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CRYPTOGRAPHY BASED CHAOS VIA GEOMETRIC UNDERSAMPLING OF RING-COUPLED ATTRACTORS

We propose a new mechanism for undersampling chaotic numbers obtained by the ring coupling of one-dimensional maps. In the case of 2 coupled maps this mechanism allows the building of a PRNG which passes all NIST Test. This new geometric undersampling is very effective for generating 2 parallel streams of pseudorandom numbers, as we show, computing carefully their properties, up to sequences of 10 12 consecutives iterates of the ring coupled mapping which provides more than 3.35 x 10 10 random numbers in very short time. Both 3 and 4 dimension cases can be managed in the same way.

In addition we recall a novel method of noise-resisting ciphering. The originality lies in the use of a chaotic pseudo-random number generator: several co-generated sequences can be used at different steps of the ciphering process, since they present the strong property of being uncorrelated. Each letter of the initial alphabet of the plain text is encoded as a subinterval of [-1,1]. The bounds of each interval are defined in function of the known bound of the additive noise. A pseudo-random sequence is used to enhance the complexity of the ciphering. The transmission consists of a substitution technique inside a chaotic carrier, depending on another cogenerated sequence. This novel noise-resisting ciphering method can be used with geometric undersampling when 4 mappings are coupled.

INTRODUCTION

During the last decade, it has been emphasized that the undersampling of sequence of chaotic numbers is an efficient tool in order to build pseudo-random number generators (PRNG) [START_REF] Lozi | Complexity leads to randomness in chaotic systems[END_REF]. Randomness appears to be an emergent property of complex systems of coupled chaotic maps [START_REF] Lozi | Emergence of randomness from chaos[END_REF]. Several kinds of coupling can be considered as ultra-weak coupling or ring coupling, … [START_REF] Lozi | chaotic mathematical circuitry[END_REF]. An ultra-weak coupling recovers chaotic properties of 1dimensional maps [START_REF] Lozi | Giga-Periodic Orbits for Weakly Coupled Tent and Logistic Discretized Maps[END_REF][START_REF] Lozi | New Enhanced Chaotic Number Generators[END_REF] when computed with floating numbers or double precision numbers. Chaotic undersampling with thresholds based on one component of the coupled system adds random properties to the chaotic sequences. Double threshold sampled sequence (i.e., using both thresholds of different nature) improves such random properties [START_REF] Lozi | Chaotic Pseudo Random Number Generators via Ultra Weak Coupling of Chaotic Maps and Double Threshold Sampling Sequences[END_REF]. Ring coupling deals when p 1-dimensional maps are constrained on a torus [START_REF] Espinel | New alternate ring-coupled map for multi-random number generation[END_REF][START_REF] Taralova | Dynamical and statistical analysis of a new Lozi function for random numbers generation[END_REF], this coupling can directly provide random numbers, without sampling or mixing, provided the number p of maps is large enough, although it is possible to combine these processes with it. However in lower dimension 2 and 3, the chaotic numbers are not equidistributed on the torus. Therefore we introduce a particular "geometric" undersampling based on the property of piecewise linearity of the invariant measure of the system of p 1-dimensional ring coupled maps. This new geometric undersampling is very effective for generating parallel streams of pseudorandom numbers with a very compact mapping.

Several applications in various fields (chaotic optimization, evolutionary algorithms, secure information transmission, chaotic cryptography, …) of such under-sampling process can be found. In this article we focus on the last ones.

-As a first example we propose a novel noise-resisting ciphering based on a large number of uncorrelated chaotic sequences. These cogenerated sequences are actually used in several steps of the ciphering process. Noisy transmission conditions are considered, with realistic assumptions. The efficiency of the proposed method for ciphering and deciphering is illustrated through numerical simulations based on ten coupled chaotic sequences [START_REF] Cherrier | Noise-resisting ciphering based on a chaotic multi-stream pseudo-random number generator[END_REF].

-A second one is the use of such sequences in a chaotic encryption algorithm [START_REF] Taralova | Chaotic Generator Synthesis: Dynamical and Statistical Analysis[END_REF].

In Section 1 we briefly recall properties of chaotic mappings, when used alone or ultraweakly coupled. Section 2 describes the route from chaos to randomness via chaotic undersampling, discovered during the last decade. In Section 3, we introduce geometric undersampling in the scope of ring coupled mapping. In Section 4, we propose in addition, a novel method of noise-resisting ciphering. The originality lies in the use of a chaotic pseudorandom number generator: several co-generated sequences can be used at different steps of the ciphering process, since they present the strong property of being uncorrelated. This novel noise-resisting ciphering method can be used with geometric undersampling when 4 mappings are coupled.

RECOVERING CHAOTIC PROPERTIES OF NUMERICALLY COMPUTED CHAOTIC NUMBERS

Numerical approximation of chaotic numbers

Chaos theory studies the behavior of dynamical systems that are highly sensitive to initial conditions, an effect which is popularly referred to as the butterfly effect. Small differences in initial conditions (such as those due to rounding errors in numerical computation) yield widely diverging outcomes for chaotic systems, rendering long-term prediction impossible in general. This happens even though these systems are deterministic, meaning that their future behavior is fully determined by their initial conditions, with no random elements involved. In other words, the deterministic nature of these systems does not make them predictable. The first example of such chaotic continuous system in the dissipative case was pointed out by the meteorologist E. Lorenz in 1963 [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF].

