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CRYPTOGRAPHY BASED CHAOS VIA GEOMETRIC 
UNDERSAMPLING OF RING-COUPLED ATTRACTORS 

 

RENÉ LOZI 1 

 

Abstract. We propose a new mechanism for undersampling chaotic numbers obtained by the ring 
coupling of one-dimensional maps. In the case of 2 coupled maps this mechanism allows the 
building of a PRNG which passes all NIST Test. 
This new geometric undersampling is very effective for generating 2 parallel streams of pseudo-
random numbers, as we show, computing carefully their properties, up to sequences of 1012 
consecutives iterates of the ring coupled mapping which provides more than 3.35 x 1010 random 
numbers in very short time. Both 3 and 4 dimension cases can be managed in the same way. 

In addition we recall a novel method of noise-resisting ciphering. The originality lies in the use of 
a chaotic pseudo-random number generator: several co-generated sequences can be used at different 
steps of the ciphering process, since they present the strong property of being uncorrelated. Each 
letter of the initial alphabet of the plain text is encoded as a subinterval of [-1,1]. The bounds of 
each interval are defined in function of the known bound of the additive noise. A pseudo-random 
sequence is used to enhance the complexity of the ciphering. The transmission consists of a 
substitution technique inside a chaotic carrier, depending on another cogenerated sequence. This 
novel noise-resisting ciphering method can be used with geometric undersampling when 4 
mappings are coupled. 
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INTRODUCTION 

During the last decade, it has been emphasized that the undersampling of sequence of 
chaotic numbers is an efficient tool in order to build pseudo-random number generators 
(PRNG) [15]. Randomness appears to be an emergent property of complex systems of 
coupled chaotic maps [16]. Several kinds of coupling can be considered as ultra-weak 
coupling or ring coupling, … [17]. An ultra-weak coupling recovers chaotic properties of 1-
dimensional maps [12, 13] when computed with floating numbers or double precision 
numbers. Chaotic undersampling with thresholds based on one component of the coupled 
system adds random properties to the chaotic sequences. Double threshold sampled sequence 
(i.e., using both thresholds of different nature) improves such random properties [14]. Ring 
coupling deals when p 1-dimensional maps are constrained on a torus [5, 26], this coupling 
can directly provide random numbers, without sampling or mixing, provided the number p of 
maps is large enough, although it is possible to combine these processes with it. However in 
lower dimension 2 and 3, the chaotic numbers are not equidistributed on the torus. Therefore 
we introduce a particular “geometric” undersampling based on the property of piecewise 
linearity of the invariant measure of the system of p 1-dimensional ring coupled maps. This 
new geometric undersampling is very effective for generating parallel streams of pseudo-
random numbers with a very compact mapping. 

Several applications in various fields (chaotic optimization, evolutionary algorithms, secure 
information transmission, chaotic cryptography, …) of such under-sampling process can be 
found. In this article we focus on the last ones. 

- As a first example we propose a novel noise-resisting ciphering based on a large number 
of uncorrelated chaotic sequences. These cogenerated sequences are actually used in several 
steps of the ciphering process. Noisy transmission conditions are considered, with realistic 
assumptions. The efficiency of the proposed method for ciphering and deciphering is 
illustrated through numerical simulations based on ten coupled chaotic sequences [4]. 

- A second one is the use of such sequences in a chaotic encryption algorithm [27]. 
In Section 1 we briefly recall properties of chaotic mappings, when used alone or ultra-

weakly coupled. Section 2 describes the route from chaos to randomness via chaotic 
undersampling, discovered during the last decade. In Section 3, we introduce geometric 
undersampling in the scope of ring coupled mapping. In Section 4, we propose in addition, a 
novel method of noise-resisting ciphering. The originality lies in the use of a chaotic pseudo-
random number generator: several co-generated sequences can be used at different steps of 
the ciphering process, since they present the strong property of being uncorrelated. This novel 
noise-resisting ciphering method can be used with geometric undersampling when 4 
mappings are coupled.  

 

1. RECOVERING CHAOTIC PROPERTIES OF NUMERICALLY COMPUTED CHAOTIC 

NUMBERS 

1.1. Numerical approximation of chaotic numbers 

Chaos theory studies the behavior of dynamical systems that are highly sensitive to initial 
conditions, an effect which is popularly referred to as the butterfly effect. Small differences in 
initial conditions (such as those due to rounding errors in numerical computation) yield 
widely diverging outcomes for chaotic systems, rendering long-term prediction impossible in 
general. This happens even though these systems are deterministic, meaning that their future 
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behavior is fully determined by their initial conditions, with no random elements involved. In 
other words, the deterministic nature of these systems does not make them predictable. The 
first example of such chaotic continuous system in the dissipative case was pointed out by the 
meteorologist E. Lorenz in 1963 [11]. 

In order to study numerically the properties of the Lorenz attractor, M. Hénon an 
astronomer of the observatory of Nice, France, introduced in 1976 a simplified model of the 
Poincaré map of this attractor [9]. The Lorenz attractor being imbedded in dimension 3, the 

corresponding Poincaré map is a mapping from the plane ℝ² into ℝ². Hence the Hénon 
mapping is also defined in dimension 2 and is associated to the dynamical system 

2
1

1

1n n n

n n

x y ax

y bx
+

+

 = + −
 =

,  (1) 

which has been extensively studied since thirty six years. 
More simple dynamical systems in dimension one, on the interval [ ]1,1J = − ⊂ℝ  into itself 

1n a nx f ( x )+ = ,  (2) 

corresponding to the logistic map 
21a af L ( x ) ax≡ = − ,  (3) 

or the symmetric tent map  

1a af T ( x ) a x≡ = − ,  (4) 

have also been fully explored in the hope of generating random numbers easily [24]. However 
when a dynamical system is realized on a computer using floating point or double precision 
numbers, the computation is of a discretization, where finite machine arithmetic replaces 
continuum state space. For chaotic dynamical systems in small dimension, the discretization 
often has collapsing effects to a fixed point or to short cycles [6]. 

It seems that the computation of numerical approximations of the periodic orbits leads to 
unpredictable and somewhat enigmatic results. As says O. E. Lanford III [10] “The reason is 
that because of the expansivity of the mapping the growth of roundoff error normally means 
that the computed orbit will remain near the true orbit with the chosen initial condition only 
for a relatively small number of steps typically of the order of the number of bits of precision 
with which the calculation is done. It is true that the above mapping like many ‘chaotic’ 
mappings satisfies a shadowing theorem (see [20, 21]) which ensures that the computed orbit 
stays near to some true orbit over arbitrarily large numbers of steps. The flaw in this idea as 
an explanation of the behavior of computed orbits is that the shadowing theorem says that the 
computed orbit approximates some true orbit but not necessarily that it approximates a typical 
one.” 

The collapsing of iterates of dynamical systems or at least the existence of very short 
periodic orbits, their non constant invariant measure, and the easily recognized shape of the 
function in the phase space avoid the use of one-dimensional map (logistic, baker, or tent, …) 
as a Pseudo Random Number Generator (see [18] for a survey). 

