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CRYPTOGRAPHY BASED CHAOSVIA GEOMETRIC
UNDERSAMPLING OF RING-COUPLED ATTRACTORS

RENE Lozl *

Abstract. We propose a new mechanism for undersampling ehaatnbers obtained by the ring
coupling of one-dimensional maps. In the case afolpled maps this mechanism allows the
building of a PRNG which passes all NIST Test.
This new geometric undersampling is very effecfioe generating 2 parallel streams of pseudo-
random numbers, as we show, computing carefullyr theoperties, up to sequences of*40
consecutives iterates of the ring coupled mappihichvprovides more than 3.35 x #@andom
numbers in very short time. Both 3 and 4 dimensiases can be managed in the same way.

In addition we recall a novel method of noise-r@sisciphering. The originality lies in the use of
a chaotic pseudo-random number generator: seveigegerated sequences can be used at different
steps of the ciphering process, since they prabenstrong property of being uncorrelated. Each
letter of the initial alphabet of the plain textéacoded as a subinterval of [-1,1]. The bounds of
each interval are defined in function of the knolwound of the additive noise. A pseudo-random
sequence is used to enhance the complexity of ifhieering. The transmission consists of a
substitution technique inside a chaotic carriepeheling on another cogenerated sequence. This
novel noise-resisting ciphering method can be uedtth geometric undersampling when 4

mappings are coupled.
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INTRODUCTION

During the last decade, it has been emphasizedthikratindersampling of sequence of
chaotic numbers is an efficient tool in order taldbypseudo-random number generators
(PRNG) [15]. Randomness appears to be an emergepeny of complex systems of
coupled chaotic maps [16]. Several kinds of couplecan be considered as ultra-weak
coupling or ring coupling, ... [17]. An ultra-weak qaling recovers chaotic properties of 1-
dimensional maps [12, 13] when computed with flogitinumbers or double precision
numbers. Chaotic undersampling with thresholds dase one component of the coupled
system adds random properties to the chaotic segaeBouble threshold sampled sequence
(i.e., using both thresholds of different natumaproves such random properties [14]. Ring
coupling deals whep 1-dimensional maps are constrained on a toruggh,this coupling
can directly provide random numbers, without sangpbr mixing, provided the numbprof
maps is large enough, although it is possible taline these processes with it. However in
lower dimension 2 and 3, the chaotic numbers ateegoidistributed on the torus. Therefore
we introduce a particular “geometric” undersamplima@sed on the property of piecewise
linearity of the invariant measure of the systenp df-dimensional ring coupled maps. This
new geometric undersampling is very effective fengrating parallel streams of pseudo-
random numbers with a very compact mapping.

Several applications in various fields (chaoticimptation, evolutionary algorithms, secure
information transmission, chaotic cryptography, af)such under-sampling process can be
found. In this article we focus on the last ones.

- As a first example we propose a novel noise-tiegiciphering based on a large number
of uncorrelated chaotic sequences. These cogedesatpiences are actually used in several
steps of the ciphering process. Noisy transmissmmlitions are considered, with realistic
assumptions. The efficiency of the proposed methmd ciphering and deciphering is
illustrated through numerical simulations basedammcoupled chaotic sequences [4].

- A second one is the use of such sequences in éickacryption algorithm [27].

In Section 1 we briefly recall properties of chaothappings, when used alone or ultra-
weakly coupled. Section 2 describes the route frdmos to randomness via chaotic
undersampling, discovered during the last decadeSdction 3, we introduce geometric
undersampling in the scope of ring coupled mappimgsection 4, we propose in addition, a
novel method of noise-resisting ciphering. The ioagity lies in the use of a chaotic pseudo-
random number generator: several co-generated seggi€an be used at different steps of
the ciphering process, since they present the gipooperty of being uncorrelated. This novel
noise-resisting ciphering method can be used wigongetric undersampling when 4
mappings are coupled.

1. RECOVERING CHAOTIC PROPERTIES OF NUMERICALLY COMPUTECHAOTIC
NUMBERS

1.1.Numerical approximation of chaotic numbers

Chaos theory studies the behavior of dynamicaksystthat are highly sensitive to initial
conditions, an effect which is popularly referredas the butterfly effect. Small differences in
initial conditions (such as those due to roundimgrs in numerical computation) yield
widely diverging outcomes for chaotic systems, ggimdy long-term prediction impossible in
general. This happens even though these systentemeninistic, meaning that their future



behavior is fully determined by their initial cotidns, with no random elements involved. In
other words, the deterministic nature of theseesystdoes not make them predictable. The
first example of such chaotic continuous systerthéndissipative case was pointed out by the
meteorologist E. Lorenz in 1963 [11].

In order to study numerically the properties of therenz attractor, M. Hénon an
astronomer of the observatory of Nice, Francepthiced in 1976 a simplified model of the
Poincaré map of this attractor [9]. The Lorenzaatior being imbedded in dimension 3, the

corresponding Poincaré map is a mapping from tl@eR?2 into R2. Hence the Hénon
mapping is also defined in dimension 2 and is aateat to the dynamical system

{xm =y, +1-af
Yot = bX,

which has been extensively studied since thirtyysexrs.
More simple dynamical systems in dimension ongherintervalJ =[—1,:I] R into itself

: (1)

Xua = T2 (%), )
corresponding to the logistic map
f. =L, (x)=1-ax, (3)
or the symmetric tent map
f, =Ta(x)=1-aX, (4)

have also been fully explored in the hope of geimegaandom numbers easily [24]. However
when a dynamical system is realized on a compugiEilguloating point or double precision
numbers, the computation is of a discretizationgmghfinite machine arithmetic replaces
continuum state space. For chaotic dynamical sysiensmall dimension, the discretization
often has collapsing effects to a fixed point oshort cycles [6].

