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CLEAR: Covariant LEAst-square Re-fitting
with applications to image restoration

Charles-Alban Deledalle*, Nicolas Papadakis*, Joseph Salmonf, AND Samuel Vaiter?

Abstract. In this paper, we propose a new framework to remove parts of the systematic errors
affecting popular restoration algorithms, with a special focus for image processing tasks. Extending
ideas that emerged for ¢; regularization, we develop an approach that can help re-fitting the results
of standard methods towards the input data. Total variation regularizations and non-local means
are special cases of interest. We identify important covariant information that should be preserved
by the re-fitting method, and emphasize the importance of preserving the Jacobian (w.r.t to the
observed signal) of the original estimator. Then, we provide an approach that has a “twicing” flavor
and allows re-fitting the restored signal by adding back a local affine transformation of the residual
term. We illustrate the benefits of our method on numerical simulations for image restoration tasks.

Key words. inverse problems, image restoration, variational methods, re-fitting, twicing, boost-
ing, debiasing

AMS subject classifications. 49N45, 65K10, 68U10.

1. Introduction. Restoring an image from its single noisy and incomplete ob-
servation necessarily requires enforcing regularity or a model prior on the targeted
properties of the sought solution. Regularity properties such as sparsity or gradient
sparsity of an image, in general, are difficult to enforce, and notably lead to combi-
natorial and non-convex problems. When one is willing to guarantee such kinds of
features for the recovered signal, convex relaxation is a popular path. This is typically
done using the ¢; norm instead of the ¢y pseudo-norm, as for the Lasso [43] or the
total variation regularization [37]. Nevertheless, such relaxations are well known to
create solution with a potentially large bias.

Typically, for the Lasso, using the ¢; convex relaxation of the ¢; pseudo-norm
leads large coefficients to be shrunk towards zero.

For the total variation, the same relaxation on the jumps of the signal induces a
loss of contrast in the recovered image; see Figure 1.(a) for an illustration in this case.

In the Lasso case, a well known re-fitting scheme consists in performing a pos-
teriori a least-square re-estimation of the non-zero coefficients of the solution. This
post re-fitting technique became popular under various names in the literature: Hy-
brid Lasso [20], Lasso-Gauss [35], OLS post-Lasso [2], Debiased Lasso (see [27, 2| for
extensive details on the subject). For the anisotropic total-variation (aniso-TV), the
same post re-fitting approach can be performed to re-estimate the amplitudes of the
jumps, provided their locations have been correctly identified.

In this paper, we introduce a generalization of this re-fitting technique that aims at
re-enhancing the estimation towards the data without altering the desired properties
imposed by the model prior. To that end, we define a set of properties that need
to be preserved. In particular, we introduce the notion of covariant re-fitting of the
solution. Though this method was originally elaborated with ¢; analysis problems
in mind, it has the ability to generalize to a wider family, while in simple cases
such as the Lasso or the aniso-TV, it recovers the classical post re-fitting solution
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described earlier. For instance, our methodology successfully applies to the Tikhonov
regularization [45], the isotropic total-variation (iso-TV) and the non-local means [4].
In common variational contexts, e.g., £1 — ¢35 analysis [21] (encompassing the Lasso,
the group Lasso [28, 52, 31], the aniso- and iso-TV), we show that our re-fitting
technique can be performed with a complexity overload of about twice that of the
original algorithm. In other cases, e.g., for the Tikhonov regularization or the non-
local means, we introduce a scheme requiring about three times the complexity of the
original algorithm.

Moreover, while our covariant re-fitting technique recovers the classical post re-
fitting solution in specific cases, the proposed algorithm offers more stable solutions.
Indeed, unlike the Lasso post re-fitting technique, ours does not require identifying
a posteriori the support of the solution, i.e., the set of non-zero coefficients. In the
same vein, it does not require identifying the locations of the jumps of the aniso-TV
solution. Since the Lasso or the aniso-TV solutions are usually obtained through
an iterative algorithm, stopped at a prescribed convergence accuracy, the support
or jump numerical identification might be imprecise (all the more as the problem is
ill-posed). Such erroneous support identifications can lead to results that strongly
deviates from the sought re-fitted solution. Our covariant re-fitting algorithm jointly
estimate the re-enhanced solution during the iterations of the original algorithm and,
as a by product, produces more robust solutions in practice.

This work follows a preliminary study [15] that attempted to suppress the bias
emerging from the choice of the method (e.g., 1 relaxation), while leaving unchanged
the bias due to the unavoidable choice of the model (e.g., sparsity). While the ap-
proach from [15] — hereafter referred to as the invariant re-fitting — provides interesting
results, it is however limited to a class of restoration algorithms that satisfy restrictive
local properties.

In particular, the invariant re-fitting cannot handle the classical iso-TV regular-
izer. As we will see, if such local properties are not satisfied, this technique leads to an
unsatisfactory re-fitting that removes some desired aspects enforced by the prior, such
as smoothness, and suffer from a significant increase of variance. A simple illustration
of this phenomenon for iso-TV is provided in Figure 2.(d) where artificial oscillations
are wrongly amplified near the boundary.

While the covariant and the invariant re-fitting both correspond to the least-
square post re-fitting step in the case of aniso-TV, the two techniques do not match
for iso-TV. Indeed, our Covariant LEAst square Re-fitting (CLEAR), to be precisely
described later, outputs a more relevant solution than the one from the invariant
re-fitting. Figure 2.(e) shows the benefit of our proposed solution w.r.t. the (naive)
invariant re-fitting displayed in Figure 2.(d).

It is worth mentioning that the covariant re-fitting is also strongly related to
boosting methods re-injecting useful information remaining in the residual (i.e., the
map of the point-wise difference between the original signal and its prediction). Such
approaches can be traced back to twicing [46] and have recently been thoroughly
investigated: boosting [5], Bregman iterations and nonlinear inverse scale spaces [32,
6, 50, 33|, ideal spectral filtering in the analysis sense [24], SAIF-boosting [29, 42]
and SOS-boosting [36] being some of the most popular ones. Note that most of these
methods can be performed iteratively, leading to a difficult choice for the number
of steps to consider in practice. Our method has the noticeable advantage that it
is by construction a two-step one. Iterating more would not be beneficial. Unlike
our covariant re-fitting, these later approaches aim at improving the overall image
quality by authorizing the re-enhanced result to deviate strongly from the original
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biased solution. In particular, they do not recover the aforementioned post re-fitting
technique in the Lasso case. Our objective is not to guarantee the image quality to
be improved but rather to generalize the re-fitting approach with the ultimate goal
of reducing the bias while preserving the structure and the regularity of the original
biased solution.