Remark 1.1 However, the very simple implementation in computer program of chaotic 
dynamical systems led some authors to use it as a base of cryptosystem [3, 2]. In addition it 
seems that for some applications, chaotic numbers are more efficient than random numbers. 
That is the case for evolutionary algorithms [22, 25] or chaotic optimization [1]. 
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In this paper we show how to overcome the poor quality of chaotic generators using 
geometric undersampling. This special undersampling we introduce in this article is one 
among others undersampling processes we have studied before. In order to explain the 
difference between these processes we give in Sec. 2 a brief survey of them. Before doing this 
survey, we have to show how to stabilize the chaotic properties of chaotic number when 
realized on a computer. 

1.2. Very long periodic orbits for ultra-weakly coupled tent map 

The first step in order to preserve the genuine chaotic properties of the continuous models 
in numerical experiments is reached considering ultra-weak multidimensional coupling of p 
one-dimensional dynamical systems instead of solely a one-dimensional map. 

1.2.1. 2-coupled symmetric tent map 

In order to simplify the presentation below, we use as an example the symmetric tent map 
(4) with the parameter value a = 2, later denoted simply as f, even though others chaotic map 
of the interval (as the logistic map, the baker transform, …) can be used for the same purpose 
(as a matter of course, the invariant measure of the chaotic map considered is preserved). 

When p = 2, the system is simply described by Eq. (5) 

1 1 1

1 2 2

1

1
n n n

n n n

x ( ε ) f ( x ) ε f ( y )

y ε f ( x ) ( ε ) f ( y )
+

+

= − +
 = + −

, (5) 

We use generally 7
1 2 110 2,ε ε ε−= = when computations are done using floating points or 

14
1 10ε −= for double precision numbers. In both cases, with these numerical values, the 

collapsing effect disappears and the invariant measure of any component is the Lebesgue 
measure [12] as we show below. In the case of computation using floating points, starting 
form most initial condition, it is possible to find a Mega-Periodic orbit (i.e. with period equal 
to 1,320,752). When computations are done with double precision number it is not possible to 
find any periodic orbit, up to 115 10n = ×  iterations. In [12] the computations have been 
performed on a Dell computer with a Pentium IV microprocessor using a Borland C compiler 
computing with ordinary (IEEE-754) double precision numbers. 

When 1ε  converges towards 0, the iterates of each component xn and yn of equation (5) 

converge to the Lebesgue measure (Fig. 1). 

1.2.2. p-coupled symmetric tent map 

More generally, the coupling of p maps takes the form 

( ) ( )1n n nX F X A f ( X )+ = = ⋅ , (6) 

where  

1( )

( )

( )

n

n

p
n

f x

f X

f x

 
 
 =
 
  
 

⋮

⋮
, 

1
n

n

p
n

x

X

x

 
 
 =
 
  
 

⋮

⋮
, (7) 

and 
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,  (8) 

with 
j p

i , i i , j
j 1, j i

= 1-ε ε
=

= ≠
∑  on the diagonal (the matrix A  is always a stochastic matrix iff the 

coupling constants verify 0i , jε >  for every i and j). 
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Figure 1. Density of iterates of 2-coupled symmetric tent maps, 
double precision, 510discN = , 2 12ε ε= , 1

1 10ε −=  to 310− , 
810iterN = , initial values 0   0.330x = ,  0   0.3387564y = . 

It is noteworthy that these families of very weakly coupled maps are more powerful than 
the usual formulas used to generate chaotic sequences, mainly because only additions and 
multiplications are used in the computation process, no division being required. Moreover the 
computations are done using floating point or double precision numbers, allowing the use of 
the powerful Floating Point Unit (FPU) of the modern microprocessors. In addition, a large 
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part of the computations can be parallelized taking advantage of the multicore 
microprocessors which appear on the market of laptop computers.  

Moreover, a determining property of such coupled map is the high number of parameters 
used ( ( 1)p p× − for p coupled equations) which allows to choose it as cipher-keys, when used 
in chaos based cryptographic algorithms, due to the high sensitivity to the parameters values 
[16]. It at be shown also, that using control theory techniques, synchronization of two systems 
(6), with p = 2 or 3, can be reached via exact (dead-beat) or asymptotic observers [8]. 

1.2.3. Computation of approximated invariant measure 

In order to assess numerical computations more accurately, we define an approximation 

, ( )M NP x of the invariant measure also called the probability distribution function linked to the 

1-dimensional map f, when computed with floating numbers (or numbers in double precision). 
For this aim  we consider a  regular partition  of M small  intervals (boxes) r i of J defined by 

i

2i
s 1 , i 0, M  

M
= − + =  (9) 

i i i 1r   s  , s   , i  0, M - 2+= =    and [ ]M 1 M 1r   s  , 1  − −=  (10) 

the length of each box is equal to 
2

M
 and the ir  intervals form a partition of the interval J  

1

0

M

iJ r
−

= ∪   (11) 

All iterates f (n)(x) belonging to these boxes are collected, after a transient regime of Q 
iterations decided a priori, (i.e. the first Q iterates are neglected). Once the computation of 
N + Q iterates is completed, the relative number of iterates with respect to N/M in each box r i 
represents the value ( )N iP s . The approximated ( )NP x  defined in this article is then a step 

function, with M steps. As M may vary, we define 

( ), ( ) #M N i i

M
P s r

N
=  (12) 

where #r i is the number of iterates belonging to the interval r i . )(, xP NM is normalized to 2 on 

the interval J . 

, ,( ) ( ) ,M N M N i iP x P s x r= ∀ ∈  (13) 

In the case of p-coupled maps, we are more interested by the distribution of each 

component ( ), , , ,1 2 1 p
2x x x x…  of X rather than the distribution of the variable X itself in pJ . 

We then consider the approximated probability distribution function , ( )j
M NP x  associated to 

one among several components of F(X) defined by (6), which are one-dimensional maps. In 
this paper we use equallydiscN  for M and iterN for N, when they are more explicit. 

The discrepancies 1E  (in norm 1L ), 2E  (in norm 2L ) and E∞  (in norm L∞ ) between 

disc iter

j
N , NP ( x ) and the Lebesgue measure, which is the invariant measure associated to the 

symmetric tent map, are defined by 

1
1, , ,( ) ( ) 1

disc iter disc iter

j j
N N N N L

E x P x= −  (14) 
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2
2, , ,( ) ( ) 1

disc iter disc iter

j j
N N N N L

E x P x= −  (15) 

, , ,( ) ( ) 1
disc iter disc iter

j j
N N N N L

E x P x
∞

∞ = −  (16) 

As previously said, Fig. 1 shows the convergence of the density of iterates of the 
components of 2-coupled symmetric tent maps to the Lebesgue measure when 1ε  converges 

towards 0. Moreover, for a fixed value of discN  when the number iterN  increases, the 

discrepancy between 
disc iter

j
N , NP ( x ) and the Lebesgue measure is expected to converge 

towards 0, except if there exist periodic orbits of finite length lower than iterN  which capture 

the iterates. In this case whatsoever the value of iterN  is, the approximated distribution 

function converges to the distribution function of the periodic orbit, if it is unique, or to the 
average of the distribution functions of the periodic orbits observed, if not. 