In order to study numerically the properties of the Lorenz attractor, M. Hénon an astronomer of the observatory of Nice, France, introduced in 1976 a simplified model of the Poincaré map of this attractor [START_REF] Hénon | A Two-dimensional mapping with a strange attractor[END_REF]. The Lorenz attractor being imbedded in dimension 3, the corresponding Poincaré map is a mapping from the plane ℝ² into ℝ². Hence the Hénon mapping is also defined in dimension 2 and is associated to the dynamical system 

+ +  = + -  =  , (1) 
which has been extensively studied since thirty six years. More simple dynamical systems in dimension one, on the interval

[ ] 1,1 J = - ⊂ ℝ into itself 1 n a n x f ( x ) + = , (2) 
corresponding to the logistic map

2 1 a a f L ( x ) ax ≡ = - , (3) 
or the symmetric tent map

1 a a f T ( x ) a x ≡ = - , (4) 
have also been fully explored in the hope of generating random numbers easily [START_REF] Sprott | Chaos and Time-Series Analysis[END_REF]. However when a dynamical system is realized on a computer using floating point or double precision numbers, the computation is of a discretization, where finite machine arithmetic replaces continuum state space. For chaotic dynamical systems in small dimension, the discretization often has collapsing effects to a fixed point or to short cycles [START_REF] Gora | Absolutely continuous invariant measures that cannot be observed experimentally[END_REF].

It seems that the computation of numerical approximations of the periodic orbits leads to unpredictable and somewhat enigmatic results. As says O. E. Lanford III [START_REF] Lanford | Some informal remarks on the orbit structure of discrete approximations to chaotic maps[END_REF] "The reason is that because of the expansivity of the mapping the growth of roundoff error normally means that the computed orbit will remain near the true orbit with the chosen initial condition only for a relatively small number of steps typically of the order of the number of bits of precision with which the calculation is done. It is true that the above mapping like many 'chaotic' mappings satisfies a shadowing theorem (see [START_REF] Palmer | Shadowing in Dynamical Systems: Theory and Applications[END_REF][START_REF] Pilyugin | Shadowing in Dynamical Systems[END_REF]) which ensures that the computed orbit stays near to some true orbit over arbitrarily large numbers of steps. The flaw in this idea as an explanation of the behavior of computed orbits is that the shadowing theorem says that the computed orbit approximates some true orbit but not necessarily that it approximates a typical one."

The collapsing of iterates of dynamical systems or at least the existence of very short periodic orbits, their non constant invariant measure, and the easily recognized shape of the function in the phase space avoid the use of one-dimensional map (logistic, baker, or tent, …) as a Pseudo Random Number Generator (see [START_REF] Lozi | Can we trust in numerical computations of chaotic solutions of dynamical systems[END_REF] for a survey).

Remark 1.1 However, the very simple implementation in computer program of chaotic dynamical systems led some authors to use it as a base of cryptosystem [START_REF] Baptista | Cryptography with chaos[END_REF][START_REF] Ariffin | Modified Baptista type chaotic cryptosystem via matrix secret key[END_REF]. In addition it seems that for some applications, chaotic numbers are more efficient than random numbers. That is the case for evolutionary algorithms [START_REF] Pluhacek | Extended Initial Study on the Performance of Enhanced PSO Algorithm with Lozi Chaotic Map[END_REF][START_REF] Tang | Parrondo's games with chaotic switching[END_REF] or chaotic optimization [START_REF] Araujo | Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system[END_REF].

In this paper we show how to overcome the poor quality of chaotic generators using geometric undersampling. This special undersampling we introduce in this article is one among others undersampling processes we have studied before. In order to explain the difference between these processes we give in Sec. 2 a brief survey of them. Before doing this survey, we have to show how to stabilize the chaotic properties of chaotic number when realized on a computer.

Very long periodic orbits for ultra-weakly coupled tent map

The first step in order to preserve the genuine chaotic properties of the continuous models in numerical experiments is reached considering ultra-weak multidimensional coupling of p one-dimensional dynamical systems instead of solely a one-dimensional map.

2-coupled symmetric tent map

In order to simplify the presentation below, we use as an example the symmetric tent map (4) with the parameter value a = 2, later denoted simply as f, even though others chaotic map of the interval (as the logistic map, the baker transform, …) can be used for the same purpose (as a matter of course, the invariant measure of the chaotic map considered is preserved).

When p = 2, the system is simply described by Eq. ( 5)

1 1 1 1 2 2 1 1 n n n n n n x ( ε ) f ( x ) ε f ( y ) y ε f ( x ) ( ε ) f ( y ) + + = - +   = + -  , (5) 
We use generally for double precision numbers. In both cases, with these numerical values, the collapsing effect disappears and the invariant measure of any component is the Lebesgue measure [START_REF] Lozi | Giga-Periodic Orbits for Weakly Coupled Tent and Logistic Discretized Maps[END_REF] as we show below. In the case of computation using floating points, starting form most initial condition, it is possible to find a Mega-Periodic orbit (i.e. with period equal to 1,320,752). When computations are done with double precision number it is not possible to find any periodic orbit, up to 11 [START_REF] Espinel | New alternate ring-coupled map for multi-random number generation[END_REF] 10 n = × iterations. In [START_REF] Lozi | Giga-Periodic Orbits for Weakly Coupled Tent and Logistic Discretized Maps[END_REF] the computations have been performed on a Dell computer with a Pentium IV microprocessor using a Borland C compiler computing with ordinary (IEEE-754) double precision numbers.