Interestingly, we have also realized that our scheme presents some similarities
with the classical shrinking estimators introduced in [40], especially as presented in
[23]. Indeed the step performed by CLEAR, is similar to a shrinkage step with a
data-driven residual correction weight (later referred to as p in our approach, see
Definition 21) when performing shrinkage as in [23, Section 3.1].

Last but not least, it is well known that bias reduction is not always favorable
in terms of mean square error (MSE) because of the so-called bias-variance trade-off.
It is important to highlight that a re-fitting procedure is expected to re-inject part
of the variance, therefore it could lead to an increase of residual noise. Hence, the
MSE is not always expected to be improved by such re-fitting techniques (unlike the
aforementioned boosting-like methods that attempt to improve the MSE). We will
show in our numerical experiments, that re-fitting is in practice beneficial when the
signal of interest fits well the model imposed by the prior. In other scenarios, when the
model mismatches the sought signal, the original biased estimator remains favorable
in terms of MSE. Re-fitting is nevertheless essential in this latter case for applications
where the image intensities have a physical sense and critical decisions are taken from
their values.

2. Background models and notation. We tackle the problem of estimating
an unknown vector xy € RP from noisy and incomplete observations

(1) y=®xo+w ,

where ® is a linear operator from R? to R™ and w € R"™ is the realization of a noisy
random vector. This linear model is widely used in imagery for encoding degradations
such as entry-wise masking, convolution or in statistics under the name of linear
regression. Typically, the inverse problem associated to (1) is ill-posed, and one
should add additional information in order to recover at least an approximation of xg.

Such additional information leads to the definition of an estimator of xy which
is represented by an estimation procedure Z : y — Z(y). A popular way to define an
estimator is to consider a variational problem in order to make a trade-off between a
data fidelity term F(z,y) and a regularizing term G(z) as

(2) Z(y) € aigélrgpin F(z,y) + A\G(z) .

Often, the solution of Problem (2) is non unique, but for simplicity we only consider
in this paper a selection of such solutions, and we assume that the selected path
& : y+— Z(y) is differentiable almost everywhere.

Another kind of estimator can be defined as the output of an iterative algorithm
(k,y) = ¥, e.g., solving an optimization problem. In this context, we define the final
estimator Z(y) = =¥ for some chosen k. Such a framework includes proximal splitting
methods, e.g., [10, 1], as well as discretization of partial differential equations, thought
we do not investigate this latter road in details.

Notation. For a matrix M, M is its Moore-Penrose pseudo-inverse. For a
closed convex) set C, Il is the Euclidean projection over C' and ¢ is its indicator
losed t C, Il is the Euclid jecti C and ¢ is its indicat
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function defined by

) LC(U)_{O if wueC,

+o00 otherwise .

For any vector v, vz € RZ! is the sub-vector whose elements are indexed by Z ¢ N
and |Z| is its cardinality. For any matrix M, Mz is the sub-matrix whose columns are
indexed by Z. We denote respectively by Im[A] and Ker[A] the image space and the
kernel space of an operator A.

3. Main estimators investigated. In this section, we provide several examples
of & that will be of interest to illustrate the different notions and results given all along
this paper. We detail in Appendix A how to retrieve closed-form expressions of some
of these estimators.

3.1. Affine constrained least-squares. The least-square estimator con-
strained to the affine subspace C' = b+ Im[A], b € R? and A € RP*™ is a particular
instance of (2) where

1
(4) F(z,y)=3ly - ®z|3 and G(z) =c(r) .
The solution of minimum Euclidean norm is unique and given by (see Appendix A.1)
(5) #(y) = b+ ADA) (y — BY) .

3.2. Tikhonov regularization. The Tikhonov regularization [45] (or Ridge
regression [26]) is another instance of (2) where, for some parameter A > 0 and
matrix I' € R™*P,

1 A
(6) F(z,y) = 5ly - ®2l3 and  G(z) = S[T=|* .
Provided Ker ® N KerI' = {0}, Z(y) is uniquely defined as (see Appendix A.2)
(7) Ey) = (@TO+ATT) DTy .

3.3. Thresholding estimators. The hard-thresholding [17], used when ® = Id
and x¢ is supposed to be sparse, is a solution of (2) where, for some parameter A > 0,

1 A2
0 Flay)= tly—al3 and G)="lalo |
where |z]o = | {7 € [p] : x; # 0} | counts the number of non-zero entries of z and [p] =
{1,...,p}. The hard-thresholding operation #(y) = HT(y) writes (see Appendix A.3)
(9) (HTA(y))z =yz and (HTA(y))ze =0 ,

where Z = {i € [p] : |yi| > A} and Z°¢ is the complement of Z in [p].
In contrast, the soft-thresholding [17], used when ® = Id and z( is supposed to
be sparse, is another particular solution of (2) where

1
(10) F(z,y) = 5ly—2l3 and G(x) = Azl

with |z]; = >, |z;| being the ¢; norm of x. The soft-thresholding operation Z(y) =
ST (y) writes (see Appendix A.4)

(11) (STa(y))z = yz — Asign(yz) and (STa(y))ze =0 ,

where 7 is defined as above. Compared to the hard-thresholding (9), the soft-
thresholding suffers form a systematic contraction towards 0 given by Asign(yz).
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Fic. 1. (a) Solutions of 1D-TV and our re-fitting on a noisy piece-wise constant signal. (b)
Geometrical illustration of the invariant re-fitting in a denoising problem of dimension p = 3. The
gray surface is a piece-wise affine mapping that models the evolution of T in an extended neighborhood
of y. The light red affine plane is the model subspace, i.e., the set of images sharing the same jumps
as those of the solution Z(y). The red triangle is the restriction of the model subspace to images
that can be produced by TV. Finally, the pink dot represents the re-fitting Rf{“’(y) as the orthogonal
projection of y on Mz (y).