Figure 2 shows the errors 1
1, , ( )

disc iterN NE x  versus the number of iterates of the approximated 

distribution functions, with respect to the first variable 1x , for 2 and 3-coupled symmetric tent 
map. Same results are obtained for the other variables 2x  or 3x .  

The 3-coupled symmetric tent maps model considered here with very very small value of 
ε1, seems a sterling model of generator of chaotic numbers with a uniform distribution of 
these numbers over the interval J . It produces very long periodic orbits: Gigaperiodic orbits 
(i.e. with length of period between 910  and 1210 ) when computed with simple precision 
numbers, and orbits of unknown length when computed with double precision numbers. 
However these chaotic sequences are not at all random sequences. 
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Figure 2. Error 1
1, , ( )

disc iterN NE x  for 2 and 3-coupled 

symmetric tent map, double precision, 510discN = ,   
14

1 10ε −= , 2 12ε ε= , 5 1210 10iterN to= . Initial values 
1
0   0.330x = , 2

0   0.3387564x = , 3
0   0.331353429x = . 
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2. THE ROUTE FROM CHAOS TO PSEUDO-RANDOMNESS VIA CHAOTIC 

UNDERSAMPLING 

Chaotic numbers are not pseudo-random numbers because the plot of the couples of any 
component ( )l

n
l
n xx 1, +  of iterated points ( )1,n nX X + in the corresponding phase plane reveals 

the map f used as one-dimensional dynamical systems to generate them via Eq. (6). 
Nevertheless, we have recently introduced a family of enhanced Chaotic Pseudo Random 
Number Generators (CPRNG) in order to compute faster long series of pseudorandom 
numbers with desktop computer [14, 15]. This family is based on the previous ultra weak 
coupling which is improved in order to conceal the chaotic genuine function. 

In this Section, we describe briefly how works this first process of undersampling, the 
chaotic one. 

2.1. Chaotic undersampling 

In order to hide f in the phase space ( )l l
n n 1x , x +  two mechanisms are used. The pivotal idea 

of the first one mechanism is to sample chaotically the sequence ( )…… ,,,,,, 1210
l
n

l
n

lll xxxxx +  

generated by the l-th component lx , selecting l
nx  every time the value m

nx  of the m-th 

component mx , is strictly greater  (or smaller) than  a  threshold T J∈ , with l ≠ m, for 1 ≤ l,  
m ≤ p. 

That is to say to extract the subsequence ( )(0 ) (1) ( 2) ( ) ( 1)
, , , , , ,

q q

l l l l l
n n n n nx x x x x

+
… … denoted here 

( )⋯⋯ ,,,,,, 1210 +qq xxxxx  of the original one, in the following way 

given 1 , ,l m p l m≤ ≤ ≠  

{ }( )

( 1)

( ) ( 1)

1

,
q

l m
q n q q r

r

n

x x with n Min r n x T

−

−∈

= −
 = = > > ℕ

  (17) 

The sequence ( )⋯⋯ ,,,,,, 1210 +qq xxxxx  is then the sequence of chaotic pseudo-random 

numbers. 
The above mathematical formula can be best understood in algorithmic way. The pseudo-

code, for computing iterates of (17) corresponding to N iterates of (6) is: 

( )1 2 p 1 p
0 0 0 0 0X x , x , , x , x seed−= =…  

n 0; q 0= =  
do { while n < N 

      do { while ( )m
nx T≤ compute ( )1 2 p 1 p

n n n nx , x , , x , x−… ; n + +} 

      compute ( )1 2 p 1 p
n n n nx , x , , x , x−… ;  then 

( )q

l
q nn( q ) n ; x x ;= = n + +; q + +} 

This chaotic sampling is possible due to the independence of each component of the 
iterated points nX versus the others [13]. 

Remark 2.1. Albeit the number iterNSampl  of pseudo-random numbers qx corresponding to 

the computation of N iterates is not known a priori, considering that the selecting process is 
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again linked to the uniform distribution of the iterates of the tent map on J , this number is 

equivalent to 
2

1

N

T−
. 

2.2. Chaotic mixing 

A second mechanism can improve the unpredictability of the pseudo-random sequence 
generated as above, using synergistically all the components of the vector nX , instead of two. 

Given p - 1 thresholds 

1 2 1pT T T J−< < < ∈⋯  (18) 

and the corresponding partition [ ]0 1J 1,T= − , ] [1 1 2J T ,T= ,  [ [1 1 1k k kJ T ,T for k p+= < < − and 

1 1 1p pJ T ,− −− −− −− −    ====      , with 

1

0

p

k
k

J J
−

=

=∪   (19) 

(note that this partition of J is different from the regular previous one (11) used for the 
approximated distribution function). 
The second simple mechanism is based on the chaotic undersampling combined with a 
chaotic mixing of the p-1 sequences 

( )…… ,,,,,, 1
1

11
2

1
1

1
0 +nn xxxxx , ( )…… ,,,,,, 2

1
22

2
2
1

2
0 +nn xxxxx ,…, ( )…… ,,,,,, 1

1
11

2
1

1
1

0
−
+

−−−− p
n

p
n

ppp xxxxx  

,…. 

using the last one ( )…… ,,,,,, 1210
p
n

p
n

ppp xxxxx +  in order to distribute the iterated points with 

respect to this given partition, defining the subsequence ( )⋯⋯ ,,,,,, 1210 +qq xxxxx  (in pseudo-

code) by 

( )1 2 p 1 p
0 0 0 0 0X x , x , , x , x seed−= =…  

n 0; q 0= =  

do {  while n < N 

       do {while ( )p
n 0x J∈ compute( )1 2 p 1 p

n n n nx , x , , x , x−… ; n + +} 

       compute ( )1 2 p 1 p
n n n nx , x , , x , x−…  

       let k be such that p
n kx J∈ ; then 

( )q

k
q nn( q ) n ; x x= = ; n + +; q + +}   

 
Remark 2.2. In this case also, iterNSampl  is not known a priori, however, considering that 

the selecting process is linked to the uniform distribution of the iterates of the tent map on J , 

one has 
1

2

1iter

N
NSampl

T
≈

−
. 

 
Remark 2.3. This second mechanism is more or less linked to the whitening process [28, 29]. 
 