When 1 ε converges towards 0, the iterates of each component x n and y n of equation [START_REF] Espinel | New alternate ring-coupled map for multi-random number generation[END_REF] converge to the Lebesgue measure (Fig. 1).

p-coupled symmetric tent map

More generally, the coupling of p maps takes the form ( ) ( )

1 n n n X F X A f ( X ) + = = ⋅ , (6) where 1 ( ) ( ) ( ) 
n n p n f x f X f x       =         ⋮ ⋮ , 1 n n p n x X x       =         ⋮ ⋮ , (7) 
and 

=1-ε ε ε ε ε =1- ε ε ε A ε ε =1- ε ε ε ε ⋯ ⋯ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋯ ⋯ = = = = ≠ = - ∑ ∑ ∑ , (8) 
with

j p i ,i i , j j 1, j i = 1- ε ε = = ≠
∑ on the diagonal (the matrix A is always a stochastic matrix iff the coupling constants verify 0 i , j ε > for every i and j).

-0,1 0,1 0,3 0,5 It is noteworthy that these families of very weakly coupled maps are more powerful than the usual formulas used to generate chaotic sequences, mainly because only additions and multiplications are used in the computation process, no division being required. Moreover the computations are done using floating point or double precision numbers, allowing the use of the powerful Floating Point Unit (FPU) of the modern microprocessors. In addition, a large part of the computations can be parallelized taking advantage of the multicore microprocessors which appear on the market of laptop computers.

Moreover, a determining property of such coupled map is the high number of parameters used (

( 1) p p ×for p coupled equations) which allows to choose it as cipher-keys, when used in chaos based cryptographic algorithms, due to the high sensitivity to the parameters values [START_REF] Lozi | Emergence of randomness from chaos[END_REF]. It at be shown also, that using control theory techniques, synchronization of two systems [START_REF] Gora | Absolutely continuous invariant measures that cannot be observed experimentally[END_REF], with p = 2 or 3, can be reached via exact (dead-beat) or asymptotic observers [START_REF] Hénaff | Exact and Asymptotic Synchronization of a new weakly coupled maps system[END_REF].

Computation of approximated invariant measure

In order to assess numerical computations more accurately, we define an approximation , ( )

M N P
x of the invariant measure also called the probability distribution function linked to the 1-dimensional map f, when computed with floating numbers (or numbers in double precision). For this aim we consider a regular partition of M small intervals (boxes) r i of J defined by

i 2i s 1 , i 0, M M = -+ = ( 9 
) i i i 1 r s , s , i 0, M -2 + = =     and [ ] M 1 M 1 r s , 1 - - = (10) 
the length of each box is equal to 2 M and the i r intervals form a partition of the interval J

1 0 M i J r - = ∪ (11) 
All iterates f (n) (x) belonging to these boxes are collected, after a transient regime of Q iterations decided a priori, (i.e. the first Q iterates are neglected). Once the computation of N + Q iterates is completed, the relative number of iterates with respect to N/M in each box r i represents the value ( )

N i
P s . The approximated ( ) N P x defined in this article is then a step function, with M steps. As M may vary, we define ( )

, ( ) # M N i i M P s r N = (12) 
where #r i is the number of iterates belonging to the interval r i . ) (

, x P N M is normalized to 2 on the interval J . , , ( ) ( ) 
,

M N M N i i P x P s x r = ∀ ∈ (13) 
In the case of p-coupled maps, we are more interested by the distribution of each component ( ) , , , ,

1 2 1 p 2 x x x x …
of X rather than the distribution of the variable X itself in p J .

We then consider the approximated probability distribution function , ( )

j M N P
x associated to one among several components of F(X) defined by [START_REF] Gora | Absolutely continuous invariant measures that cannot be observed experimentally[END_REF], which are one-dimensional maps. In this paper we use equally disc N for M and iter N for N, when they are more explicit.

The discrepancies 1

E (in norm 1 L ), 2 E (in norm 2 L ) and E ∞ (in norm L ∞ ) between disc iter j N , N P ( x )
and the Lebesgue measure, which is the invariant measure associated to the symmetric tent map, are defined by

1 1, , , ( ) ( ) 1 disc iter disc iter j j N N N N L E x P x = - (14) 2 2, , , ( ) ( ) 
1 disc iter disc iter j j N N N N L E x P x = - (15) , , , ( ) ( ) 
1 disc iter disc iter j j N N N N L E x P x ∞ ∞ = - (16) 
As previously said, Fig. 1 shows the convergence of the density of iterates of the components of 2-coupled symmetric tent maps to the Lebesgue measure when 1 ε converges towards 0. Moreover, for a fixed value of disc N when the number iter N increases, the discrepancy between disc iter j N , N P ( x ) and the Lebesgue measure is expected to converge towards 0, except if there exist periodic orbits of finite length lower than iter N which capture the iterates. In this case whatsoever the value of iter N is, the approximated distribution function converges to the distribution function of the periodic orbit, if it is unique, or to the average of the distribution functions of the periodic orbits observed, if not.