3.4. The ¢; synthesis. The ¢; synthesis, also referred to as the Lasso [43, 17],
is a particular solution of (2) where

1
(12) F(z,y) = 51%y - o3 and G(z) =Nzl |

with |z1 = >°F_, |#;| being the ¢; norm of z. In particular, the soft-thresholding is
a Lasso estimator in the special case where ® = Id. Provided that the solution is
unique (see for instance [44]), the Lasso estimator reads as

(13) i(y)z = (1) yr — M(®7)"®7)"'sz and  E(y)ze =0 ,

where Z = supp(Z(y)) = {i € [p] : Z(y); # 0} is the support of &(y), Z¢ is the com-
plement of Z on [p], and sz = sign(Z(y)z). It then follows that this estimator suffers
form a systematic contraction towards 0 given by A((®z) " ®7) lsz.

3.5. The /; analysis. Given a linear operator I' € R”™*P | the ¢; analysis mini-
mization reads, for A > 0, as

1
(14) F(z,y) = 5|®z —y|* and G(z) = Allz], .

Provided Ker ® N KerI' = {0}, there exists a solution given implicitly, see [47], as
(15) i(y) =U@U)ty —AUU T oU)'U T (T )zs7

for almost all y and where Z = supp(T'i(y)) = {i : (T'&(y)); # 0} C [m] is called the
I-support of the solution, sz = sign((T'(y))z), U is a matrix whose columns form a
basis of Ker[I'ze] and ®U has full column rank. Note that sz and U are locally constant
almost everywhere since the I'-support is stable with respect to small perturbations

[47]. Tt then follows that this estimator suffers form a systematic contraction towards
Ker[['] given by A\U(UT®T®U)~ U (') zs7.
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The anisotropic Total-Variation (aniso-TV) [37] is a particular instance of (14)
where x¢g € RP can be identified to a b-dimensional discrete signal, for which I' =
V : RP — RP*? is the discrete gradient operator and |Vz|; = Y0_, |(Vz);]1. Aniso-
TV promotes piece-wise constant solutions with large constant regions and few sharp
transitions. In this case Z is the set of indexes where the solution has discontinuities
(non-null gradients). The ¢; norm of the gradient field induces an anisotropic effect
by favoring the jumps to be aligned with the canonical directions (in other words, it
favors squared like structures rather than rounded ones). It is well known that TV
suffers from a systematic loss of contrast: a shift of intensity on each piece depending
on its surrounding and the ratio between its perimeter and its area (see [41] for a
thorough study for the 1D case).

Figure 1 gives an illustration of TV used for denoising a 1D piece-wise constant
signal in [0,192] and damaged by additive white Gaussian noise (AWGN) with a
standard deviation ¢ = 10. Even though TV has perfectly retrieved the support of
Vzy with one more extra jump, the intensities of some regions are systematically
under- or overestimated.

3.6. The ¢, — (5 analysis. Given a linear operator I' € R? — R™*? the ¢ — {5
analysis minimization (a.k.a., generalized group Lasso [28, 52|, structured or block
sparsity [31]) reads, for A > 0, as

(16) Fla,y) = 5l%r —yl? and G(r) = Allel1s |
where [Tz]12 = Y i~ [(Tx);]2. Unlike in the ¢; analysis case, there is no known
implicit closed-form expression for the solution of this problem. However, its behavior
have been intensively studied. In particular, this estimator is known to suffer form a
systematic contraction in the same vein as the one of the ¢; analysis.

The isotropic Total-Variation (iso-TV) [37] is a particular instance of (16) where
zo € RP can be identified to a b-dimensional discrete signal, for which I' =V : RP —
RP* and V|12 = Y7, [(Vz);]2. Like aniso-TV, it promotes solution with large
constant regions, but some transition regions can be smooth (see, e.g., [7]), typically
those with high curvature in the input image y, see Figure 2.(a)-(c). A major difference
is that the #; — ¢5 norm induces an isotropic effect by favoring rounded like structures
rather than squared ones. It also suffers from a systematic loss of contrast.

3.7. Non-local means. The (blockwise) non-local means estimators [4], used
when ® = Id and the image xy € R? (with p = p; Xp2) is composed of many redundant
patterns, is the solution of the minimization problem (2) where

1
(17) F(a,y) =5 D wis|[Pix—Pyl* and G(z) =0,
,J
where P; is the linear operator extracting a patch (i.e., a small window) at pixel i
of size (20 4+ 1) x (2b+ 1) where ¢ € [p1] X [p2] spans the whole image domain and
Jj—1i € [—s,5] x [—s, 5] spans a limited search window. The weights w; ; are usually
defined as w; ; = ¢ (|Piy — P;y|3) where the kernel ¢ : RT — [0,1] is a decreasing
function which is typically a decay exponential function. Its solution is given in closed
form as the following non-local weighted average (see Appendix A.5)
) Wi
(18) B(y)i = ﬁ with  w; ; = zk:wi—k,j—k ;
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Fic. 2. (a) A piece-wise constant signal. (b) Its noisy version. (c) Solution of iso-TV on
the noisy signal. (d) Solution of the invariant re-fitting of iso-TV. (e) Solution of the covariant
re-fitting of iso-TV. Red points indicate locations where the discrete gradient is non-zero.

where k € [—d, d] x [—d, d] spans the patch domain. Note that we assume periodical
conditions such that all quantities remain inside the image domain, i.e., all quantities
q indexed by i = (i1,42) € Z x Z are such that ¢; = q(, i,) = Qiy+k1pr,is+haps) fOr all
(k1,k2) €L X 1.

4. Invariant least-square re-fitting. Practitioners have realized that a sys-
temic contraction affect estimators like the Lasso and the anisotropic total-variation.
In the Lasso case, a simple remedy (presented in the introduction) is to perform a
posteriori a least-square re-fitting step of the non-zero coefficients, i.e., constrained
to the support Z of the Lasso solution &(y), and given by
(19) argmin 3|z —y|* .

x5 supp(z) CZ
In this section, we present a re-fitting procedure, discussed in [15] that generalizes
this approach to a broad family of estimators.