It seems that the computation of numerical appratioms of the periodic orbits leads to
unpredictable and somewhat enigmatic results. &s €a E. Lanford Ill [10] “The reason is
that because of the expansivity of the mappinggtieavth of roundoff error normally means
that the computed orbit will remain near the trukitowith the chosen initial condition only
for a relatively small number of steps typicallytbé order of the number of bits of precision
with which the calculation is done. It is true tliae above mapping like many ‘chaotic’
mappings satisfies a shadowing theo(see[20, 21) which ensures that the computed orbit
stays near to some true orbit over arbitrarily éangimbers of steps. The flaw in this idea as
an explanation of the behavior of computed orlsithat the shadowing theorem says that the
computed orbit approximates some true orbit butn@cessarily that it approximates a typical
one.”

The collapsing of iterates of dynamical systemsabileast the existence of very short
periodic orbits, their non constant invariant measand the easily recognized shape of the
function in the phase space avoid the use of omeasional map (logistic, baker, or tent, ...)
as a Pseudo Random Number Generator (see [18kiavay).

Remark 1.1 However, the very simple implementation in compyteogram of chaotic
dynamical systems led some authors to use it asa of cryptosystem [3, 2]. In addition it
seems that for some applications, chaotic numhersnare efficient than random numbers.
That is the case for evolutionary algorithms [22], @ chaotic optimization [1].



In this paper we show how to overcome the poorityualf chaotic generators using
geometric undersampling. This special undersampliregintroduce in this article is one
among others undersampling processes we have dth@ifore. In order to explain the
difference between these processes we give in2Ssbrief survey of them. Before doing this
survey, we have to show how to stabilize the cloaptoperties of chaotic number when
realized on a computer.

1.2.Very long periodic orbitsfor ultra-weakly coupled tent map

The first step in order to preserve the genuine@tbhgroperties of the continuous models
in numerical experiments is reached consideringawiteak multidimensional coupling of
one-dimensional dynamical systems instead of sa@lege-dimensional map.

1.2.1. 2-coupled symmetric tent map

In order to simplify the presentation below, we asean example the symmetric tent map
(4) with the parameter value= 2, later denoted simply &seven though others chaotic map
of the interval (as the logistic map, the bakendfarm, ...) can be used for the same purpose
(as a matter of course, the invariant measureeo€ttiaotic map considered is preserved).

Whenp = 2, the system is simply described by Eq. (5)

{Xnﬂ:(l_gl)f(xn)-l-glf(yn)

, 5
Yo =e, fO0)+ A )T (v) O

We use generally, =107, &, = 2s,when computations are done using floating points or

£, =10"for double precision numbers. In both cases, wites¢ numerical values, the

collapsing effect disappears and the invariant oreasf any component is the Lebesgue
measure [12] as we show below. In the case of ctatipn using floating points, starting
form most initial condition, it is possible to firmlMega-Periodic orbit (i.e. with period equal
to 1,320,752). When computations are done with opiecision number it is not possible to
find any periodic orbit, up ton=5x10" iterations. In [12] the computations have been
performed on a Dell computer with a Pentium IV rapmocessor using a Borland C compiler
computing with ordinary (IEEE-754) double precisimmbers.
When & converges towards O, the iterates of each compoqeandy, of equation (5)

converge to the Lebesgue measure (Fig. 1).
1.2.2. p-coupled symmetric tent map

More generally, the coupling pfmaps takes the form

Xpa = F(X,)= AD (X, ), (6)
where
f (%) X,
f(X,)= , X, = (7)
fFO) X
and



A= : 'j.:l’J B : : ! (8)

p,1

i=p
with & =1- z &, on the diagonal (the matrid is always a stochastic matrix iff the
=1, j#i

coupling constants verify, ; >0 for everyi andj).

density

'0,1 T T T T 1
-1,0 -0,5 0,0 0,5 1,0
X
=01 —0—£=0.05
—+—e=0.01 =g =0.001

= Lebesgue measure

Figure 1. Density of iterates oR-coupled symmetric tent maps,
double precision, N, =10°, ¢,=2¢, & =10" to 10°,
N,., =10, initial valuesx, = 0.330, y, = 0.338756-.

iter

It is noteworthy that these families of very weaktbupled maps are more powerful than
the usual formulas used to generate chaotic segagntainly because only additions and
multiplications are used in the computation procassdivision being required. Moreover the
computations are done using floating point or deyirecision numbers, allowing the use of
the powerful Floating Point Unit (FPU) of the modlenicroprocessors. In addition, a large



part of the computations can be parallelized takiagvantage of the multicore
microprocessors which appear on the market of paptonputers.

Moreover, a determining property of such coupleg nsathe high number of parameters
used (px(p-21)for p coupled equations) which allows to choose it pheai-keys, when used

in chaos based cryptographic algorithms, due tchible sensitivity to the parameters values
[16]. It at be shown also, that using control tlys@chniques, synchronization of two systems
(6), withp = 2 or 3, can be reached via exact (dead-bea3yonptotic observers [8].