Figure 2 shows the errors

1 1, , ( 
)

disc iter N N E
x versus the number of iterates of the approximated distribution functions, with respect to the first variable 1

x , for 2 and 3-coupled symmetric tent map. Same results are obtained for the other variables 2

x or 3

x . The 3-coupled symmetric tent maps model considered here with very very small value of ε 1 , seems a sterling model of generator of chaotic numbers with a uniform distribution of these numbers over the interval J . It produces very long periodic orbits: Gigaperiodic orbits (i.e. with length of period between 9 10 and 12 10 ) when computed with simple precision numbers, and orbits of unknown length when computed with double precision numbers. However these chaotic sequences are not at all random sequences. 

l n l n x x 1 , + of iterated points ( ) 1 ,
n n X X + in the corresponding phase plane reveals the map f used as one-dimensional dynamical systems to generate them via Eq. ( 6). Nevertheless, we have recently introduced a family of enhanced Chaotic Pseudo Random Number Generators (CPRNG) in order to compute faster long series of pseudorandom numbers with desktop computer [START_REF] Lozi | Chaotic Pseudo Random Number Generators via Ultra Weak Coupling of Chaotic Maps and Double Threshold Sampling Sequences[END_REF][START_REF] Lozi | Complexity leads to randomness in chaotic systems[END_REF]. This family is based on the previous ultra weak coupling which is improved in order to conceal the chaotic genuine function.

In this Section, we describe briefly how works this first process of undersampling, the chaotic one.

Chaotic undersampling

In order to hide f in the phase space ( )

l l n n 1
x , x + two mechanisms are used. The pivotal idea of the first one mechanism is to sample chaotically the sequence ( )

… … , , , , , , 1 2 1 0 l n l n l l l x x x x x + generated by the l-th component l x , selecting l n x every time the value m n x of the m-th component m x , is strictly greater (or smaller) than a threshold T J ∈ , with l ≠ m, for 1 ≤ l, m ≤ p.
That is to say to extract the subsequence ( )

( 0 ) (1) ( 2) ( ) ( 1) , , , , , , q q 
l l l l l n n n n n x x x x x + … … denoted here ( ) ⋯ ⋯ , , , , , , 1 2 1 0 + q q x x x x x
of the original one, in the following way

given 1 , , l m p l m ≤ ≤ ≠ { } ( ) ( 1) ( ) ( 1) 1 
,

q l m q n q q r r n x x with n Min r n x T - - ∈ = -    = = > >   ℕ (17)
The sequence ( )

⋯ ⋯ , , , , , , 1 2 1 0 + q q x x x x x
is then the sequence of chaotic pseudo-random numbers.

The above mathematical formula can be best understood in algorithmic way. The pseudocode, for computing iterates of (17) corresponding to N iterates of ( 6) is:

( )

1 2 p 1 p 0 0 0 0 0 X x , x , , x , x seed - = = … n 0; q 0 = = do { while n < N do { while ( ) m n x T ≤ compute ( ) 1 2 p 1 p n n n n x , x , , x , x - … ; n + +} compute ( ) 1 2 p 1 p n n n n x , x , , x , x - … ; then ( ) q l q n n( q ) n ; x x ; = = n + +; q + +}
This chaotic sampling is possible due to the independence of each component of the iterated points n X versus the others [START_REF] Lozi | New Enhanced Chaotic Number Generators[END_REF].

Remark 2.1. Albeit the number iter NSampl of pseudo-random numbers q x corresponding to the computation of N iterates is not known a priori, considering that the selecting process is again linked to the uniform distribution of the iterates of the tent map on J , this number is equivalent to 2 1

N T - .

Chaotic mixing

A second mechanism can improve the unpredictability of the pseudo-random sequence generated as above, using synergistically all the components of the vector n X , instead of two. Given p -1 thresholds

1 2 1 p T T T J - < < < ∈ ⋯ ( 18 
)
and the corresponding partition

[ ] 0 1 J 1,T = - , ] [ 1 1 2 J T ,T = , [ [ 1 1 1 k k k J T ,T for k p + = < < -and 1 1 1 p p J T , - - - - - - - -         = = = =         , with 1 0 p k k J J - = = ∪ (19) 
(note that this partition of J is different from the regular previous one [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF] used for the approximated distribution function).

The second simple mechanism is based on the chaotic undersampling combined with a chaotic mixing of the p-1 sequences

( ) … … , , , , , , 1 1 1 
1 2 1 1 1 0 + n n x x x x x , ( ) … … , , , , , , 2 1 2 2 2 2 
1 2 0 + n n x x x x x ,…, ( ) … … , , , , , , 1 1 1 
1 2 1 1 1 0 - + - - - - p n p n p p p x x x x x ,….
using the last one ( )

… … , , , , , , 1 2 1 0 p n p n p p p x x x x x
+ in order to distribute the iterated points with respect to this given partition, defining the subsequence ( )

⋯ ⋯ , , , , , , 1 2 1 0 + q q x x x x x
(in pseudocode) by ( )

1 2 p 1 p 0 0 0 0 0 X x , x , , x , x seed - = = … n 0; q 0 = = do { while n < N do {while ( ) p n 0 x J ∈ compute ( ) 1 2 p 1 p n n n n x , x , , x , x - … ; n + +} compute ( ) 1 2 p 1 p n n n n x , x , , x , x - … let k be such that p n k x J ∈ ; then ( ) q k q n n( q ) n ; x x = = ; n + +; q + +} Remark 2.2.
In this case also, iter NSampl is not known a priori, however, considering that the selecting process is linked to the uniform distribution of the iterates of the tent map on J , one has Remark 2.3. This second mechanism is more or less linked to the whitening process [START_REF] Viega | Practical random number generation in software[END_REF][START_REF] Viega | Secure programming cook book for C and C++[END_REF].