4.1. Re-fitting through model subspace least-squares. We investigate a
re-fitting procedure well suited for estimators differentiable almost everywhere. It
relies on the notion of model subspace, which requires Jacobian matrix computations.
From now on, we consider only estimators y — Z(y) from R™ to R? and differentiable
almost everywhere (a.e. differentiable).

In many estimation procedures, there is a (possibly implicit) prior on the structure
of the data. Such structures include smoothness, sparsity, auto-similarity or the fact
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that the signal is piece-wise constant. Note that the introduced priors can be captured
by the following notion of model subspace.

Definition 1. The model subspace associated to an a.e. differentiable estimator Z
is defined at almost all points y € R™ by the affine subspace of RP

(20) Mz (y) = 2(y) +Im [Jz(y)] ,

where J;(y) is the Jacobian matrix of & taken at y.

The model subspace captures what is linearly invariant through & with respect to
small perturbations of y, typically, for the Lasso, it will encode the set of signals
sharing the same support. In order to generalize the re-fitting step, it is thus natural
to cast it as a constrained optimization procedure preserving the model subspace.

Definition 2. The invariant re-fitting associated to an a.e. differentiable estimator
y — Z(y) is given for almost all y € R™ by

(21) RN (y) = @(y) + J(@T)* (y — P2(y)) € ar%min) sl®z —y*
reMg(y

where J = J;(y) is the Jacobian matrix of & at the point y. In the following we use
the notation J when no ambiguity is possible.

Remark 3. Though we only consider the case F(z,y) = +|®z —y|?, the extension

to more general F (e.g., for logistic regression) reads RyV(y) € argmin F(z,y).
TEM:(y)
Remark 4. When #(y) € Im[J], then M;(y) = Im[J] and R (y) = J(®J)F (y).

We first exemplify the previous definitions for the various variational estimators
introduced in Section 3.

Ezample 5. The affine constrained least-squares defined in Eq. (5) admits ev-
erywhere the same Jacobian matrix J = A(®A)T and its affine model subspace is
M (y) = b+ Im[A(®A) ] (as Im[M+] = Im[M T]). Taking C' = RP with for instance
n=7p, A=1d and b = 0, leads to an unconstrained solution Z(y) = ®*y whose model
subspace is Mz (y) = Im[® "] reducing to R? when ® has full column rank. In this
case, the invariant re-fitting is trivial RI"(y) = 2(y).

Ezample 6. The Tikhonov regularization has everywhere the same Jacobian ma-
trix J = (@T® + A[''T)"!®T and everywhere the same affine model subspace
M;(y) = Im[J]. If follows that R™(y) = J(®J)*y. In particular, when ® has
full column rank, M;(y) = RP and RI™(y) = &+y.

Example 7. The soft-thresholding as well as the hard-thresholding share the same
Jacobian matrix given by J = Idz € RP*IZI. Their model subspace reads as M3 (y) =
Im[Idz] = Im[J] and the invariant re-fitting is for both the hard-thresholding.

Ezample 8. The Lasso has for Jacobian matrix J = Idz(®7)" and since &7 has
full column rank, it shares the same model subspace Mjz(y) = Im[ldz] = Im[J]
as the hard- and soft-thresholding. Its invariant re-fitting is in this case Rg“’(y) =
Idz(®7)*y. While the Lasso systematically underestimates the amplitude of the signal
by a shift Aldz((®7)!®z) sz, the re-fitting R (y) is free of such a contraction.

Ezample 9. For the ¢, analysis, the Jacobian matrix of the solution in (15) reads
as J = U(®PU)T where ®U has full column rank, U is a matrix whose columns form
a basis of Ker[I'zc] where the I'-support is Z = {i : (I'Z(y)); # 0} C [m]. It results
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that the model subspace reads as Mz (y) = Ker[['ze] = Im[J]. The extension of the
Lasso re-fitting leads to consider the following least-square estimator, constrained on
the T-support of Z(y), given by

(22) RV (y) =U(@U)*y .

In the case of the aniso-TV denoising, i.e., with & = Id and I' = V, the model subspace
is the space of images whose jumps are included in those of the solution Z(y). The re-
fitting procedure Rg‘" is thus the projector Il ;; = UU T that performs a piece-wise
average of its input on each plateau of the solution. A visualization of this re-fitting
is provided for a 1D signal in Figure 1.(a).

Ezxample 10. For the £; — ¢ analysis, while there is no implicit closed-form ex-
pression for Z(y), its Jacobian has been derived in closed form in [48] and reads as

(23) J=UUTd"oU + \U'TTQrU) U T® "y

1 (), (T2 (T'2(y)): e
where Q: 2 e R™Xb {(rfc(y))inz (2 <z H(ra‘c<y>)i||2> H(rm))inz) if 1€,

0 otherwise ,

and U and 7 are defined exactly as for the ¢; analysis case. Note that Eq. (23) is well
founded as soon as Ker[I'ze] N Ker ® = {0}. For weaker conditions, see [48, example
26]. In the particular case where ®U has full column rank, the model subspace
matches with the one of the ¢; analysis, i.e., Mz(y) = Ker[['ze] = Im[J], and the
re-fitting is also given by Eq. (22), hence R (y) = U(®U)Ty. As a consequence, for
the iso-TV denoising, i.e., when ® = Id and I' = V, the re-fitting step consists again
in performing a piece-wise average on each plateau of the solution.

Ezample 11. For the non-local means, the Jacobian has a complex structure, and
we refer the interested reader to [49, 19]. In particular, computing the projection
on the model subspace is challenging in this case and so is the computation of the
invariant re-fitting. Note that a greedy procedure was proposed in [15] to compute
the invariant re-fitting.

4.2. Results and limitations. Figure 1.(a) gives an illustration of the invariant
re-fitting in the case of a 1D total-variation denoising example (¢; analysis estimator).
It recovers Vzg, the support of the underlying signal, with one extra jump, but
systematically under-estimates the amplitude of the jumps. As expected, our re-
fitting re-enhances the amplitudes of all plateaus towards the data. Figure 1.(b)
gives a geometrical interpretation in dimension p = 3 of the model subspace and the
invariant re-fitting. The model subspace is represented as the tangent plane of & at
y and its re-fitting is the projection of y on this tangent plane. Every element of this
plane shares the same jumps as those of the solution Z(y). Figure 3.(a)-(c) gives a
similar illustration in the case of a 2D aniso-TV denoising example.