Remark 2.4. Actually, one can choose any of the components in order to sample and mix the 
sequence, not only the last one.  
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2.3. Enhanced chaotic undersampling 

On can eventually improve the CPRG previously introduced with respect to the infinity 
norm instead of the 1L  or 2L  norms because the L∞ norm is more sensitive than the others 

ones to reveal the concealed f [14]. For this purpose we introduce a second kind of threshold 

'T ∈ℕ , together with 1 1, , pT T J− ∈⋯ such that the subsequence ( )⋯⋯ ,,,,,, 1210 +qq xxxxx  is 

defined (in pseudo-code) by 

( )1 2 p 1 p
0 0 0 0 0X x , x , , x , x seed−= =…  

n 0, q 0= =  

do {  while n < N 

         do {while ( )p
( q 1 ) n 0n n T ' and x J−≤ + ∈  

             compute ( )1 2 p 1 p
n n n nx , x , , x , x−… ; n + +} 

          compute ( )1 2 p 1 p
n n n nx , x , , x , x−…  

          let k be such that p
n kx J∈  

      then 
( )q

k
q nn( q ) n ; x x= = ; n + +; q + +} 

Remark 2.5. In this case also, iterNSampl is not known a priori, it is more complicated to give 

an equivalent to it. However, considering that the selecting process is linked to the uniform 
distribution of the iterates of the tent map on J , and to the second threshold T’, it comes that 

1

2
,

1iter

N N
NSampl Min

T T

 
≤  ′− 

. 

Remark 2.6. The second kind of threshold 'T  can also be used with only the chaotic 
sampling, without the chaotic mixing. 

2.4. A window of emergence of randomness 

In [15, 16] we show that if one consider the errors 
1

1, , ,( ) ( ) 1
disc iter disc iterN N N N L

E x P x= − , 

2
2, , ,( ) ( ) 1

disc iter disc iterN N N N L
E x P x= −  and , , ,( ) ( ) 1

disc iter disc iterN N N N L
E x P x

∞
∞ = −  together with the 

correlated distribution functions which assess the independence of each component of the 
iterated points nX versus the others, a window of emergence comes clearly into sight for the 

values 15 7
1ε 10 ,10− −− −− −− −    ∈∈∈∈      , in the case p = 4 and 1i , j i iε ε ε= = . We have also performed NIST 

test developed by the National Institute of Standards and Technology [23], in order to check 
carefully the random nature of such numbers [7].  

Then there is a route from chaos to randomness using the process of chaotic 
undersampling. 

3 GEOMETRIC UNDERSAMPLING 

The previous route from chaos to randomness uses chaotic undersampling. It is possible to 

couple in another way p tent maps on the torus [ ]1,1
pp pJ = − ⊂ℝ , which can directly provide 

random numbers, without sampling or mixing, provided p is large enough, although it is 
possible to combine these processes with it. After reviewing this ring coupling in high 
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dimension, we introduce the new geometric undersampling in order to obtain randomness 
with small values of p (for example p = 2). 

3.1. Pseudo-random numbers generated by ring coupled mapping 

Consider the mapping defined on the p-dimensional torus : p p
pM J J→  

211 1
n 1 nn n 1

32 2 2
n 2n n 1 n

p

p p 1m
n n 1 n m n

k x1 2 xx x

k x1 2x x x
M

x x k x1 2 x

⋮⋮ ⋮

++++

++++

++++

    ××××− +− +− +− +            
                 ××××− +− +− +− +                = == == == =                 
                                 ××××− +− +− +− +                 

 (20) 

with the parameters { }1,1ik ∈ − . In order to confine every variable jnx  on pJ  we do, for every 

iteration, the transform 

j
n 1

j
n 1

if ( x 1) add 2

if ( x 1) substract 2
++++

++++

 < −< −< −< −
 >>>>

  (21) 

The particularity of this coupling is that each variable jx  is coupled only with itself and 
j 1x ++++ , as displayed on Fig. 3a. At first glance, in order to enrich the random properties of the 

map, it could seem interesting to add supplementary cross couplings between these variables, 
as shown on Fig. 3b. However in this case a cross-coupling is inappropriate because it would 
increase the determinism and therefore deteriorate the statistical properties which we are 
looking for.  

To evaluate the random properties of these generators, the set of NIST tests have been used 
again. 

  

Figure 3a (left). Ring coupling between the variables jx . 
Figure 3b (right). Cross coupling between the variables jx . 

 
The random properties validations of both a 4-dimensional system and a 10-dimensional 

one have been carried out [5]. For this purpose, the chaotic carrier output needs to be 
quantised and binarized (0 and 1) in order to be validated as being random using NIST tests. 
Therefore, different methods of binarization (converting real signals to binary ones) have been 
implemented and compared. 

A first 1-bit binarization has been applied to the system (21) output, defined as j
n ny x====  

with � 	1,j p∈  

nif ( y 0 ) b 1

else b 0

≥ =≥ =≥ =≥ =
 ====

 (22) 
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The results showed to be highly sensitive to the type of binarization. Eventually, after 
testing several different methods, a 32-bit binarization has been chosen as being the most 
suitable solution. Because the system is confined to the p-dimensional torus pJ , 31 bits are 
assigned to represent the decimal part, and 1 bit to the sign. To illustrate the results, the NIST 
tests for the 4-dimensional system with parameters 1( 1)i

ik +∈ −  are shown in Fig. 4. The 

chosen conditions are: length of the original sequence = 810 bits, length of bit string = 610 bits, 
quantity of bit strings = 100. The output of the system has been arbitrary chosen as being: 

4
ny x= . 

Furthermore, as the results show their independence from the initial conditions, every bit 
string in this test is the resulting sequence of a different randomly chosen initial condition. 
The criterion for a successful test is that the p-value has to be superior to the significance 
level (0.01 for this case). For the present model, all tests were successful thus the sequences 
can be accepted as being random. 

 

 

Figure 4. Example of NIST Test for i i 1k ( 1) , i 1,4++++= − == − == − == − = , each sequence of 
components satisfies the NIST test for randomness. 

3.2. Ring coupling of 2-dimensional symmetric tent map 

Although the system (20) is a good PRNG when 4p ≥ , in lower dimension 2 and 3, the 
chaotic numbers are not equidistributed on the torus (see Fig. 5). 

In order to improve the ring coupling mechanism in low dimension, we introduce now a 
very new type of undersampling based on geometric nature of the invariant measure. We 
present this very new mechanism which allows the emergence of randomness from chaos, in 
the simplest case, the 2-dimensional ring mapping 2M  on the square 2J , with 1 2k k 1= == == == = . 

Let 2M  be defined by 

1 1 2
n 1 n n

2 2 1
n 1 n n

x 1 2 x x

x 1 2 x x

++++

++++

 = − += − += − += − +


= − += − += − += − +

   (23) 

with  
j
n 1

j
n 1

if ( x 1) add 2

if ( x 1) substract 2
++++

++++

 < −< −< −< −
 >>>>

  (24) 
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3.2.1. Critical lines 

Figure 5 shows the distribution of the iterates of system (23) (the transient of the first 
610  

iterations has been cut off). It can be observed that the attractor contains regions where the 
point density is lower, and two lozenge-like holes. It is possible to define critical lines which 
form a partition of the square 2J . The critical lines CL [19] are singularities of dimension 1 
and represent an important tool for the analysis of noninvertible maps. The holes on Fig. 5 are 
completely delimited by segments of the critical lines 1

1
ACL , 4

1
BCL , 2

1
CCL , 4

1
DCL , and 

2
1
ACL , 3

1
BCL , 1

1
CCL , 3

1
DCL , defined below. 

The critical lines separate regions of the phase space with different number of preimages 
(backward iterates). In the case of piecewise linear maps, they are the first iterates of the lines 
of discontinuity 1CL−  of the system.  