Remark 2.4. Actually, one can choose any of the components in order to sample and mix the sequence, not only the last one.

Enhanced chaotic undersampling

On can eventually improve the CPRG previously introduced with respect to the infinity norm instead of the 1 L or 2 L norms because the L ∞ norm is more sensitive than the others ones to reveal the concealed f [START_REF] Lozi | Chaotic Pseudo Random Number Generators via Ultra Weak Coupling of Chaotic Maps and Double Threshold Sampling Sequences[END_REF]. For this purpose we introduce a second kind of threshold ' T ∈ ℕ , together with 1 1 , , p T T J -∈ ⋯ such that the subsequence ( )

⋯ ⋯ , , , , , , 1 2 1 0 + q q x x x x x
is defined (in pseudo-code) by ( )

1 2 p 1 p 0 0 0 0 0 X x , x , , x , x seed - = = … n 0, q 0 = = do { while n < N do {while ( ) p ( q 1 ) n 0 n n T ' and x J - ≤ + ∈ compute ( ) 1 2 p 1 p n n n n x , x , , x , x - … ; n + +} compute ( ) 1 2 p 1 p n n n n x , x , , x , x - … let k be such that p n k x J ∈ then ( ) q k q n
n( q ) n ; x x = = ; n + +; q + +} Remark 2.5. In this case also, iter NSampl is not known a priori, it is more complicated to give an equivalent to it. However, considering that the selecting process is linked to the uniform distribution of the iterates of the tent map on J , and to the second threshold T', it comes that

1 2 , 1 iter N N NSampl Min T T   ≤   ′ -   .
Remark 2.6. The second kind of threshold ' T can also be used with only the chaotic sampling, without the chaotic mixing.

A window of emergence of randomness

In [START_REF] Lozi | Complexity leads to randomness in chaotic systems[END_REF][START_REF] Lozi | Emergence of randomness from chaos[END_REF] we show that if one consider the errors 

1 1, , , ( ) ( ) 1 
disc iter disc iter N N N N L E x P x = - , 2 2, , , ( ) ( ) 1 
disc iter disc iter N N N N L E x P x = - and , , , ( ) ( ) 
- - - - - - - -         ∈ ∈ ∈ ∈       
 , in the case p = 4 and

1 i , j i i ε ε ε = = .
We have also performed NIST test developed by the National Institute of Standards and Technology [START_REF] Rukhin | A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications[END_REF], in order to check carefully the random nature of such numbers [START_REF] Hénaff | Dynamical analysis of a new statistically highly performant deterministic function for chaotic signals generation[END_REF].

Then there is a route from chaos to randomness using the process of chaotic undersampling.

GEOMETRIC UNDERSAMPLING

The previous route from chaos to randomness uses chaotic undersampling. It is possible to couple in another way p tent maps on the torus [ ] 1,1 p p p J = -⊂ ℝ , which can directly provide random numbers, without sampling or mixing, provided p is large enough, although it is possible to combine these processes with it. After reviewing this ring coupling in high dimension, we introduce the new geometric undersampling in order to obtain randomness with small values of p (for example p = 2).

Pseudo-random numbers generated by ring coupled mapping

Consider the mapping defined on the p-dimensional torus :

p p p M J J → 2 1 1 1 n 1 n n n 1 3 2 2 2 n 2 n n 1 n p p p 1 m n n 1 n m n k x 1 2 x x x k x 1 2 x x x M x x k x 1 2 x ⋮ ⋮ ⋮ + + + + + + + + + + + +         × × × × - + - + - + - +                                         × × × × - + - + - + - +                         = = = = = = = =                                                                         × × × × - + - + - + - +                         (20) 
with the parameters

{ } 1,1 i k ∈ - .
In order to confine every variable j n x on p J we do, for every iteration, the transform

j n 1 j n 1 if ( x 1 ) add 2 if ( x 1 ) substract 2 + + + + + + + +     < - < - < - < -     > > > >     ( 21 
)
The particularity of this coupling is that each variable j x is coupled only with itself and j 1

x + + + + , as displayed on Fig. 3a. At first glance, in order to enrich the random properties of the map, it could seem interesting to add supplementary cross couplings between these variables, as shown on Fig. 3b. However in this case a cross-coupling is inappropriate because it would increase the determinism and therefore deteriorate the statistical properties which we are looking for.

To evaluate the random properties of these generators, the set of NIST tests have been used again.

Figure 3a (left). Ring coupling between the variables j

x .

Figure 3b (right). Cross coupling between the variables j

x .