While the invariant re-fitting acts properly for the ¢; analysis estimator, it is
however less appealing in other scenarios. Figure 2.(c),(d) and Figure 3.(d),(e) give
two illustrations of the invariant re-fitting of a 2D iso-TV denoising example. As for
aniso-TV, the invariant re-fitting is the projection of y on the space of signals whose
jumps are located at the same position as those of Z(y). But unlike the anisotropic
case, &(y) is not piece-wise constant. Instead of being composed of distinct flat regions,
it reveals smoothed transitions with dense supports (referred to as extended supports
in [7]), see Figure 2.(c). As a consequence, the invariant re-fitting re-introduces a large
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l'l'

a) Noisy obs. y ) aniso-TV Z(y) ) Ref. RIV(y) (=Rz(y))

(d) iso-TV &(y (e) Inv. ref. RV (y) ) Cov. ref. Rz(

Fic. 3. (a) A noisy image y = xo + w where xg contains six overlapping squares. (b) The
solution &(y) of aniso-TV, and(c) its invariant re-fitting RE"(y) (which coincides in this case with
the covariant one Ry(y)). (d) The solution &(y) of iso-TV, (e) its invariant re-fitting R (y) and
(f) its covariant one Rz (y).

. P

(a) Masked obs. y ) Tikhonov x(y) (c) Inv. ref. RNV (y) (d) Cov. ref. R;

Fic. 4. (a) A noisy and incomplete image y = Pz + w where ® is a masking operator
encoding missing pivel values (in red) and xo is a smooth signal. (b) The solution &(y) of the
Tikhonov regularization with I' = V, (c) its invariant re-fitting Ry (y) and (d) its covariant one

Rz(y)-

amount of the original noisy signal in these smooth but non-constant areas, creating
the artifacts observed on Figure 2.(d) and Figure 3.(e).

Figure 4,(a)-(c) gives another illustration of the invariant re-fitting of a 2D
Tikhonov masking example (with ® a diagonal matrix with 0 or 1 elements on the
diagonal and I' = V). While the dynamic of the Tikhonov solution #(y) has been
strongly reduced, the re-fitting Ri™ (y) re-fits clearly the solution towards the original
intensities. However, such a re-fitting is not satisfactory as it does not preserve the
smoothness of the solution Z(y).

In fact, the model subspace captures only what is linearly invariant through & with
respect to small perturbations of y. This includes the support of the solution for the
iso-TV, and the absence of variations inside Im[J]* for the Tikhonov regularization.
In particular, it fails at capturing some of the desirable relationships between the



CLEAR: Covariant LEAst-square Re-fitting 11

entries of y and the entries of &(y), what we call the covariants. These relationships
typically encode some of the local smoothness and non-local interactions between the
entries of the solution Z(y). Such crucial information is not encoded in the linear
model subspace, but interestingly the Jacobian matrix captures by definition how
much the entries of Z linearly varies with respect to all the entries of y. This is at
the heart of the covariant re-fitting defined in the next section and, for comparison,
it produces the results given in Figure 3.(e), Figure 3.(f) and Figure 4.(d).

5. Covariant LEast-square Re-fitting (CLEAR). The objective of this sec-
tion is to present our main contribution, the introduction of the covariant re-fitting
procedure. We particularly aim at solving the issues raised in Subsection 4.2. Toward
this goal, we put a stronger emphasis on the first-order behavior of our original esti-
mator by imposing the conservation of its Jacobian, at least locally. The construction
of this re-fitting procedure is a bit more involved than for the invariant re-fitting one.
Indeed, we first need to define a procedure which, loosely speaking, takes as input
the original estimator and a guess of @z and outputs a new estimator with desirable
properties. We next define our covariant re-fitting by choosing a naive guess for ¢z,
namely y.

5.1. Local approach and desired properties for a suitable re-fitting. In
this subsection, our objective is to define, from the original estimator & and a guess
z € R" of ®xp, a new estimator D; ., : R® — RP that satisfies several desirable
properties and shares with & some first-order properties. After-wise, we will consider
the choice z = gy, and the resulting estimator is going to be our covariant re-fitting
Rz. We are now equipped to introduce such a guess based re-fitting.

Definition 12. Let & be an estimator from R™ to R? differentiable at z € R™. An
estimator D; . : R™ — RP is called a guess based covariant re-fitting of £ at z, if

(24) D; . € argmin |®h(z) — 2|3 |
heH
where H is the set of maps h : R™ — RP satisfying, for all y € R™,
1. Affine map: h(y) =Ay+b for some A € RP*™ b € RP,
2. Covariant preserving: J,(z) = pJz(2) for some p € R,
3. Coherent map: h(Pi(z)) = 2(2).

Definition 12 is natural as it states that a guess based re-fitting of Z for z should
be, in prediction, as close as possible to z. Of course, it should satisfy some extra
conditions. First, the estimator should be easy to compute, and we achieve this by
choosing first order approximation. This means that locally the estimator is affine.
Second, as highlighted in Subsection 4.2, the relative variation of the original estima-
tor with respect to the input should be preserved in order to capture not only the
invariant features of the estimator but also its first-order behavior, capturing both
its singularities and smoothness. Third, applying a re-fitting step to the prediction
obtained by the original estimator at z should not modify this estimate. Indeed, the
purpose of such a re-fitting is to be as closed as possible of its input y, while preserv-
ing the structure of #(z), hence if the input is y = ®Z(z) itself, the result should be
unaltered.

The next theorem provides a unique closed form expression for D; ,(y).

THEOREM 13. Let & be an estimator from R™ to RP differentiable at z € RP.
Then, for § = z—®Z(z), the guess based covariant re-fitting, defined in Definition 12,
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exists, is unique if ®J6 # 0, and is given by

(®J5, 6) .
(25) Di.(y) = 2(2) + pJ(y — ®i(z)) where p=<{ [®JS]3 if ®J5#0,
1

otherwise ,

where J = Jz(z) is the Jacobian matriz of & at the point z.