For the two dimensional system (23), there are four groups of critical lines CL  with 
preimages 1CL− given by 

 
Critical lines A: 1

1 0ACL : x− =  

and 
2 1 21

1

2 2 1 2
1

2 1 0

2 1 0

A

A

if: x x xCL
: ifCL x x x

 = − − >


= − <
   (25) 

Critical lines B: 1
1 1BCL : x− = −  

and 

[ ]
[ ]
[ ]

[ ]

1 2 1 2 1
1

2 2 1 2 1
1

3 2 1 2 1
1

4 2 1 2 1
1

2 0 0 0 5

2 2 0 1 0 5

2 2 0 0 5 1

2 0 0 5 0

B

B

B

B

: if , , .CL x x x x

: if , , .CL x x x x

: if , . ,CL x x x x

: if , . ,CL x x x x

 = < ∈
 = − − > ∈ − −
 = − < ∈
 = − > ∈ −

  (26) 

Critical lines C: 2
1 0CCL : x− =  

and 
( )

( )

1 2 1 1
1

2 2 1 1
1

1
1 0

2
1

1 0
2

C

C

: ifCL x x x

: ifCL x x x

 = − + >

 = + <


   (27) 

Critical lines D: 2
1 1BCL : x− = −  

and 

[ ]

[ ]

[ ]

[ ]

1
1 2 1 2

1

1
2 2 1 2

1

1
3 2 1 2

1

1
4 2 1 2

1

0 0 0 5
2

1 0 1 0 5
2

0 0 5 0
2

1 0 0 5 1
2

D

D

D

D

x: if , , .CL x x x

x: if , , .CL x x x

x: if , . ,CL x x x

x: if , . ,CL x x x

 = < ∈

 = − − > ∈ − −

 = − > ∈ −


 = + < ∈


  (28) 
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Figure 5. Critical lines of the map 2M on the torus 2J  (a 

square) [26]. 

3.2.2. Markov partition of the square 

Our aim is first to use the partition defined by these critical lines in order to do a cell-to-
cell analysis and, by the means of a Markov process, to compute explicitly the invariant 
measure of iterates associated to system (23). Figure 6 displays the 32 sub-regions of the 
square 2J , labelled from a to p and a’ to p’. For clarity of the presentation, we have labelled 
from (I) to (IV), the four quadrants of 2J . 

 

 

Figure 6. The 32 sub-regions for a partition of the square 2J . 

a 

b 
c 

d 

g 
h 

i 

j 

f 

k 

e 
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m 

o 

a’ 

b’

n 

p 

c’
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e’ 

f’  

g’ 
h’ 

i’  

j’ 

k’  

l’  

m’ 
n’ 

o’ 

p’ 

I 

III IV 
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Figure 7 a (left). The nine regions a to i of quadrant (I) 
Figure 7 b (right). The images 2M (I) of the nine regions of quadrant (I). 

 

Straightforward computation shows that the images of each region, by the mapping 2M , is 

either one, two or three regions of the same partition of the square 2J . Figures 7a and 7b 
display the images of the regions embedded in the first quadrant (I). Figures 8a and 8b display 
the images of the regions embedded in the second quadrant (II). The colour is the same for 
every region and its corresponding image, except when two regions are mapped on the same 
region, in this case there is a mix of colours on the common part of the image. 

  

 

Figure 8 a (left). The seven regions j to p of quadrant (II)  
Figure 8 b (right). The images 2M (II) of the seven regions of quadrant (II). 

 

The overall correspondence between regions of the partition and their image is given by 
the Markov matrix aM  which is displayed on Table 1. The computation of the coefficients of 

this matrix, which are rational numbers, is based on the ratios of surfaces of bounded regions. 
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Table 1. Markov Matrix aM . 

In order to display the 32 32××××  matrix aM  on one page, we have labelled the coefficients 

using letters which are not related to the names of the regions.  

1 1 3 4

12 20 20 20
1 2 4 1

9 9 9 6
1 1 3 2

3 5 5 3

o ; p ;q ;r ;

s ;t ;u ;v ;

w ;x ; y ; z ;

 = = = =

 = = = =

 = = = =


  (29) 

3.2.3. Exact computation of invariant measure associated to 2M  

With the help of Markov matrix aM , it is straightforward to compute explicitly the 

invariant measure associated to 2M . For every region on Figure 6, we define a quantity of 

initial points called iQ , i 1,32====  uniformly scattered on it, and we compute its surface iS . 

We normalise both quantities to i

i

Q Q 4= == == == =∑∑∑∑ , and i
i

S S 4= == == == =∑∑∑∑ . Hence it is possible to 

define the density of iterates on each region. 

i
i

i

Q
d

S
====  (30) 

Let 

1

32

Q

Q

Q

⋮

    
    ====     
    
    

 and 

1

32

d

D

d

⋮

    
    ====     
    
    

 the vectors of  quantities  and  densities  obtained  applying 
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(30) to every region. Then starting from an arbitrary initial repartition of points on 2J , say 
1
0

0
32
0

Q

Q

Q

    
    ====     
    
    

⋮ , and applying repeatedly the equation 

t
m 1 a mQ M Q++++ ====   (31) 

The sequence of vectors {{{{ }}}}m m
Q

ℕ∈∈∈∈
converges to a limit vector Qwhich satisfies 

t
aQ M Q====   (32) 

and gives the invariant measure, the density of which is the vector D , using (30). 

Numerical results:  

Starting from 

1
0

0
32
0

Q 1 / 8

Q

Q 1 / 8

⋮ ⋮

         
         = == == == =         

                 

, Q  is obtained rapidly, as  

1
500

2
500

3
500

4
500

500

29
500

30
500

31
500

32
500

Q 1 / 14
Q 3 / 28
Q 1 / 14

Q 3 / 28

Q Q

4 / 7Q
3 / 28Q
3 / 28Q
1 / 7

Q

⋮ ⋮

    
        
        
        
        
        
        
    = = == = == = == = =    
        
        
        
        
        
                 

    

, which gives using (30), 

1
500

2
500

3
500

4
500

500

29
500

30
500

31
500

32
500

d 10 / 7
d 5 / 7
d 10 / 7

d 5 / 7

D D

12 / 7d
9 / 7d
9 / 7d
6 / 7

d

⋮ ⋮

    
        
        
        
        
        
        
    = = == = == = == = =    
        
        
        
        
        
                 

    

. 

