̂hn,p

¯
,ν⊕n ) + dW (ν⊕n , ν0), (A.13)

where ν⊕n is the measure with quantile function given by equation (2.1). The expectation of the
second term in the right-hand size of inequality (A.13) is controlled by inequality (A.11). Then,
to control the first term, it suffices to remark that

dW (ν̂hn,p
¯
,ν⊕n ) =

∥∥∥∥∥ 1

n

n∑
i=1

F−
ν̂
hi
i

− 1

n

n∑
i=1

F−i

∥∥∥∥∥ ,
where F−

ν̂
hi
i

denotes the quantile function of the measure ν̂hii defined in (3.15), and ‖ · ‖ denotes

the usual norm in L2([0, 1], dx). Therefore, one has that

dW (ν̂hn,p
¯
,ν⊕n ) ≤ 1

n

n∑
i=1

∥∥∥∥F−ν̂hii − F−i
∥∥∥∥

=
1

n

n∑
i=1

dW (ν̂hii ,νi) ≤
1

n

n∑
i=1

dW (ν̂hii , ν̃i) +
1

n

n∑
i=1

dW (ν̃i,νi),

where ν̃i = 1
pi

∑pi
j=1 δXi,j for each 1 ≤ i ≤ n. Hence, the above inequalities lead to the following

upper bound

E
[
dW (ν̂hn,p

¯
,ν⊕n )

]
≤ 1

n

n∑
i=1

√
E
[
d2
W (ν̂hii , ν̃i)

]
+

1

n

n∑
i=1

√
E
[
d2
W (ν̃i,νi)

]
.

Finally, by applying Lemma 3.1 and inequality (3.10), we obtain that

E
[
dW (ν̂hn,p

¯
,ν⊕n )

]
≤ C1/2

ψ

(
1

n

n∑
i=1

hi

)
+
√

2E [J2(ν)]

(
1

n

n∑
i=1

p
−1/2
i

)
. (A.14)

Therefore, Theorem 3.3 follows from inequality (A.13) combined with (A.11) and (A.14), which
completes the proof.
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A.5 Proof of Theorem 3.4

Let A > 0 and σ > 0. To derive Theorem 3.4, we follow the classical scheme in nonparametric
statistics to obtain optimal rates of convergence (see Chapter 2 in [Tsy09]). To this end we
introduce appropriate random measures in W2(Ω), satisfying the deformable model defined in
Section 2.3, that will serve as the basic hypotheses to obtain a lower bound.

Let m(1) and m(2) be two real numbers such that

|m(1) −m(2)| = 2Cn−1/2, (A.15)

where C is a positive constant to be specified later on. For k = 1, 2, we let a(k) be independent
Gaussian random variables with E

[
a(k)

]
= m(k) and Var(a(k)) = γ2 with γ = min(A1/2, σ). We

also let H(k) denote the hypothesis that the data are sampled according the following deformable
model:

X
(k)
i,j = a

(k)
i + Z

(k)
i,j , 1 ≤ i ≤ n, 1 ≤ j ≤ pi, (A.16)

where a
(k)
1 , . . . ,a

(k)
n are independent copies of a(k), and the Z

(k)
i,j ’s are iid random variables

sampled from the Gaussian distribution with zero mean and variance γ2, that are independent

of the a
(k)
i ’s. If we let X

(k)
i be the random vector in Rpi whose component are the random

variables (X
(k)
i,j )1≤j≤pi , then the deformable model (A.16) corresponds to the assumption that

X
(k)
1 , . . . ,X

(k)
n are independent random vectors, such that X

(k)
i is a Gaussian vector with

E
[
X

(k)
i

]
= m(k)ei and Var

(
X

(k)
i

)
= γ2

(
eie

t
i + Ii

)
, (A.17)

where ei is the vector in Rpi with all entries equal to one, the notation Var (X) denotes the
covariance matrix of a random vector X, and Ii is the identity pi×pi matrix. For each k = 1, 2,

if we denote by ν
(k)
i the measure from which (X

(k)
i,j )1≤j≤pi are sampled, it follows, from model

(A.16), that ν
(k)
1 , . . . ,ν

(k)
n are independent copies of the random measure ν(k) with density

1
γφ0

(
x−a(k)