1.2.3. Computation of approximated invariant measure

In order to assess numerical computations moreraiaty, we define an approximation
R. n (X) of the invariant measure also called the probatdlistribution function linked to the

1-dimensional maj when computed with floating numbers (or numberdauble precision).
For this aim we consider a regular partitionMogmall intervals (boxes) of J defined by
2i

3:'1+ﬁ’ i=0,M (9)

r=[5.8qf .i= OM-iand 1, =[s,, . (10)

the length of each box is equaliel\je and ther, intervals form a partition of the interval

M -1

I=Ur an

All iteratesf ™(x) belonging to these boxes are collected, aftarastent regime of)
iterations decided priori, (i.e. the firstQ iterates are neglected). Once the computation of
N + Q iterates is completed, the relative number ohies with respect th/M in each box;
represents the valug,(s). The approximated, (x) defined in this article is then a step

function, withM steps. AV may vary, we define
M
Pen(9)=T5(#1)  (12)

where #; is the number of iterates belonging to the interva R,  (x) is normalized to 2 on
the intervalJ .

Rin(¥=Ry(9), dr  (13)

In the case ofp-coupled maps, we are more interested by the bligion of each
component(xl, X, %, xp) of X rather than the distribution of the varialetself in J°.

We then consider the approximated probability distron function PM,N(X") associated to

one among several components=X) defined by (6), which are one-dimensional maps. |
this paper we use equal,. for M and N, for N, when they are more explicit.

iter
The discrepancie€, (in norm L), E, (in norm L,) and E, (in norm L) between
«_(X') and the Lebesgue measure, which is the invaria#sore associated to the

Nd\sc' iter

symmetric tent map, are defined by

Er e O =[P, 0O -1 (14)



Eonpen ) =R, 01 (19)

iter

Emde\sch (X]) - H PNd\scv N

iter

(-1 e

As previously said, Fig. 1 shows the convergencethef density of iterates of the
components of 2-coupled symmetric tent maps to_gimesgue measure when converges

towards 0. Moreover, for a fixed value dfi,.. when the numberN,, increases, the
discrepancy betweerPNd‘SCVNner(x") and the Lebesgue measure is expected to converge
towards 0, except if there exist periodic orbitdinite length lower thanN,,, which capture

the iterates. In this case whatsoever the valueNgf is, the approximated distribution

function converges to the distribution functiontb& periodic orbit, if it is unique, or to the
average of the distribution functions of the peigaatbits observed, if not.

Figure 2 shows the errorBLNdlsc’Nner(%) versus the number of iterates of the approximated

distribution functions, with respect to the firstriable x*, for 2 and 3-coupled symmetric tent
map. Same results are obtained for the other Vagad or x°.

The 3-coupled symmetric tent maps model consideezd with very very small value of
€1, seems a sterling model of generator of chaotimbars with a uniform distribution of
these numbers over the intervél It produces very long periodic orbits: Gigapertodrbits
(i.e. with length of period betweeh®’ and 10'*) when computed with simple precision

numbers, and orbits of unknown length when compwtéti double precision numbers.
However these chaotic sequences are not at albnasgquences.

iter

05 &
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wJog (errgr Ly)
(NS BN
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—e— 2 coupled tent rﬁoﬁa@‘“”) —e—3 coupled tent maps

Figure 2. Error ELNdISC’Nner(xl) for 2 and 3-coupled
symmetric tent map, double precisidh, =10,
g=10", &=2¢, N, =101t010°. Initial values
%, = 0.33C, X = 0.338756¢, X = 0.33135342.



2. THE ROUTE FROM CHAOS TO PSEUD®ANDOMNESS VIA CHAOTIC
UNDERSAMPLING

Chaotic numbers are not pseudo-random numbers $ed¢ha plot of the couples of any
component(x:], X.'m) of iterated points( X, Xnﬂ)in the corresponding phase plane reveals

the mapf used as one-dimensional dynamical systems to gendhem via Eq. (6).
Nevertheless, we have recently introduced a famwilgnhanced Chaotic Pseudo Random
Number Generators (CPRNG) in order to compute rfalkteg series of pseudorandom
numbers with desktop computer [14, 15]. This famdybased on the previous ultra weak
coupling which is improved in order to conceal thaotic genuine function.

In this Section, we describe briefly how works tfiist process of undersampling, the
chaotic one.

2.1. Chaotic undersampling

In order to hidd in the phase spac(ex:1 , >{1+1) two mechanisms are used. The pivotal idea

of the first one mechanism is to sample chaotictlly sequencédx), X, X, ..., X\, X..;,...)

generated by théth componentx', selectingx, every time the valuex™ of the m-th

componentx™, is strictly greater (or smaller) than a th@dhT O J, with| # m, for 1<,
m<p.

That is to say to extract the subseque(u;'%), )<1<1>’ >{W..., >'q1q), XM ,...)denoted here

(gZx_z x_qa ) of the original one, in the following way
givenl<sl,m< p,[#m

n(_l) =-1 (17)
z= ><wq>’ with Ny = Ml\ilr{ > Na ‘ X'> -l}

The sequencelX,, X, X,, -+, X, X

q’ gl
numbers.
The above mathematical formula can be best unaetstoalgorithmic way. The pseudo-
code, for computing iterates of (17) correspondod iterates of (6) is:

XO:(xé,)é,... ,)@1,>§): see

n=0;9=0

do { whilen <N
do{While(x,']“sT)compute(x,f,ﬁ,...,)ﬁ”,xf’);n++}
compute(xﬁ,xf,... ,>§§H,>§f); thenn(qg)=n; Z= *tq) N+ +q++}

This chaotic sampling is possible due to the inddpace of each component of the
iterated pointsX, versus the others [13].