Remark 3.1. Computing directly this density, iterating (23) up to 1011 iterates leads to the 
same result.  

3.3 Geometric undersampling 

The exact computation of the density D  of the invariant measure shows that this density is 
constant on each region. The geometric undersampling process consists in magnifying a 
square G included in one region (as for example the square [ ] [ ]G 0.36,0.64 0.36,0.64= ×  

included in region m on Fig. 9), up to the size of the square 2J . 

3.3.1. Algorithm of geometric undersampling 

Let 1 1 2 2
l r l rG x , x x , x   = ×     the square in which we will undersample the iterate of (23) and,  

1 1 2 2
1 2l r l r
mean mean

x x x x
x , x

2 2

+ += = . In algorithmic form, the pseudo-code, to geometric 

undersample N iterates of (23) is 
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Figure 9. The square [ ] [ ]G 0.36,0.64 0.36,0.64= ×  in 

which iterates of (23) are geometrically undersampled. 

( )1 2
0 0 0X x , x seed= =  

n 0;=  

do { while n < N compute ( )1 2
n nx , x ;if ( )1 2

n nx , x G∈  then 

1 1 2 2
1 2n mean n mean
q q1 1 2 2

r l r l

x x x x
x 2 , x 2

x x x x

   − −= =   − −   
; q=q+1; n + +} 

Remark 3.2. In this case, the undersampling process provides two streams of pseudo-random 
numbers.  
Remark 3.3. In this case, iterNSampl  the number of geometrically undersampled iterates is 

not known a priori, however, considering that the selecting process is linked to the uniform 

distribution of the iterates of the tent map on 2J , one has 
( )21 1

4
r l m

iter

x x
NSampl d

−
≈ × , where 

md  is the density of the measure in region m. 

3.3.2. Numerical tests 

We have applied this process in the case of the square G of Fig. 9, with 12N 10====  which 
gives 103.35 10iterNSampl ≈ × . Figure 10a displays the densities of the seven regions j, k, l, m, 

n, o, p of quadrant (II) which are equal to 

6 9 9 12

7 7 7 7
9 9 6

7 7 7

j k l m

n o p

d ;d ;d ;d ;

d ;d ;d ;

 = = = =

 = = =

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Figure 10 a (left). densities of the seven regions j, k, l, m, n, o, p of quadrant (II) 

Figure 10 b (right). Uniform density of iterates in the square 

[ ] [ ]G 0.36,0.64 0.36,0.64= × of quadrant (II). 

Figure 10b shows the uniform density of iterates in the square 

[ ] [ ]G 0.36,0.64 0.36,0.64= × of quadrant (II). On Fig. 11 the square is magnified up to the 

size of the square 2J . The vertical scale is fitted near the invariant Lebesgue measure. 
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Figure 11. Uniform density of iterates of the square 

[ ] [ ]G 0.36,0.64 0.36,0.64= ×  magnified to the square 2J . 

We have also used NIST test to confirm the random property of the geometrical 
undersampling process. They are all successful (Fig. 12). 

 
 

------------------------------------------------------------------------------------------------------------------------------------- 
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RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES 
-------------------------------------------------------------------------------------------------------------- 
 C1  C2  C3  C4  C5  C6  C7  C8  C9       C10        P-VALUE  PROPORTION  STATISTICAL TEST 
-------------------------------------------------------------------------------------------------------------- 
12    9    7   9  12  11    8  11  13    8  0.924076       99/100     Frequency 
  1    4    3   4    7    5    9  16  16  35  0.000000 *  100/100     BlockFrequency 
  9    9  10  12  11   8    9  10  10  12  0.996335       99/100     CumulativeSums 
10    9  12  12    9   7  10  10    9  12  0.983453       99/100     CumulativeSums 
11  12   11   8  12   7  12    6  10  11  0.883171       99/100     Runs 
  9    9  13    8    9   8  17    8  10   9  0.595549      100/100     LongestRun 
  6  11  11  11    9   8    8  14    9  13  0.798139     100/100     Rank 
15  10    7    8    8   8  15  16    7    6  0.153763       97/100     FFT 
12    9  10  13    9  11   7  15    4  10  0.474986       98/100     NonOverlappingTemplate 
12    6  10    6  13    6   8    8  17  14  0.145326       99/100     OverlappingTemplate 
18  12  13  11    9  10   5    8    9    5  0.145326       99/100     Universal 
11    8  12  11  11  14   8  10    7    8  0.883171       99/100     ApproximateEntropy 
  3    5    6   9    4    3   7    5    6   11  0.145326        59/59      RandomExcursions 
  7    6    6   2    6    7   6    7    4    8  0.637119         59/59      RandomExcursions 
  2    6    4   5    5    6  10   6    7    8  0.334538         59/59      RandomExcursionsVariant 
  8  15  13  12    9  12 13   5    9    4  0.224821        98/100     Serial 
  9    9    6  13  13   7  12   9  10  12  0.798139        99/100     LinearComplexity 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is 
approximately = 96 for a sample size = 100 binary sequences. 

 
Figure 12. Geometrical undersampling: each sequence of components 

satisfies the NIST test for randomness. 

4 NOISE-RESISTING CIPHERING  

As a first example we propose a novel noise-resisting ciphering based on a large number of 
uncorrelated chaotic sequences. These cogenerated sequences are actually used in several 
steps of the ciphering process. Noisy transmission conditions are considered, with realistic 
assumptions. The efficiency of the proposed method for ciphering and deciphering is 
illustrated through numerical simulations based on ten coupled chaotic sequences [5]. It can 
be also adapted to geometric undersampling, provided this undersampling is done in 
dimension 4. 

In this section we detail the noise-resisting ciphered transmission principle, consisting of 
two steps: the ciphering process and the transmission process (see Figures 13, 14). Both resort 
to the coupled chaotic pseudo-random generated sequences. 

4.1. Ciphering principle 

We begin with some notations that will be used in the sequel. The plain text is denoted 

k k 1, ,N( t ) = ⋯ : the letters kt , for k 1, ,N= ⋯  belong to the alphabet { }1l , ,l⋯ π  composed of π  

letters. 
The ciphered text is a sequence of real numbers, denoted ky , k 1, ,N= ⋯  and each ky  

belongs to the interval [ ]1,1J = − ⊂ℝ . The transmitted signal (at the transmitter side) is 

denoted ns  while the received signal is nŝ  (at the receiver side).  

In this paper we consider noisy transmission conditions, which means that n n nŝ s= +α , 

where n 0>α  denotes an unknown additive noise at time n . We make the following classical 

assumption: the additive noise is bounded by a known bound K , which means that 
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n n n
ˆs s K , n 0− = ≤ ∀ ≥α  (33) 

 

 
 

Figure 13. General scheme of the ciphering and the ciphered transmission 
principle (coding and transmitting). 

 

 
Figure 14. General scheme of the ciphering and the ciphered transmission 

principle (receiving and decoding). 
 