Proof. Let h be a mapping satisfying properties 1., 2. and 3. in the previous
definition. Observe that properties 1. and 2. of the set H together ensures that the
estimator is of the form h(y) = pJy—+0b for some p € R and b € RP. Plugging condition
3. gives that b = (Id — pJ®)&(z), hence h(y) = Z(z) + pJ(y — P&(z)). Reciprocally,
it is easy to see that any estimator of the form h(y) = Z(2) + pJ(y — ®Z(z)) satisfies
properties 1., 2. and 3. It thus remains to find p.

Remark that Problem (24) can be recast as a one-dimensional problem

(26)  min { [(2(2) + pJ (2 — Di(2))) — 2[5 = [(Id — p@J)(Pi(2) — 2)]3 }

whose unique solution, when ®J(®Z(z) — 2) # 0 is given by (25), and a candidate
solution is p = 1, otherwise. 0

The case where ®J is an orthogonal projector leads to interesting properties for
instance when 2 is associated to the constrained least-square, the Lasso or aniso-TV.

PROPOSITION 14. Assume ®J is an orthogonal projector. Then, the scaling pa-
rameter is p = 1.

Proof. As ®J is an orthogonal projector, we have ®J = (®J)2 = (®.J)". It fol-
lows that [®J5]2 = (®J5, ®J5) = ((®J) ®J6, §) = (.5, §). Injecting this equality
in (25) gives p = 1. O

Statistical interpretation. When y becomes a random vector with expectation

®x( and with finite second order moment, the bias and covariances of D; . can be
obtained in closed form.

PROPOSITION 15. Let Y be a random vector in R™ such that E[Y] = @z, and
Cov[Y] =X € R"™". Then y — Dy ,(y) satisfies

(27) E[Ds (V)] — w0 = (Id — pJ®)(&(2) — o) ,
(28) Cov[D;.(Y),Y] = pJS |
(29) Cov[Ds (V)] = p*T2T T,

where the cross covariance matriz is defined as Cov[X,Y] = E[XY 7] — E[X]E[Y]",
for any random column vectors X and Y (not necessarily of the same size), and
Cov[Y] = Cov[Y,Y].

Proof. The first equality is a direct consequence of the linearity of the expectation
operator. The second equality arises from the following

(30)  E[(#(2) + pJ (Y — ®i(2)))V " |=E[(&(2) + pJ (Y — ®i(2)))E[Y]
= pJ (E[YYT] - E[Y]E[Y]T)

where we use the fact that J and p are constant with respect to y since they depend
only on the guess z. The third equation follows the same sketch by expanding the
expression of Cov[D; ,(Y)]. 0
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Proposition 15 provides a closed form expression for the bias, the cross-covariance
and the covariance of D; .. In the general case, these quantities are much more
intricate to derive for a non-linear estimator Z. Nevertheless, the next corollary shows
how these quantities relate to those of the first order Taylor expansion of the original
estimator z.

COROLLARY 16. Let T; .(y) be the tangent estimator of & at z € R™ defined as
(31) Te:(y) = 2(2) +J(y — 2) .

Let Y be a random vector in R™ such that E[Y] = ®x¢ and Cov[Y] = X. Then
y = Taz(y) and y = D - (y) satisfy

(32) E[T:,:(Y)] — o = (2(2) — wo) + J(®zo — 2) ,
(33) Cov[D;,(Y), Y] = pCov[T;,.(Y), Y] ,

(34) COV[DOE (V)] = p*Cov[T; . (Y)]

(35) Corr[D; ,(Y),Y] = Corr[7;,.(Y),Y] ,

(36) Corr[D;,.(Y)] = Corr[Tz,.(Y)]

where  the  cross correlation matriz  is  defined as Corr[X,Y]; ; =

Cov[X,Y);;/v/Cov[X];;Cov[Y];;, for any random column vectors X and Y
(not necessarily of the same size), and Corr[Y] = Corr[Y,Y].

Proof. The first relation holds form the expression of 7; . and that J does not
depend on y. It follows that Cov[T; .(Y),Y] = JX and Cov[T; (V)] = JEJ . These,
jointly with Proposition 15, conclude the proof. ]

Corollary 16 is essential in this work as it states that, by preserving the Jacobian
structure, Dy (YY) cannot depart from the tangent estimator of & at z in terms of
(cross-)correlations. As a consequence, one can expect that they only differ in terms
of expectation, i.e., in terms of bias. The next propositions state that when ®J is a
projector, the bias in prediction is guaranteed to be reduced by our re-fitting.

PROPOSITION 17. LetY be a random vector of R™ such that E[Y] = ®xy. Assume
®J is an orthogonal projector, then y — Dj; .(y) satisfies

(37) |®(E[Ds,-(Y)] = zo)| < [S(E[Tz,-(Y)] = zo)] -

Proof. As ®J is an orthogonal projector, by virtue of Proposition 14, p = 1, then

(38) |®(E[Tz.-(Y)] — wo)|* = |®((2) + J(Pxo — 2) — wo)|®

= [(1d — @1)®(d(2) — o) + ©J(PE(2) — 2)|°
= [(1d = @1)®((2) — x0)[* + [@J (i (2) — 2)|?
= |®(2(2) + J (w0 — £(2)) — z0)|* + [@J(Pi(2) — 2)[
= |®(E[D;,-(Y)] — 20)|* + |25
which concludes the proof. ]

Proposition 17 is a bit restrictive as it requires ®J to be a projector. Nevertheless,
this assumption can be relaxed when z satisfies a more technical assumption as shown
in the next proposition.
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PROPOSITION 18. Let Y be a random vector of R™ such that E[Y] = ®xg. Let

po = ﬁ‘&;;}%ﬁp and 69 = ®(zg — £(2)). Assume there exists o € [0,1] such that
(39) ‘p_p(’ <Vi-a,
Po
o, ®J0)?
40 d |®J( — 8)|? + 260, DI(6 — b >—<’7
@) and |96~ Bl + 20t 26— 60 > —a LT
Then, y — Dy . (y) satisfies
(41) |2(E[D; .- (Y)] — zo)| < |(E[Tz,-(Y)] — zo)] -

Proof. 1t follows from Proposition 15 and Corollary 16 that |®(E[D; .(Y)] —
zo)| = |(Id — p@J)do| and |P(E[Tz,.(Y)] — zo)| = |60 + J(6 — do)|. Subsequently,
we get that Equation (41) holds true if

(42) |(Id — p®J)do |

< b0 + @ (8 — 60)|?
(43) ie.,  p*|®J8|* — 2p(0, DJGp) < |

D5 = 80)[* + 2(0, I (6 — o)) -
Using Assumption (40), a sufficient condition for Equation (41) to hold is

(60, ®Jb0)?