) is then the sequence of chaotic pseudo-random

Remark 2.1. Albeit the numberNSampl, of pseudo-random numbeg corresponding to
the computation oN iterates is not knowa priori, considering that the selecting process is



again linked to the uniform distribution of theréges of the tent map od, this number is

. 2N
equivalent to——.
1-T

2.2.  Chaotic mixing

A second mechanism can improve the unpredictabilitghe pseudo-random sequence
generated as above, using synergistically all tmponents of the vectoX, , instead of two.

Givenp - 1thresholds
T,<T,<---<T_,0J(18)

and the corresponding partitiody =[-1,T], 3, =|T,.T[, J, =[T, . T forl< k< p-land
Jpu=[ T dl L with

J=lJ3J (19)

(note that this partition ofl is different from the regular previous one (11)dider the
approximated distribution function).

The second simple mechanism is based on the chaotlersampling combined with a
chaotic mixing of thep-1 sequences

1,1 U1 1 .1 2 L2 U2 2 L2 p-1 p-1 p-1 p-1 o p-1
(xo,xl,xz,...,xn,xnﬂ,...), (xo,xl,xz,...,xn,xn+1,...),..., (x0 X XS L X ,xnﬂ,...)

using the last on(axop, X7y XYy XD xP ) in order to distribute the iterated points with

Ll n ! n+1?

respect to this given partition, defining the smmce(g,g,x_z, w3 Xy Xgaan ) (in pseudo-
code) by

XO:(x;,)é,... A ,>§): see

n=0;9=0

do{ whilen <N
do {While(xrf’DJo)compute(x,f,xf,... ,)gﬁ”,)gf’); n+ +}
compute(x§,>gf,...,>ﬁ”1,>§)
letk be such thax? 0 J,; thenn(q)=n; X = >§q);n+ +:q+ +}

Remark 2.2. In this case alsoNSamp],, is not knowna priori, however, considering that

the selecting process is linked to the uniformritistion of the iterates of the tent map dn
2N

1-T,

one hasNSamp|,, =

Remark 2.3. This second mechanism is more or less linkedaahitening process [28, 29].

Remark 2.4. Actually, one can choose any of the componentsder to sample and mix the
sequence, not only the last one.



2.3. Enhanced chaotic undersampling

On can eventually improve the CPRG previously miied with respect to the infinity

norm instead of the, or L, norms because the, norm is more sensitive than the others
ones to reveal the concealefd4]. For this purpose we introduce a second kihthieshold

T'ON, together withT,---,T,_,[J Jsuch that the subsequenge, X, X,, -+, X, xq+1,---) is
defined (in pseudo-code) by

XO:(x;,)é,... ,)@1,>§): see
n=0,9=0
do{ whilen <N
do {while(n<n,,,+T' and X0 J)

computéxﬁ,xﬁ,... ,>§f”l,>§f); n+ +}

compute(xﬁ,xf,... ,Xﬁ“Jﬁ)
letk be such thak? [0 J,
thenn(g)=n; x =X n++q++
Remark 2.5. In this case alsoNSampl, is not knowna priori, it is more complicated to give

an equivalent to it. However, considering that sleéecting process is linked to the uniform
distribution of the iterates of the tent map énand to the second threshdly it comes that

NSampl, < Mi 2N E .

1-T, T
Remark 2.6. The second kind of threshol@i' can also be used with only the chaotic
sampling, without the chaotic mixing.

2.4. A window of emergence of randomness

In [15, 16] we show that if one consider the errdfs,

Ez,Nd‘SC,N (X) = H PNd‘SC' Niter( X —1HL2 and Ew'Ndiscaner (X) = H P,

iter

N, (X) = H PNdisc! Niler( X) -1

disc » ' Viter

L

(x)—lHLw together with the

disc’ Niler
correlated distribution functions which assess ittdependence of each component of the
iterated pointsX, versus the others, a window of emergence comescliato sight for the
valuese, 0[ 107°,107 ], in the case = 4 ands, ; = =i¢,. We have also performed NIST

test developed by the National Institute of Staddand Technology [23], in order to check
carefully the random nature of such numbers [7].

Then there is a route from chaos to randomnessgusite process of chaotic
undersampling.

3 GEOMETRIC UNDERSAMPLING

The previous route from chaos to randomness usestichundersampling. It is possible to
couple in another way tent maps on the torus” :[—1,]]p ORP, which can directly provide

random numbers, without sampling or mixing, prodigeis large enough, although it is
possible to combine these processes with it. Afeatiewing this ring coupling in high

10



dimension, we introduce the new geometric underfagpn order to obtain randomness
with small values op (for examplep = 2).

3.1.Pseudo-random number s generated by ring coupled mapping

Consider the mapping defined on thdimensional torusvl j:J° - J°

X; >¢+1 l—2xﬁ+k1XXi

2 2 1-2x3+k,x X
A e A CY

X ) \Xh) (1-2x7+k,x X,

with the parameterk D{—l,]} . In order to confine every variabld on J” we do, for every
iteration, the transform

n+1l

if(x),,>1) substract :

n+1

if(x),, <=1 2
{ if (X ) add 21)

The particularity of this coupling is that eachigate x' is coupled only with itself and
x!*!, as displayed on Fig. 3a. At first glance, in orteenrich the random properties of the
map, it could seem interesting to add supplemertiays couplings between these variables,

as shown on Fig. 3b. However in this case a crogpimng is inappropriate because it would
increase the determinism and therefore deteridtsestatistical properties which we are

looking for.
To evaluate the random properties of these gernrerdhe set of NIST tests have been used

again.
E? Q k! E? Q k!
e LT
“HQ j 12 kr—lQ i:‘,v( ‘\\ j 1:2

Figure 3a (left). Ring coupling between the variablgs.
Figure 3b (right). Cross coupling between the variabies

The random properties validations of both a 4-dis@mal system and a 10-dimensional
one have been carried out [5]. For this purpose, dhaotic carrier output needs to be
guantised and binarized (0 and 1) in order to belated as being random using NIST tests.
Therefore, different methods of binarization (catiwg real signals to binary ones) have been
implemented and compared.