γ

)
, x ∈ R, where φ0 is the density of the standard Gaussian distribution. It can be

easily checked that the barycenter ν
(k)
0 in W2(R) of the random measure ν(k) is the Gaussian

distribution with mean m(k) and variance γ2, and that

dW (ν
(1)
0 , ν

(2)
0 ) = |m(1) −m(2)| = 2Cn−1/2. (A.18)

Hence, ν
(k)
0 belongs to the class of distributions F(R, A) introduced in Definition 3.2, for k = 1, 2.

Moreover, since F−
ν(k)(α) = Φ−0 (α) + a(k), t ∈ [0, 1], where Φ−0 is the quantile function of the

standard Gaussian distribution, it follows that

Var(ν(k)) =

∫ 1

0
Var

(
a(k)

)
dα = γ2 ≤ σ2.

Therefore, the random measure ν(k) belongs to the class of distributionsD(R, ν(k)
0 , σ2) introduced

in Definition 3.1, for k = 1, 2.
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Then, for k = 1, 2, we let P(k) be the probability measure of the data in model (A.16) under
the hypothesis H(k). From our remark above, one has that P(k) is the product of n Gaussian

measures P(k)
i on Rpi with mean and covariance given by (A.17) for 1 ≤ i ≤ n. Hence, the

Kullback divergence K
(
P(1),P(2)

)
between P(1) and P(2) can be decomposed as follows

K
(
P(1),P(2)

)
=

n∑
i=1

K
(
P(1)
i ,P(2)

i

)
=

1

2γ2
|m(1) −m(2)|2

n∑
i=1

eti
(
eie

t
i + Ii

)−1
ei

=
1

2γ2
|m(1) −m(2)|2

n∑
i=1

pi
pi + 1

≤ n

2γ2
|m(1) −m(2)|2

≤ 2C2 max(A−1, σ−2), (A.19)

where the last inequality follows from (A.15) and the fact that γ2 = min(A, σ2).
To conclude the proof, we finally follow the arguments from Section 2.2 in [Tsy09] on a

reduction scheme to a finite number M of hypotheses (here M = 2). First, thanks to Markov’s
inequality, one has that

inf
ν̂

sup
ν0∈F(R,A)

sup
ν∈D(R,ν0,σ2)

E
[
n1/2dW (ν̂, ν0)

]
≥ C inf

ν̂
sup

ν0∈F(R,A)
sup

ν∈D(R,ν0,σ2)

P
(
dW (ν̂, ν0) ≥ Cn−1/2

)
,

and thus, the following lower bound holds

inf
ν̂

sup
ν0∈F(R,A)

sup
ν∈D(R,ν0,σ2)

E
[
n1/2dW (ν̂, ν0)

]
≥ C inf

ν̂
max
k∈{1,2}

P(k)
(
dW (ν̂, ν

(k)
0 ) ≥ Cn−1/2

)
, (A.20)

where P(k) denotes the probability measure of the data in model (A.16) under the hypothesis
H(k) for k = 1, 2. Now, thanks to equality (A.18), the two hypotheses H(1) and H(2) are 2s-
separated in the sense of condition (2.7) in [Tsy09] (with s = Cn−1/2). Hence, by inequality
(2.9) in [Tsy09], one has that

inf
ν̂

max
k∈{1,2}

P(k)
(
dW (ν̂, ν

(k)
0 ) ≥ Cn−1/2

)
≥ pe,1, (A.21)

where pe,1 is defined by equation (2.10) in [Tsy09]. Then, by the upper bound (A.19) on the
Kullback divergence between P(1) and P(2), we can combine the Kullback version of Theorem
2.2 in [Tsy09] with inequalities (A.20) and (A.21) to obtain that

inf
ν̂

sup
ν0∈F(R,A)

sup
ν∈D(R,ν0,σ2)