The random properties validations of both a 4-dimensional system and a 10-dimensional one have been carried out [START_REF] Espinel | New alternate ring-coupled map for multi-random number generation[END_REF]. For this purpose, the chaotic carrier output needs to be quantised and binarized (0 and 1) in order to be validated as being random using NIST tests. Therefore, different methods of binarization (converting real signals to binary ones) have been implemented and compared.

A first 1-bit binarization has been applied to the system (21) output, defined as

j n n y x = = = = with 1, j p ∈ n if ( y 0 ) b 1 else b 0 ≥ = ≥ = ≥ = ≥ =         = = = =     (22) 
The results showed to be highly sensitive to the type of binarization. Eventually, after testing several different methods, a 32-bit binarization has been chosen as being the most suitable solution. Because the system is confined to the p-dimensional torus p J , 31 bits are assigned to represent the decimal part, and 1 bit to the sign. To illustrate the results, the NIST tests for the 4-dimensional system with parameters 10 bits, length of bit string = 6 10 bits, quantity of bit strings = 100. The output of the system has been arbitrary chosen as being:

4 n y x = .
Furthermore, as the results show their independence from the initial conditions, every bit string in this test is the resulting sequence of a different randomly chosen initial condition. The criterion for a successful test is that the p-value has to be superior to the significance level (0.01 for this case). For the present model, all tests were successful thus the sequences can be accepted as being random. 

Ring coupling of 2-dimensional symmetric tent map

Although the system (20) is a good PRNG when 4 p ≥ , in lower dimension 2 and 3, the chaotic numbers are not equidistributed on the torus (see Fig. 5).

In order to improve the ring coupling mechanism in low dimension, we introduce now a very new type of undersampling based on geometric nature of the invariant measure. We present this very new mechanism which allows the emergence of randomness from chaos, in the simplest case, the 2-dimensional ring mapping 2 M on the square 2 J , with

1 2 k k 1 = = = = = = = = .
Let 2 M be defined by

1 1 2 n 1 n n 2 2 1 n 1 n n x 1 2 x x x 1 2 x x + + + + + + + +     = - + = - + = - + = - +         = - + = - + = - + = - +         (23) with j n 1 j n 1 if ( x 1 ) add 2 if ( x 1 ) substract 2 + + + + + + + +     < - < - < - < -     > > > >     (24) 

Critical lines

Figure 5 shows the distribution of the iterates of system (23) (the transient of the first 6 10 iterations has been cut off). It can be observed that the attractor contains regions where the point density is lower, and two lozenge-like holes. It is possible to define critical lines which form a partition of the square 2 J . The critical lines CL [START_REF] Mira | Chaotic dynamics in two-dimensional noninvertible maps[END_REF] are singularities of dimension 1 and represent an important tool for the analysis of noninvertible maps. The holes on Fig. 5 are completely delimited by segments of the critical lines The critical lines separate regions of the phase space with different number of preimages (backward iterates). In the case of piecewise linear maps, they are the first iterates of the lines of discontinuity 1 CL -of the system. For the two dimensional system [START_REF] Rukhin | A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications[END_REF], there are four groups of critical lines CL with preimages 1 CLgiven by Critical lines A:

1 1 0 A CL : x - = and 2 1 2 1 1 2 2 1 2 1 2 1 0 2 1 0 A A if : x x x CL : if CL x x x  = - - >   = - <   ( 25 
)
Critical lines B: J (a square) [START_REF] Taralova | Dynamical and statistical analysis of a new Lozi function for random numbers generation[END_REF].

1 1 1 B CL : x - = - and [ ] [ ] [ ] [ ] 1 2 1 2 1 1 2 2 1 2 1 1 3 2 1 2 1 1 4 2 1 2 1 1 2 0 0 0 5 2 2 0 1 0 5 2 2 0 0 5 1 2 0 0 5 0 B B B B : if , , . CL x x x x : if , , . CL x x x x : if , . , CL x x x x : if , . , CL x x x x  = < ∈  = - - > ∈ --   = - < ∈   = - > ∈ -  (26)

Critical lines C:

2 1 0 C CL : x - = and ( ) ( ) 1 2 1 1 1 2 2 1 1 1 1 1 0 2 1 1 0 2 C C : if CL x x x : if CL x x x  = - + >     = + <   (27)

Critical lines D:

2 1 1 B CL : x - = - and [ ] [ ] [ ] [ ] 1 1 2 1 2 1 1 2 2 1 2 1 1 3 2 1 2 1 1 4 2 1 2 1 0 0 0 5 2 1 0 1 0 5 2 0 0 5 0 2 1 0 0 5 1 2 D D D D x : if , , . CL x x x x : if , , . CL x x x x : if , . , CL x x x x : if , . , CL x x x  = < ∈    = -- > ∈ --     = - > ∈ -    = + < ∈   (28)

Markov partition of the square

Our aim is first to use the partition defined by these critical lines in order to do a cell-tocell analysis and, by the means of a Markov process, to compute explicitly the invariant measure of iterates associated to system [START_REF] Rukhin | A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications[END_REF]. Figure 6 displays the 32 sub-regions of the square 2 J , labelled from a to p and a' to p'. For clarity of the presentation, we have labelled from (I) to (IV), the four quadrants of 2 J . Straightforward computation shows that the images of each region, by the mapping 2 M , is either one, two or three regions of the same partition of the square 2 J . Figures 7a and 7b display the images of the regions embedded in the first quadrant (I). Figures 8a and8b display the images of the regions embedded in the second quadrant (II). The colour is the same for every region and its corresponding image, except when two regions are mapped on the same region, in this case there is a mix of colours on the common part of the image. The overall correspondence between regions of the partition and their image is given by the Markov matrix a M which is displayed on Table 1. The computation of the coefficients of this matrix, which are rational numbers, is based on the ratios of surfaces of bounded regions. In order to display the 32 32 × × × × matrix a M on one page, we have labelled the coefficients using letters which are not related to the names of the regions. 