44 2| DT80 |* — 2p(60, IS
( ) p" JO” P( 0, J0>+O‘ ”@J%"Q

X

The roots of this second order polynomial are given by (1++/1 — a) pg, which concludes
the proof. O

Remark 19. Remark that requiring (39) is quite natural as it states that p should
be close enough to the optimal py minimizing the discrepancy with regards to @z
(i.e., minimizing |®h(z) — ®xo|3 for h € H defined as in Definition 12). While the
condition (40) sounds more technical, it however holds true in several interesting
cases. For instance, when z = ®z(, Assumption (40) holds true as it would read

{80, ®J60)>
02 —a 575,

orthogonal projector for which (40) holds true as it would read |®.J3]? — |®J5|* >
—[®Jo|? (using that p = pg = 1, (-, ®J-) = |®J - |2, and choosing o = 1). Hence,
Proposition 18 recovers Proposition 17.

(since 6 = dp and p = pg). Another case of interest is when ®.J is an

Remark 20. Using the same sketch of proof as Proposition 18, the condition

’% < 1 is sufficient to get that |®(E[D;z,.(Y)] — zo)| < |2(2(2) — x0)|. In other

words, even though p as a relative error of 100% with respect to pg, the estima-
tor y — D; .(y) still reduces the bias of the constant estimator y — #(z). This
result remains valid when comparing y — D; .(y) to the pseudo-oracle estimator
y — &(z)+J(y— Pxo), with the notable difference that they moreover share the same
correlation structure.

While it is difficult to make a general statement, we can reasonably claim from
Proposition 17, Proposition 18 and Remark 19 that the bias in prediction will be
reduced by our re-fitting providing ®J behaves closely as a projector (i.e., its eigen-
values are concentrated around 0 and 1) and/or z is not too far from ®z,. In such
cases, the estimator D; . can be considered as a debiasing procedure of Z, in the sense
that it reduces the bias of 7; . while preserving its correlation structure (according
to Corollary 16).
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M (y) = Ma(z)

Fia. 5. Geometrical illustration of the covariant re-fitting in a denoising problem of dimension
p = 3. We assume that Mz (z) = Mgz (y) for the sake of clarity. The gray surface is the manifold
modeling the evolution of & in an extended neighborhood of y. The light red affine plane is the model
subspace tangent at z. The ellipses represent the positive-definite symmetric covariance matrices of
some random vectors, as defined in Proposition 15 and Corollary 16.

5.2. The covariant least-square re-fitting: definition and properties.
Using the procedure D; . defined in Theorem 13, we can now give an explicit definition
of our proposed covariant re-fitting as Rz (y) = Dz 4 (y).

Definition 21. The covariant re-fitting associated to an a.e. differentiable estima-
tor y — &(y) is given for almost all y € R™ by the relationship

(®J), 0)
(45)  Raly) = &(y) + pJ(y — ®2(y)) with p=¢ [®JI[3
1 otherwise ,

if IS £0,

where § =y — ®Z(y) and J = Jz(y) is the Jacobian matrix of & at the point y.

Figure 5 gives a geometrical interpretation of CLEAR for a denoising task in
dimension p = 3. One can observe that if Y varies isotropically, its projection will
also vary isotropically on the model subspace. Contrarily, the tangent estimator at a
guess z can present an anisotropic behavior along the model subspace, and the guess
based re-fitting, which is closer to z, will respect this anisotropy in order to capture
the local regularity of Z. Finally, the covariant re-fitting is obtained from the guess
based re-fitting at z = y. For the sake of clarity, it was assumed on this illustration
that Mz (z) = Mz (y).

Remark 22. The covariant re-fitting performs an additive correction of &(y) with
a fraction of the directional derivative J¢ in the direction of the residual é.

Remark 23. Observe that in Definition 21, the value of p varies when y varies,
contrary to the map y — D; .(y) for which p is constant. Note that the mapping
y — D; ,(y) is affine, but not the map y — Rz (y). Note that, as a consequence, the
statistical interpretations given in the previous section do not hold for R;(y) even
though they shed some light on its behavior.
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Remark 24. The re-fitting procedure computes 72> = ! + pJ(y — ®3'), with

1 k+1 _

#' = &(y). One may wonder if it is beneficial to iterate the process as Z
% 4+ pJ(y — ®7*%) (in the same vein as [46, 5, 32, 42, 36]). Consider a denoising
problem ® = Id with Tikhonov or iso-TV, for which J is symmetrical and Z(y) €
Im[J] (see, Example 6 and Example 10). The sequence will converges if and only
if J(y — %) vanishes, i.e., ¥ must converge to J*Jy + ¢ with ¢ € Ker[J]. By
construction, ¥ € Im[J] = Ker[J "]+ = Ker[J]*, hence ¢ = 0. Moreover, as J is
symmetrical and 2(y) € Im[J], the quantity JTJy coincides with JJ Ty = RV (y) (by
virtue of Remark 4), i.e., the invariant re-fitting. Reminding the artifacts illustrated
in Figure 3.(e), this is not satisfying.

An interesting property of R; is the fact that it belongs to the model subspace
of & as stated in the following proposition.

PROPOSITION 25. Let y +— @(y) be an a.e. differentiable estimator. Then for

almost all y € R™, one has Rz(y) € Mz(y).
Proof. Simply recall that Mz (y) = &(y) + Im J, since pJ(y — ®2(y)) € Im J the
proposition follows. ]

Again, the case where ®J is an orthogonal projector, leads to interesting prop-
erties that will be of main interest regarding several of the estimators considered in
Section 3.