E
[
n1/2dW (ν̂, ν0)

]
≥ Cpe,1 ≥ C max

(
1

4
exp(−α),

1−
√
α/2

2

)
,

with α = 2C2 max(A−1, σ−2). Therefore, taking C = min(A1/2, σ) completes the proof of
Theorem 3.4.
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A.6 Measurability of J2

Let µ be an absolutely continuous measure on R and let I ⊂ R be a (possibly unbounded)
interval. We denote by L2

µ(I) the space of µ-square-integrable functions from I to R and by
Hµ(I) the Sobolev space of functions u in L2

µ(I) having µ-square-integrable weak derivative Du.
Finally, for u ∈ L2

µ(I), we define

Dhu(y) :=
1

h
(u(y + h)− u(y)), (A.22)

for y ∈ I, h ∈ R, such that y + h ∈ I.

Lemma A.2. Hµ((0, 1)) is a Borel subset of L2
µ((0, 1)).

Proof. For k ∈ N, ε ∈ (0, 1
2) and |h| < ε, let us define

Bk,ε,h := {u ∈ L2
µ((0, 1)) : ‖Dhu(y))‖L2

µ([ε,1−ε]) ≤ k}.

It is easy to see that Bk,ε,h is closed in L2
µ((0, 1)). Moreover, from Lemmas 9.48 and 9.49 in

[RR93],

Hµ((0, 1)) =
⋃
k∈N

⋂
ε< 1

2

⋂
|h|<ε

Bk,ε,h. (A.23)

Therefore Hµ((0, 1)) is a countable union of closed sets in L2
µ((0, 1)), which concludes the proof.

Lemma A.3. Let u ∈ Hµ(R). Then limh→0D
hu = Du in the L2

µ(R) convergence.

Proof. See the first exercise of Chapter 7 in [RR93].

Lemma A.4. The operator K2 : Hµ(I) → R+, defined by K2(u) := ‖Du‖L2
µ(I), is measurable

with respect to the Borel σ-algebra in L2
µ(I).

Proof. Let us first show the result for I = R. To that end we define Kh
2 : Hµ(R) → R+ as

Kh
2 (u) = ‖Dhu‖L2

µ(R). It is clear that Kh
2 is continuous and, moreover, from Lemma A.3,

lim
h→0

Kh
2 (u) = K2(u), (A.24)

for all u ∈ Hµ(R), and so K2 is measurable.
Now, for proving the general case note that K2(u) = ‖Du‖L2

µ(I) = ‖DTu‖L2
µ(R), where

T : L2
µ(I) → L2

µ(R) maps u to its extension by 0 outside I. As T is an isometry (hence
measurable) we obtain the result.

Proposition A.1. J2 : W ac
2 (Ω)→ R+ ∪ {∞} is measurable.
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Proof. Let ν ∈W ac
2 (Ω). Observe that (3.11) is equivalent to

J2(ν) =

∫
{x : 0<Fν(x)<1}

Fν(x)(1− Fν(x))

fν(x)
dx. (A.25)

From Corollary A.22 in [BL17], if F−ν is absolutely continuous then

J2(ν) =

∫ 1

0
y(1− y)(DF−ν (y))2dy. (A.26)

Also, from Proposition A.17 in [BL17], F−ν is absolutely continuous if and only if fν is almost
everywhere positive on the interval {x : 0 < Fν(x) < 1}. Therefore, from (A.25) and (A.26),

J2(ν) =

{
‖DF−ν ‖L2

µ((0,1)) = K2(F−ν ), if F−ν ∈ Hµ((0, 1))

∞, if not.
(A.27)

where K2 is defined in Lemma A.4 and µ is the measure having density fµ(y) = y(1 − y),
y ∈ (0, 1). Finally, recall from the proof of Proposition 2.1, that the map ν ∈ W2(Ω) → F−ν ∈
L2(0, 1) is measurable. This measurability can be easily extended from L2(0, 1) to L2

µ(0, 1), since
fµ is bounded. Then, the result follows from Lemma A.2, Lemma A.4 and (A.27).
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