 = = = =    = = = =    = = = =   (29)

Exact computation of invariant measure associated to 2 M

With the help of Markov matrix a M , it is straightforward to compute explicitly the invariant measure associated to 2 M . For every region on Figure 6, we define a quantity of initial points called i Q , i 1,32 = = = = uniformly scattered on it, and we compute its surface i S .

We normalise both quantities to

i i Q Q 4 = = = = = = = = ∑ ∑ ∑ ∑
, and

i i S S 4 = = = = = = = = ∑ ∑ ∑ ∑
. Hence it is possible to define the density of iterates on each region.

i i i Q d S = = = = (30) Let 1 32 Q Q Q ⋮                 = = = =                         and 1 32 d D d ⋮                 = = = =                        
the vectors of quantities and densities obtained applying (30) to every region. Then starting from an arbitrary initial repartition of points on 2 J , say

1 0 0 32 0 Q Q Q                 = = = =                        
⋮ , and applying repeatedly the equation

t m 1 a m Q M Q + + + + = = = = (31) 
The sequence of vectors {

{ { { } } } } m m Q ℕ ∈ ∈ ∈ ∈ converges to a limit vector Q which satisfies t a Q M Q = = = = (32) 
and gives the invariant measure, the density of which is the vector D , using (30).

Numerical results:

Starting from

1 0 0 32 0 Q 1 / 8 Q Q 1 / 8 ⋮ ⋮                                 = = = = = = = =                                                
, Q is obtained rapidly, as 

Q 1 / 14 Q 3 / 28 Q 1 / 14 Q 3 / 28 Q Q 4 / 7 Q 3 / 28 Q 3 / 28 Q 1 / 7 Q ⋮ ⋮                        
, which gives using (30), 

⋮ ⋮                         . Remark 3.1.
Computing directly this density, iterating (23) up to 10 11 iterates leads to the same result.

Geometric undersampling

The exact computation of the density D of the invariant measure shows that this density is constant on each region. The geometric undersampling process consists in magnifying a square G included in one region (as for example the square

[ ] [ ] G 0.36,0.64 0.36,0.64 = ×
included in region m on Fig. 9), up to the size of the square 2 J .

Algorithm of geometric undersampling

Let

1 1 2 2 l r l r G x , x x , x     = ×   
 the square in which we will undersample the iterate of (23) and,

1 1 2 2 1 2 l r l r mean mean x x x x x , x 2 2 + + = = .
In algorithmic form, the pseudo-code, to geometric undersample N iterates of ( 23) is ( )

1 2 0 0 0 X x , x seed = = n 0; = do { while n < N compute ( ) 1 2 n n
x , x ;if ( )

1 2 n n x , x G ∈ then 1 1 2 2 1 2 n mean n mean q q 1 1 2 2 r l r l x x x x x 2 , x 2 x x x x     - - = =     - -     ; q=q+1; n + +} Remark 3.2.
In this case, the undersampling process provides two streams of pseudo-random numbers. Remark 3.3. In this case, iter NSampl the number of geometrically undersampled iterates is not known a priori, however, considering that the selecting process is linked to the uniform distribution of the iterates of the tent map on 2 J , one has ( ) 

Numerical tests

We have applied this process in the case of the square G of Fig. 9 We have also used NIST test to confirm the random property of the geometrical undersampling process. They are all successful (Fig. 12).

 = = = =     = = =  
- ------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------- -----------------------------------------The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is approximately = 96 for a sample size = 100 binary sequences. 

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

NOISE-RESISTING CIPHERING

As a first example we propose a novel noise-resisting ciphering based on a large number of uncorrelated chaotic sequences. These cogenerated sequences are actually used in several steps of the ciphering process. Noisy transmission conditions are considered, with realistic assumptions. The efficiency of the proposed method for ciphering and deciphering is illustrated through numerical simulations based on ten coupled chaotic sequences [START_REF] Espinel | New alternate ring-coupled map for multi-random number generation[END_REF]. It can be also adapted to geometric undersampling, provided this undersampling is done in dimension 4.

In this section we detail the noise-resisting ciphered transmission principle, consisting of two steps: the ciphering process and the transmission process (see Figures 13,[START_REF] Lozi | Chaotic Pseudo Random Number Generators via Ultra Weak Coupling of Chaotic Maps and Double Threshold Sampling Sequences[END_REF]. Both resort to the coupled chaotic pseudo-random generated sequences.

Ciphering principle

We begin with some notations that will be used in the sequel. The plain text is denoted In fact, owing to the presence of additive noise, not all real numbers inside m I can be selected, one must avoid an interval of length K at each side of the interval m I . Therefore some smaller intervals need to be defined.

k k 1, ,N ( t ) = ⋯ : the letters k t , for k 1, ,N = ⋯ belong to the alphabet { } 1 l , ,l ⋯ π composed
• Define a sub-interval m I ′ included in the corresponding interval m I such that:

[ ] m m m m I a , b I ′ ′ ′ = ⊂ (35) and [ ] m m m a K , b K I ′ ′ - + ⊂ (36) 
where we recall that K is the upper bound on the noise, see (33).