We detail first how to transform each letter of the plain text kt  into a real number 

[ ]1,1ky ∈ − , with an original noise-resisting method. In a second step, the sequence ky will be 

transformed to obtain a uniform distribution on the interval [ ]1,1− . 

 
• Define a partition as follows: 

 

[ ]
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1,1 m
m

I
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− = ∪
π
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with ma , mb  the bounds of the interval each interval mI , i.e.: [ ]m m mI a ,b= . 

In fact, owing to the presence of additive noise, not all real numbers inside mI  can be 

selected, one must avoid an interval of length K  at each side of the interval mI . Therefore 

some smaller intervals need to be defined. 
 

• Define a sub-interval mI ′  included in the corresponding interval mI  such that: 

 

[ ]m m m mI a ,b I′ ′ ′= ⊂    (35) 

and 
 

[ ]m m ma K ,b K I′ ′− + ⊂  (36) 

 
where we recall that K  is the upper bound on the noise, see (33). 
Then the coding consists in randomly (i.e. with another pseudo-random sequence 

generated by (20): p 1
nx − , or the geometric undersampling in dimension 4) choosing for each 

letter kt  of the plain text, a real number ky  inside the interval mI ′  (and not mI ) if k mt l= . Each 

interval mI ′  corresponds to a letter ml , for m 1, ,= ⋯ π . Remark that each letter has a frequency 

of apparition in the plain text, depending on the initial language. Therefore one must carefully 
choose the length of each interval mI ′  in proportion to the corresponding frequency of the 

letter ml . An illustration is given by Fig. 15 for an alphabet with three letters: the letter A  has 

a frequency of 10%, the letter B  has a frequency of 30% and the letter C  f 60%. 
 

 
 

Figure 15. Repartition of an alphabet of three letters. 
 

• Once  this  first  step  of  the  coding  is  achieved,  one  has  to ensure  that  the 
ciphered text has a random-like distribution inside [ ]1,1− . With the aforementioned coding 

alone, this property cannot be ensured, as it can be seen in Fig. 16. 
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Figure 16. Signal to be transmitted without transformation. 
 

Since one needs to leave some holes at the edges of the intervals mI  to resist the additive 

noise, the transmitted signal cannot have a random-like repartition. So we propose to 
transform the ciphered data ky  before transmitting it.  

For all steps n∈ℕ  such that an encrypted letter is transmitted, we propose to transmit not 
directly ny  but:  

[[[[ ]]]]p 2 p 2
n n n n

p 2 p 2
n n n n n

p 2 p 2
n n n n

y x if y x 1,1

y y x 2 if y x 1

y x 2 if y x 1

− −− −− −− −

− −− −− −− −

− −− −− −− −

 + + ∈ −+ + ∈ −+ + ∈ −+ + ∈ −
= + + + < −= + + + < −= + + + < −= + + + < −
 + − + >+ − + >+ − + >+ − + >

ɶ  (37) 

 

For simplicity of presentation, in the sequel, ny  will denote nyɶ , the ciphered message to 

transmit.  
 

 
Figure 17. Signal to be transmitted after transformation. 

 
Then the obtained signal to transmit has the desired uniform repartition, as illustrated by 

Fig. 17. 
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4.2. Transmission principle 

We present now how to transmit the ciphered text using substitution method in a new 
pseudo-random sequence. The transmitted signal is denoted ns .  

The ciphered text ky , defined by (37), is not directly transmitted, it is chaotically hidden in 

a chaotic carrier signal, as it is explained below. 
The ciphering makes use of two coupled chaotic sequences: 1

nx  is used as chaotic carrier, 

while p
nx  is used to select the substitution times. 

 
1 p
n n

n p
n( k ) n

x if x T
s

y if x T

 <<<<====  ≥≥≥≥
 (38) 

 
where T  is a predefined threshold. For example, as the p

nx  are equally distributed on the 

interval [ ]1,1− , if one chooses T 0.8= , one ciphered letter will be transmitted in average each 

10 element of the sequence 1
nx . If one chooses T 0.98= , one element over 100 is replaced by 

a letter. 
We do not detail here the sequence k( n ), it is easily understandable that k( n ) increase of 

+1 each time n k( n )s y=  in order to transmit each element of the ciphered sequence ky . 

 

4.3. Decoding principle 

At the receiver end, suppose that the same PRNG defined by (20) is available. The 
transmitter and the authorized receiver have fixed the same parameters and same initial 
values, therefore the ciphering is a symmetrical one. 

According to the substitution principle defined by (38) and the hypothesis (33) on the 
additive noise, the received signal can be expressed as: 

1
n n nŝ x= +α  or k( n ) ny +α   (39) 

Since the initial conditions of the chaotic pseudo-random number generator (20) are 
assumed to be public, the receiver exactly knows when p

nx  is smaller or larger than the 

threshold T , so the receiver is able to reconstruct the sequence ( )k( n ) ny +α  i.e. the sequence 

q qy + β  where q n=β α  for q k( n )= . 

Since q K<β , there exists { }m 1,2, ,∈ ⋯ π such that n mŝ I∈ . 

The receiver, also, exactly knows the value of p 2
nx −  and deduces from the rules (37) the 

value qy . Then the knowledge of the correspondence between the interval mI  and the letter 

ml  enables the receiver to retrieve the initial message. 

 

4.4. Numerical illustration 

Now we summarize the main steps of the proposed algorithm: 
1) Choose the secret parameters ik 1=  or ik 1= − , for { }i 1,2, , p∈ ⋯ . 
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2) Define the initial conditions shared by the transmitter and the receiver. 
3) Iterate the PRNG (20) with the previous initial conditions, both at the transmitter 

and the receiver side. 
4) Apply the ciphering and transmission principle as detailed before. 
 

 
Figure 18. Received noisy signal. 

 
The Fig. 18 shows the noisy signal at the receiver side (recall that the transmitted signal is 

given by Fig. 17). Notice that the Figs. 2 to 4 represent our simulations with 910  iterations. 
 

CONCLUSION 

We have proposed a new mechanism of undersampling of chaotic number obtained by the 
the ring coupling mechanism of one-dimensional maps. In the case of 2 coupled maps this 
mechanism allows the building of a PRNG which passes all NIST Test. 

This new geometric undersampling is very effective for generating 2 parallel streams of 
pseudo-random numbers, as we have shown, computing carefully their properties, up to 
sequences of 1210 consecutives iterates of (23) which provides more than 103.35 10×××× random 
numbers in very short time. In a forthcoming paper we will test both 3- and 4-dimensional 
cases. 

In addition we have proposed a novel method of noise-resisting ciphering. The originality 
lies in the use of a chaotic pseudo-random number generator: several co-generated sequences 
can be used at different steps of the ciphering process, since they present the strong property 
of being uncorrelated. Each letter of the initial alphabet of the plain text is encoded as a 
subinterval of [ ]1,1− . The bounds of each interval are defined in function of the known bound 

of the additive noise. A pseudo-random sequence is used to enhance the complexity of the 
ciphering. The transmission consists of a substitution technique inside a chaotic carrier, 
depending on another cogenerated sequence. The efficiency of the proposed scheme is 
illustrated on some numerical simulations.  