A first 1-bit binarization has been applied to system (21) output, defined ag = x!

with jO[1,p]

{if(ynZO) b=1 22

else b= C

11



The results showed to be highly sensitive to thge tgf binarization. Eventually, after
testing several different methods, a 32-bit biretion has been chosen as being the most

suitable solution. Because the system is confinethé p-dimensional torusJ®, 31 bits are
assigned to represent the decimal part, and b bitet sign. To illustrate the results, the NIST

tests for the 4-dimensional system with parametefS(-1)** are shown in Fig. 4. The

chosen conditions are: length of the original segae=10"bits, length of bit string 20’ bits,
quantity of bit strings = 100. The output of thesteyn has been arbitrary chosen as being:

y=X.

Furthermore, as the results show their independé&oaoe the initial conditions, every bit
string in this test is the resulting sequence diiftierent randomly chosen initial condition.
The criterion for a successful test is that frealue has to be superior to the significance
level (0.01 for this case). For the present modakltests were successful thus the sequences
can be accepted as being random.

1 2 o3 4 Ch Ce CY¥ CB C% 10 P-VALUE PROPORTION STATISTICAL TEST

g 5 13 o o 12 6 1% g8 11 0.102528 96,100 Freguency
Lt ol 5 10 10 10 14 3] 8 6 0.437274 99,100 ElockFraguency
11 5 g 11 10 5 11 11 13 15 0.41%021 o7 /100 Cumul ativesums
g g 17 10 1o 3] 7 11 15 10 0.2133058 G700 Cumulativesums
5 g8 17 13 <] g & 14 10 11 0,075719 oo/100 RUNS
11 11 1o 13 ) 5 g 8 15 10 0.§37110 S99,/100 LDnEestRun
4] g8 17 14 1o g 9 15 7 6 0.122325 SO 100 Ran
510 9 13 14 1o ] 8 12 10 0.991468 S9,/100 FFT
14 15 5 1o 14 10 11 5 4 5 0.191e87 SE/100 Monover lappingTemplate
10 8 11 0% 90 13 712 10 11 0.964295 599,100 overlappingTemplate
13 1a 4] 8 7 1o 13 10 8 9 0.4550537 1002100 universal
S 10 12 8 1¢ 11 5 014 11 10 0.818537 7100 ApproximateEntropy
(4] 5 4] 5 o 11 5 5] g 5 0.637119 65/66 RandomExcursions
3 5 3] 7010 10 ] G 4 6 0.407091 65 /66 RandomExcursionsvariant
3 8 8 12 12 9 13 8 13 14 0.319084 100100 sariall
4 3 12 18 12 g g8 14 9 12 0.028817 100100 Linearcomplexity

Figure 4. Example of NIST Test fok' =(-1)* ,i= 1,4, each sequence of
components satisfies the NIST test for randomness.

3.2.Ring coupling of 2-dimensional symmetric tent map

Although the system (20) is a good PRNG whek 4, in lower dimension 2 and 3, the
chaotic numbers are not equidistributed on thest¢sae Fig. 5).
In order to improve the ring coupling mechanismaw dimension, we introduce now a

very new type of undersampling based on geomettara of the invariant measure. We
present this very new mechanism which allows thergence of randomness from chaos, in

the simplest case, the 2-dimensional ring mapgihgon the square?, with k* = k* = 1.
Let M, be defined by

Xy = 1= 2|+ X 23)
Xy = 1= 2]+ %
. j _
with 1. if (_xn+1 <-1) add 2 (24)
if(x!,,>1) substract :

12



3.2.1.Critical lines

Figure 5 shows the distribution of the iteratesydtem (23) (the transient of the fi|5|596
iterations has been cut off). It can be observed tie attractor contains regions where the
point density is lower, and two lozenge-like holiss possible to define critical lines which

form a partition of the squard®. The critical lines CL [19] are singularities dfreension 1
and represent an important tool for the analysisasiinvertible maps. The holes on Fig. 5 are

completely delimited by segments of the criticahek CL*,CL>*,CLS?,CL*, and
CL%2,CL®, CL, CL?, defined below.

The critical lines separate regions of the phaseespvith different number of preimages
(backward iterates). In the case of piecewise tineaps, they are the first iterates of the lines
of discontinuityCL_, of the system.

For the two dimensional system (23), there are fgnaups of critical linesCL with
preimagesCL_, given by

Critical linesA: CL, :x' =0

and cL:x =-2¢ -1 if ¥*>0 (25)
CLM™: x*=2x-1 if ¥¥’<O0
Critical linesB: CL%, : x' =-1

CLM: x*=2x if ¥<Q ¥0[q0]
CLP?: x*=-2x'-2 if ¥*>Q XO[-1-04§

and 26
CLP®: x*=2x'-2 if ¥<Q x0[05] (20)
CL: x*=-2x" if ¥>0Q ¥0[-05(
Critical linesC: CL, : x* =0
CLflIx2=-%(x1+1) if x>0
and 1 (27)
CL*: x* =3 (X +1) if X<0
Critical linesD: CL®, : x> =-1
1
cLP: XZ‘:XE if x<0, x¥0[0,0§
1
CLY*: x==2-=1 if x>0 x0[-1-09
and . (28)
cL>®: xzz—% if x>0, x¥*O[-05(

1
cL*: =241 if X< x0[05]

13



Figure 5. Critical lines of the mapMW,on the torusJ® (a

square) [26].