Then the coding consists in randomly (i.e. with another pseudo-random sequence generated by ( 20 l . An illustration is given by Fig. 15 for an alphabet with three letters: the letter A has a frequency of 10%, the letter B has a frequency of 30% and the letter C f 60%. . With the aforementioned coding alone, this property cannot be ensured, as it can be seen in Fig. 16.

Transmission principle

We present now how to transmit the ciphered text using substitution method in a new pseudo-random sequence. The transmitted signal is denoted n s .

The ciphered text k y , defined by (37), is not directly transmitted, it is chaotically hidden in a chaotic carrier signal, as it is explained below.

The ciphering makes use of two coupled chaotic sequences: 1 n x is used as chaotic carrier, while p n x is used to select the substitution times.

1 p n n n p n( k ) n x if x T s y if x T     < < < <     = = = =     ≥ ≥ ≥ ≥         ( 38 
)
where T is a predefined threshold. For example, as the p n

x are equally distributed on the interval [ ] We do not detail here the sequence k( n ) , it is easily understandable that k( n ) increase of +1 each time n k( n ) s y = in order to transmit each element of the ciphered sequence k y .

Decoding principle

At the receiver end, suppose that the same PRNG defined by ( 20) is available. The transmitter and the authorized receiver have fixed the same parameters and same initial values, therefore the ciphering is a symmetrical one.

According to the substitution principle defined by (38) and the hypothesis (33) on the additive noise, the received signal can be expressed as: 

Since the initial conditions of the chaotic pseudo-random number generator (20) are assumed to be public, the receiver exactly knows when p n x is smaller or larger than the threshold T , so the receiver is able to reconstruct the sequence ( ) k( n ) n y + α i.e. the sequence q q y + β where q n = β α for q k( n ) = .

Since q K < β , there exists

{ } m 1,2, , ∈ ⋯ π such that n m ŝ I ∈ .
The receiver, also, exactly knows the value of p 2 n xand deduces from the rules (37) the value q y . Then the knowledge of the correspondence between the interval m I and the letter m l enables the receiver to retrieve the initial message.

Numerical illustration

Now we summarize the main steps of the proposed algorithm: 1) Choose the secret parameters i k 1 = or i k 1 = -, for { } i 1,2, , p ∈ ⋯ .

2) Define the initial conditions shared by the transmitter and the receiver.

3) Iterate the PRNG [START_REF] Palmer | Shadowing in Dynamical Systems: Theory and Applications[END_REF] with the previous initial conditions, both at the transmitter and the receiver side.

4) Apply the ciphering and transmission principle as detailed before. The Fig. 18 shows the noisy signal at the receiver side (recall that the transmitted signal is given by Fig. 17). Notice that the Figs. 2 to 4 represent our simulations with 9 10 iterations.

CONCLUSION

We have proposed a new mechanism of undersampling of chaotic number obtained by the the ring coupling mechanism of one-dimensional maps. In the case of 2 coupled maps this mechanism allows the building of a PRNG which passes all NIST Test.

This new geometric undersampling is very effective for generating 2 parallel streams of pseudo-random numbers, as we have shown, computing carefully their properties, up to sequences of 12 10 consecutives iterates of ( 23) which provides more than 10 3.35 10 × × × × random numbers in very short time. In a forthcoming paper we will test both 3-and 4-dimensional cases.

In addition we have proposed a novel method of noise-resisting ciphering. The originality lies in the use of a chaotic pseudo-random number generator: several co-generated sequences can be used at different steps of the ciphering process, since they present the strong property of being uncorrelated. Each letter of the initial alphabet of the plain text is encoded as a subinterval of [ ] 1,1 -. The bounds of each interval are defined in function of the known bound of the additive noise. A pseudo-random sequence is used to enhance the complexity of the ciphering. The transmission consists of a substitution technique inside a chaotic carrier, depending on another cogenerated sequence. The efficiency of the proposed scheme is illustrated on some numerical simulations.

Cryptography is a wide field of research, in which the brilliant formulae of Srinivasan Ramanujan have been largely used. May be, it will be possible, in a near future, to link such formulae with chaos in the domain of emergent randomness.
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Table 1 .

 1 Markov Matrix a M .

  , with

														N 10 = = = =	12	which
	gives	iter NSampl ≈	10 3.35 10 ×	. Figure 10a displays the densities of the seven regions j, k, l, m,
	n, o, p of quadrant (II) which are equal to					
				d	j	6 7	;d	k	9 7	;d	l	9 7	;d	m	12 7	;
						d	n		9 7	;d	o		9 7	;d	p	6 7	;

Since one needs to leave some holes at the edges of the intervals m I to resist the additive noise, the transmitted signal cannot have a random-like repartition. So we propose to transform the ciphered data k y before transmitting it. For all steps n ∈ ℕ such that an encrypted letter is transmitted, we propose to transmit not directly n y but:

For simplicity of presentation, in the sequel, n y will denote n y ɶ , the ciphered message to transmit.