 
Cryptography is a wide field of research, in which the brilliant formulae of Srinivasan 

Ramanujan have been largely used. May be, it will be possible, in a near future, to link such 
formulae with chaos in the domain of emergent randomness. 

 



 26 

REFERENCES 

[1] E. Araujo, L. dos S. Coelho, “Particle swarm approaches using Lozi map chaotic sequences to fuzzy 
modelling of an experimental thermal-vacuum system”, Applied Soft Computing, 8, 1354–1364, (2008). 
[2] M. R. K. Ariffin,  M. S. M. Noorani, “Modified Baptista type chaotic cryptosystem via matrix secret 
key”, Phys. Lett. A, 372, 5427-5430 (2008). 
[3] M. S. Baptista, “Cryptography with chaos”, Phys. Lett. A, 240, 50-54 (1998). 
[4] E., Cherrier, & R., Lozi, “ Noise-resisting ciphering based on a chaotic multi-stream pseudo-random 
number generator”, in Proceeding of ICITST, 2011, Abu-Dhabi, AUE, 11-14 December, 2011. 
[5] A. Espinel, I. Taralova, I., & R. Lozi, “New alternate ring-coupled map for multi-random number 
generation”, Journal of Nonlinear Systems and Applications, Vol. 4, n°1, 64-65 (2013). 
[6] P. Gora, A. Boyarsky, Md. S. Islam, W. Bahsoun, “Absolutely continuous invariant measures that cannot 
be observed experimentally”, SIAM J. Appl. Dyn. Syst., 5:1, 84-90 (electronic), (2006). 
[7] S. Hénaff, I. Taralova, I., & R. Lozi, “Dynamical analysis of a new statistically highly performant 
deterministic function for chaotic signals generation”, in Proceeding of Physcon 2009, Catania, Italy, 1-4 
september, IPACS open Access Electronic Library. 
[8] S. Hénaff, I. Taralova, I., & R. Lozi, “Exact and Asymptotic Synchronization of a new weakly coupled 
maps system”, Journal of Nonlinear Systems and Applications, 1, 87-95, (2010). 
[9] M. Hénon, “A Two-dimensional mapping with a strange attractor”, Commun. Math. Phys., 50, 69-77, 
(1976). 
[10] O. E. Lanford III, “Some informal remarks on the orbit structure of discrete approximations to chaotic 
maps”. Experimental Mathematics, Vol. 7, 4, 317-324, (1998). 
[11] E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmospheric Science, 20, 130-141, (1963). 
[12] R. Lozi, “Giga-Periodic Orbits for Weakly Coupled Tent and Logistic Discretized Maps”. Modern 
Mathematical Models, Methods and Algorithms for Real World Systems, A. H. Siddiqi, I. S. Duff and O. 
Christensen (Editors), Anamaya Publishers, New Delhi, India pp. 80-124, 2006. 
[13] R. Lozi, “New Enhanced Chaotic Number Generators”, Indian Journal of Industrial and Applied 
Mathematics, vol.1, No.1, pp.1-23, 2008. 
[14] R. Lozi, “Chaotic Pseudo Random Number Generators via Ultra Weak Coupling of Chaotic Maps and 
Double Threshold Sampling Sequences”, In proceedings of: ICCSA 2009 The 3rd International Conference 
on Complex Systems and Applications, University of Le Havre, France, June 29- July 02, 2009. 
[15] R. Lozi, “Complexity leads to randomness in chaotic systems”, Mathematics in Science and 
Technology: Mathematical Methods, Models and Algorithms in Science and Technology. Proceedings of the 
Satellite Conference of ICM, 15-17 August 2010 Delhi, India (A.H. Siddiqi, R.C. Singh, P. Manchanda 
Editors), World Scientific Publisher, Singapore (2011) pp. 93-125. 
[16] R. Lozi, “Emergence of randomness from chaos”, International Journal of Bifurcation and Chaos, Vo. 
22, No. 2 (2012) 1250021-1/1250021-15. 
[17] R. Lozi, “chaotic mathematical circuitry”, In Chaos, CNN, Memristors and Beyond , A. Adamatzky, G. 
Chen (Eds.), World Scientific Publishing, pp. 307-323, (2013). 
[18] R. Lozi, “Can we trust in numerical computations of chaotic solutions of dynamical systems”, In 
Topology and Dynamics of Chaos, Ch. Letellier, R. Gilmore (Eds.), World Scientific Series in Nonlinear 
Science Series A, Vol. 84, pp. 63-98, (2013). 
[19] C. Mira, L. Gardini, A. Barugola, J.-C. Cathala , Chaotic dynamics in two-dimensional noninvertible 
maps, World Scientific Series on Nonlinear Science, Series A - Vol. 20, (1996). 
[20] K. Palmer, Shadowing in Dynamical Systems: Theory and Applications, Kluwer Academic Publications 
(2000). 
[21] S. Y. Pilyugin, “Shadowing in Dynamical Systems”, Lecture Notes in Math., Springer, 1706, (1999). 
[22] M. Pluhacek, V. Budikova, R. Senkerik, Z. Oplatkova, I. Zelinka, “Extended Initial Study on the 
Performance of Enhanced PSO Algorithm with Lozi Chaotic Map”, Advances in Intelligent Systems and 
Computing, 1, Volume 192, Nostradamus: Modern Methods of Prediction, Modeling and Analysis of 
Nonlinear Systems, pp. 167 - 177, (2012). 
[23] A. Rukhin, et al, “A Statistical Test Suite for Random and Pseudorandom Number Generators for 
Cryptographic Applications”, NIST (2001), http://csrc.nist.gov/rng/ 
[24] J. C. Sprott, Chaos and Time-Series Analysis, Oxford University Press, Oxford, UK, (2003). 
[25] T. W. Tang, A. Allison and D. Abbott, “Parrondo's games with chaotic switching”. Proc. SPIE Noise in 
Complex Systems and Stochastic Dynamics II, Vol. 5471, 520-530, Maspalomas, Gran Canaria, Spain, 26-28 
May 2004. 
[26] I. Taralova, A. Espinel, & R. Lozi, “Dynamical and statistical analysis of a new Lozi function for 
random numbers generation”, in Proceeding of Physcon 2011, León, Spain, 5-8 september, IPACS open 
Access Electronic Library. 



 27 

[27] I., Taralova, S. El Hassad, & R., Lozi, “Chaotic Generator Synthesis: Dynamical and Statistical 
Analysis”, in Proceeding of ISTP 2012, London, UK, 10-11 December, 2012.  
[28] J. Viega, “Practical random number generation in software”, in Proceedings of 19th Annual Annual 
Computer Security Applications Conference, 129-140, (2003). 
[29] J. Viega, M. Messier, Secure programming cook book for C and C++ (O’Reilly, Sebastopol, CA), 
(2003). 