3.2.2.Markov partition of the square

Our aim is first to use the partition defined bggh critical lines in order to do a cell-to-
cell analysis and, by the means of a Markov processompute explicitly the invariant
measure of iterates associated to system (23)rd-igudisplays the 32 sub-regions of the

squareJ?, labelled from a to p and &’ to p’. For clarity the presentation, we have labelled

from (1) to (IV), the four quadrants of°.

Figure 6. The 32 sub-regions for a partition of the squafe

14



Figure 7 a (left). The nine regionatoi of quadrant (1)
Figure7 b (right). The imagesM, (I) of the nine regions of quadrant (1).

Straightforward computation shows that the imade=ach region, by the mappird,, is

either one, two or three regions of the same pamtiof the squarel?. Figures 7a and 7b
display the images of the regions embedded initbequadrant (I). Figures 8a and 8b display
the images of the regions embedded in the secoadrgut (I1). The colour is the same for
every region and its corresponding image, excemntvo regions are mapped on the same
region, in this case there is a mix of colourstmmdommon part of the image.

Figure 8 a (left). The seven regiorjsto p of quadrant (I1)
Figure8b (right). The imagesM, (Il) of the seven regions of quadrant (l1).

The overall correspondence between regions of #nttipn and their image is given by
the Markov matrixM_ which is displayed on Table 1. The computatiothef coefficients of

this matrix, which are rational numbers, is basedhe ratios of surfaces of bounded regions.

15
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c x|l ¥ ] x
d Lt s 5 | u 5
€ plalpjtaglr lqglplqlp
f 5 |u 5 5 t
g x|y | x
h 5 u s |s |t
1 X ¥ X
il v | z ¥
k X vy X
1 X ¥ X
m v|jofo[w |o]o]|¥
n X |¥ |x
o X ¥ x
P ¥ z v
a’ X ¥ X
b? 5 u 5 5 t
< X ¥y | x
d’ tls|s|u|s
© |plglplglr{glplglp
i s|u |s|s]|¢t
g X ¥ X
h’ t |s 5 |u 5
1 X ¥ X
I ¥ Z ¥
K’ X ¥ X
I x|y | x
m’ v |o o | w 1} o |¥
n’ X ¥ X
o x|lry]x
p’ ¥ |z ¥

Table 1. Markov Matrix M, .

In order to display the82x 32 matrix M, on one page, we have labelled the coefficients
using letters which are not related to the namekefegions.

_1 -—1'q——3' _ 4.
12’7 200" 20 20
S:E;t:_z;u:f;\/:_l; (29)
9 9 9 6
1 1 3 2
W=— X=—=¥V=—,Z2=—,
3 5 5 3

3.2.3.Exact computation of invariant measure associated to M,,

With the help of Markov matrixM,,
invariant measure associated M, . For every region on Figure 6, we define a qugrdit

it is straightforward to compute explicitly the

initial points calledQ', i=1,32 uniformly scattered on it, and we compute its atefS .
We normalise both quantities ' Q' =|QJ=4, and )°S =|§= < Hence it is possible to

define the density of iterates on each region.

_Q
d=—= (30)
S
Ql dl
LetQ=| : |andD=| : | the vectors of quantities and densities okthiapplying
Q32 d32

16



(30) to every region. Then starting from an arbitriitial repartition of points onJ?, say
Q
Q,=| : |, and applying repeatedly the equation

32
0

Qm+1 = Mtan (31)
The sequence of vectof,} _converges to a limit vectd@which satisfies
Q=M;Q (32)

and gives the invariant measure, the density o€lwls the vectoD, using (30).
Numerical results:

Q 1/8
Starting fromQ, =| : [=| : |, Q is obtained rapidly, as

32

A 1/8
Qoo 1/14 U0 10/7
Qo | |37/28 dioo | |5/7
Qo | [1/14 o _ dipo | |10/7
Q| |3/28| »which gives using (30), d: | |s/7 .

QSOO = = = Q DSOO = = = D

Q2| |47 a2 | |12/7
Qx| [3128 @z, | 917
Q| |72 o I e
Qo dso

Remark 3.1. Computing directly this density, iterating (23) tgp 10" iterates leads to the
same result.

3.3Geometric under sampling

The exact computation of the densﬁ/of the invariant measure shows that this density i
constant on each region. The geometric undersaqgimncess consists in magnifying a

square G included in one region (as for examplestpeareG =[0.36,0.64x[ 0.36,0.4

included in region m on Fig. 9), up to the sizehaf squarel®.

3.3.1.Algorithm of geometric undersampling

Let G =[>g1 : )gl}{ X, ﬂ the square in which we will undersample the iegit(23) and,

1 X+ 2 _xX+X
2

Xnean = 50 Xmean . In algorithmic form, the pseudo-code, to georgetri

undersamplé iterates of (23) is

17



Figure 9. The squareG =[0.36,0.64x[ 0.36,0.4: in
which iterates of (23) are geometrically undersaupl

XO:(x;,)é): seel
n=0;
do { whilen <N compute(xﬁ,xf) jif ()gﬁ)f)D G then

P 1_ 1 _ 2_X2
x; = 2|:—anrl _Xr::la”j| , )§ = —X)r;z_ ;‘zea{|; g=q+1; n+ +}

Remark 3.2. In this case, the undersampling process providesstreams of pseudo-random
numbers.
Remark 3.3. In this case,NSamp]|,, the number of geometrically undersampled iterées

not knowna priori, however, considering that the selecting procgedmked to the uniform

2
distribution of the iterates of the tent map dh, one hasNsamp|, :@x d', where
d™ is the density of the measure in region m.

3.3.2.Numerical tests

We have applied this process in the case of thareg@ of Fig. 9, withN = 10” which
gives NSamp),, =3.35x 10°. Figure 10a displays the densities of the sevgioms j, k, |, m,
n, o, p of quadrant (Il) which are equal to
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Figure 10 a (left). densities of the seven regions j, k, I, m, n, of guadrant (I1)
Figure 10 b (right). Uniform density of iterates in the square
G=[0.36,0.64x[ 0.36,0.60f quadrant (lI).
Figure 10b shows the uniform density of iterates ithe square
G=[0.36,0.64x[ 0.36,0.§of quadrant (Il). On Fig. 11 the square is magdifigo to the

size of the squard?. The vertical scale is fitted near the invariasbesgue measure.
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Figure 11. Uniform density of iterates of the square
G =[0.36,0.64x[ 0.36,0.4- magnified to the squara”.

We have also used NIST test to confirm the randawpgoty of the geometrical
undersampling process. They are all successful {2
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RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
Cl C2 C3 C4C5C6C7C8CY C10 P-VALUE PROPORTION STATISTICAL TEST
129 7 91211 8 11 13 8 0924076  99/100 Frequency

1 4 3 4 7 5 916 16 35 0.000000* 100/100  BlockFrequency

9 91012 11 8 9 10 10 12 0.996335  99/100 CumulativeSums

10 91212 9 710 10 9 12 0.983453  99/100 CumulativeSums

11 12 11 8 12 7 12 6 10 11 0.883171 99/100  Runs

9 913 8 9 817 810 9 0595549  100/100 LongestRun

6111111 9 8 814 9 13 0.798139 100/100 Rank

1510 7 8 8 81516 7 6 0.153763  97/100 FFT

12910 13 9 11 7 15 4 10 0474986  98/100 NonOvetlappingTemplate

12 610 613 6 8 8 17 14 0.145326  99/100  OvetlappingTemplate

18 12 13 11 910 5 8 9 5 0.145326  99/100 Universal

11 812 11 11 14 8 10 7 8 0.883171 99/100  ApproximateEntropy

3569 4 37 5 6 110.145326 59/59  RandomExcutsions

7 6 62 6 76 7 4 80.637119 59/59  RandomExcursions

2 6 45 5 610 6 7 8 0334538 59/59  RandomExcursionsVatiant
8151312 9 1213 5 9 4 0.224821 98/100  Serial

9 9 61313 712 9 10 12 0.798139 99/100  LinearComplexity

The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is
approximately = 96 for a sample size = 100 binary sequences.

Figure 12. Geometrical undersampling: each sequence of coemen
satisfies the NIST test for randomness.

4 NOISE-RESISTING CIPHERING

As a first example we propose a novel noise-regjstiphering based on a large number of
uncorrelated chaotic sequences. These cogeneretgerrges are actually used in several
steps of the ciphering process. Noisy transmissmmlitions are considered, with realistic
assumptions. The efficiency of the proposed methmd ciphering and deciphering is
illustrated through numerical simulations basedem coupled chaotic sequences [5]. It can
be also adapted to geometric undersampling, prdvities undersampling is done in
dimension 4.

In this section we detail the noise-resisting crpldetransmission principle, consisting of
two steps: the ciphering process and the transomgsiocess (see Figures 13, 14). Both resort
to the coupled chaotic pseudo-random generatecregs.

4.1.Ciphering principle

We begin with some notations that will be usedhe sequel. Thelain textis denoted
(t ). n: the letterst,, for k=1;--,N belong to the alphabdt,,---,I,} composed ofr

letters.
The ciphered textis a sequence of real numbers, denoyed k=1,--,N and eachy,

belongs to the interval =[—1,:I] JR. The transmitted signal (at the transmitter side)

denoteds, while the received signal i, (at the receiver side).

In this paper we consider noisy transmission camul{ which means tha, = s +a,,
wherea, >0 denotes an unknown additive noise at timeéVe make the following classical
assumption: the additive noise is bounded by a kniesundK , which means that
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Is,-%|=a.,< K, On=C (33)
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Figure 13. General scheme of the ciphering and the cipheagdmission
principle (coding and transmitting).
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Figure 14. General scheme of the ciphering and the cipheagdmission
principle (receiving and decoding).

We detail first how to transform each letter of tpin textt, into a real number
¥ O[-11], with an original noise-resisting method. In acsetstep, the sequenggwill be

transformed to obtain a uniform distribution on thierval [—l,:l] .

» Define a partition as follows:

[-1]={ I, (39

m=1,7
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with a,, b, the bounds of the interval each intervgl i.e.: 1, =[a,,.b,] .
In fact, owing to the presence of additive noiset all real numbers insidé can be

selected, one must avoid an interval of lenthat each side of the interva),. Therefore
some smaller intervals need to be defined.

» Define a sub-interval , included in the corresponding intervig| such that:

I =[a,b,]O1, (35)
and

[a,-K,b,+K]Ol, (36)

where we recall thaK is the upper bound on the noise, see (33).
Then the coding consists in randomly (i.e. with theo pseudo-random sequence

generated by (20)x°™*, or the geometric undersampling in dimension 4)osing for each
letter t, of the plain text, a real numbey, inside the interval, (and notl ) if t, =1 _. Each
interval |, corresponds to a lettér, for m=1;-- j7. Remark that each letter has a frequency

of apparition in the plain text, depending on thigial language. Therefore one must carefully
choose the length of each intervig| in proportion to the corresponding frequency o th

letter | .. An illustration is given by Fig. 15 for an alplelwith three letters: the lettek has
a frequency of 10%, the lett® has a frequency of 30% and the let@zff 60%.

Figure 15. Repartition of an alphabet of three letters.

* Once this first step of the coding is aeby one has to ensure that the
ciphered text has a random-like distribution ins[dé,]]. With the aforementioned coding
alone, this property cannot be ensured, as it easebn in Fig. 16.
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0ar

Figure 16. Signal to be transmitted without transformation.

Since one needs to leave some holes at the eddke oftervalsl,, to resist the additive

noise, the transmitted signal cannot have a randamrepartition. So we propose to
transform the ciphered datg before transmitting it.

For all stepsnN such that an encrypted letter is transmitted, vopgse to transmit not
directly y, but:
Yot X2 if v+ x20[- 1.3
Yo SqVat X7+ 2 0 v+ fT7<-1 (37)
y +xP=2 ify + x> 1

For simplicity of presentation, in the sequg|, will denote ¥., the ciphered message to
transmit.

0&r

06r

0.4r

02r

1]

0 DIS 1I 1.I5 ﬁ 24
Figure 17. Signal to be transmitted after transformation.

Then the obtained signal to transmit has the ddsireform repartition, as illustrated by
Fig. 17.
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4.2. Transmission principle

We present now how to transmit the ciphered textgusubstitution method in a new
pseudo-random sequence. The transmitted signehistelds, .

The ciphered texy, , defined by (37), is not directly transmittedisitthaotically hidden in

a chaotic carrier signal, as it is explained below.
The ciphering makes use of two coupled chaotic eecgs: X’ is used as chaotic carrier,

while x” is used to select the substitution times.

L jf xP<T
{xn if xP< (38)

Yooy I X02T

where T is a predefined threshold. For example, asxheare equally distributed on the
interval [—1,]], if one choosed =0.8, one ciphered letter will be transmitted in averagch

10 element of the sequenag. If one choosed =0.98, one element over 100 is replaced by

a letter.
We do not detail here the sequeriie), it is easily understandable thiatn) increase of

+1 each times, =y, ,,, in order to transmit each element of the cipheegliencey, .

4.3.Decoding principle

At the receiver end, suppose that the same PRN@edeby (20) is available. The
transmitter and the authorized receiver have fikegl same parameters and same initial
values, therefore the ciphering is a symmetrical. on

According to the substitution principle defined {88) and the hypothesis (33) on the
additive noise, the received signal can be expdease

§,=x+a,0r Y, ta, (39)

Since the initial conditions of the chaotic psewdndom number generator (20) are
assumed to be public, the receiver exactly knowsnwvk® is smaller or larger than the
thresholdT , so the receiver is able to reconstruct the semj(sn(n)+an) i.e. the sequence
y, + B, where 5, =a, for g=k(n).

Since B, <K , there existan[{ 1,2;- 7z} such that§ 01, .

The receiver, also, exactly knows the valuexf and deduces from the rules (37) the
value y,. Then the knowledge of the correspondence betiwreemtervall , and the letter
|, enables the receiver to retrieve the initial mgssa

4.4 .Numerical illustration

Now we summarize the main steps of the proposeatitdig:
1) Choose the secret parametkrs 1 or k =-1, for i 0{1,2,--, ¢} .
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2) Define the initial conditions shared by the tmauitter and the receiver.

3) Iterate the PRNG (20) with the previous inittainditions, both at the transmitter
and the receiver side.

4) Apply the ciphering and transmission principtedatailed before.

1 1 1 1
1] 04 1 18 2 25

Figure 18. Received noisy signal.

The Fig. 18 shows the noisy signal at the receside (recall that the transmitted signal is
given by Fig. 17). Notice that the Figs. 2 to 4res@nt our simulations withQ® iterations.

CONCLUSION

We have proposed a new mechanism of undersamgdlidgaotic number obtained by the
the ring coupling mechanism of one-dimensional méipshe case of 2 coupled maps this
mechanism allows the building of a PRNG which pasdeNIST Test.

This new geometric undersampling is very effectise generating 2 parallel streams of
pseudo-random numbers, as we have shown, compaérefully their properties, up to
sequences 010" consecutives iterates of (23) which provides mbant3.35x 10°random
numbers in very short time. In a forthcoming paper will test both 3- and 4-dimensional
cases.

In addition we have proposed a novel method oferesisting ciphering. The originality
lies in the use of a chaotic pseudo-random numbeemtor: several co-generated sequences
can be used at different steps of the cipheringgs®, since they present the strong property
of being uncorrelated. Each letter of the initifdh@bet of the plain text is encoded as a

subinterval oi{—l,]] . The bounds of each interval are defined in fuumcof the known bound
of the additive noise. A pseudo-random sequenaeesésl to enhance the complexity of the
ciphering. The transmission consists of a subgiitutechnique inside a chaotic carrier,

depending on another cogenerated sequence. Thmerfly of the proposed scheme is
illustrated on some numerical simulations.

Cryptography is a wide field of research, in whitke brilliant formulae of Srinivasan

Ramanujan have been largely used. May be, it wilpbssible, in a near future, to link such
formulae with chaos in the domain of emergent ramakess.
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