PROPOSITION 26. Suppose that &J is an orthogonal projector. Then, Rz(y) =
2(y) + J(y — @i(y)), and, PR:(y) = PR (y).

Proof. By virtue of Proposition 14, p = 1 and then Rz (y) = &(y) + J(y — Pi(y)).
The fact that ®Rz(y) = PRIV (y) comes from the fact that ®J(®J)* = ®.J. |

The next proposition provides, when J® satisfies a fixed point formulation, an
expression of R;(y) as a combination of the estimator with the application of the
Jacobian to the noisy signal. This expression will be of main interest regarding the
efficient computation of the re-fitting as discussed in Section 6, with a notable example
being the iso-TV regularization.

PROPOSITION 27. Assume that J®Z(y) = &(y). Then, the covariant re-fitting
reads Rz (y) = (1 — p)2(y) + pJy.

Proof. We have Rz (y) = &(y) +pJ(y—P2(y)) = Z(y) + pJy — pJPi(y), and since
JOi(y) = Z(y) by assumption, this concludes the proof. |

Interestingly, the next theorem shows that the condition J®&(y) = &(y) can be

met provided (y) is solution of a variational problem with a 1-homogeneous regular-
izer.

THEOREM 28. Let Z(y) be the unique a.e. differentiable solution of
(46) Z(y) = argmin F(y — ®z) + G(x)
x
with F, G two convex functions and G being 1-homogeneous. Then, for almost all y,

JPi(y) = 2(y).
The proof of Theorem 28 is postponed to Appendix B.

The affine constrained least-squares, the ¢; synthesis, the /1 — f5 analysis, aniso-
TV and iso-TV, are solutions of a variational problem with F being differentiable and
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G being 1-homogeneous. As a consequence, Theorem 28 shows that the aforemen-
tioned methods satisfy J®&(y) = &(y), and hence Rz (y) = (1 — p)Z(y) + pJy.

5.3. Examples of re-fitting procedures. In this section, we exemplify the
previous definitions for the wide class of variational estimators introduced in Section 3.

Ezample 29. For the affine constrained least-squares defined in Eq. (5), the Ja-
cobian reads as J = A(®A)T. In this case, ®J = PA(PA)T is an orthogonal pro-
jector, p = 1 and the covariant re-fitting coincides with the invariant one and reads
Ray) = RE(y) = &(y).

Ezample 30. The Tikhonov regularization has for Jacobian J = (®T® +
A''T)~'®" and in this case p depends on the residual § and the re-fitting reads
as the weighted sum Rz (y) = (1 + p)&(y) — pJ PL(y).

Example 31. For the soft-thresholding and the hard-thresholding used when ® =
Id, the Jacobian reads J = Idz € RP*IZl. As a consequence ®.J = Idz is an orthogonal
projection and the covariant re-fitting coincides with the invariant one, namely the
hard-thresholding itself.

Ezample 32. For the Lasso, the Jacobian reads J = Idz(®z)" where ®7 has full
column rank. As for the thresholding, ®J = ®U(®U)™ is an orthogonal projection
and the covariant re-fitting reads Rz (y) = RI™(y).

Ezample 33. For the £; analysis, the Jacobian reads J = U(®U)* where ®U has
full column rank and U is a matrix whose columns form a basis of Ker[['zc] where the
I-support is Z = {i : (I'&(y)); # 0} C [m]. Again, ®J = ®U(PU)™ is an orthogonal
projection and the covariant re-fitting reads Rz (y) = RV (y).

Ezample 34. For the {1 — {5 analysis, by virtue of Theorem 28, J®i(y) = Z(y)
and hence R;(y) = (1—p)i(y) + pJy. Moreover, we can show that its Jacobian given
in Eq. (23), applied to a vector d € R™ is a solution of the following problem

(47) Jde argmin  1|®x —d|* + dw(Tz) ,
@ ; supp(l'z) C T

where w : 2 mxb,, L 22 — Z.Mz
rere @2 €RT [T, (” B (o ) )

Remark that w(I'Jd) = 0 if and only if (I"Jd); is co-linear to (I'%(y));, for all i € Z.
For iso-TV, it means that the level lines of Jd must be included in the ones of Z(y). As
a consequence, it becomes clear that unlike the invariant re-fitting of Z(y), the covari-
ant re-fitting is constrained to be faithful to the regularity of #(y), since it enforces
the discontinuities of Jd to be co-linear to (I'#(y))z. This is especially important
where the iso-TV solution presents transitions with high curvature. Such an appeal-
ing behavior of the covariant re-fitting explains the results observed in Figure 2.(e)
and Figure 3.(f).

Ezample 35. For the non-local means, the Jacobian has a more intricate structure.
Nevertheless, its directional derivative has a simpler expression given for any direction
d € R™, by

with @

2.5 Wi "
where Z(y) is defined in Eq. (18) and
(49) wi; = 2(Piy — Pyy, Pid = Pid)¢’ (IPiy — Pyyl?)

2

Wy W d — (Y)Y W
(48) Jd = Z] z,]yj Z 570 (y) Z] ,] = ng_kyj_k 7
k
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with ¢’ the a.e. derivative of the kernel function . Subsequently, the covariant re-
fitting is obtained from its general form with two steps, by computing first Z(y), and
applying next the Jacobian to the direction d =y — &(y).

6. Covariant re-fitting in practice. We now detail how to compute CLEAR
from estimators given by standard algorithms. To that end, we first recall some
interesting properties of two different differentiation techniques that allow computing
some image of J jointly with Z(y).

6.1. Algorithmic differentiation. Following [16], we consider restoration al-
gorithms whose solutions #(y) = z* are obtained via an iterative scheme of the form

aktt =y(ak,y) ,

where a* € A is a sequence of auxiliary variables and ¢ : A x R — A is a fixed point
in the sense that a® converges to a fixed point a*, and v : A — RP is non-expansive
(i.e., |y(a1) — v(a2)| < a1 — az| for any a;,as € A) entailing that z* will converge
to z* = y(a*).

As a result, for almost all y and for any direction d € R™, the directional deriva-
tives DX = Jx (y)d and DX = J,« (y)d can be jointly obtained with z* and a* as

ab o =q(db),
(51) ah ! = l/f(ak,y) )
DF —T,Dk,
DEHL = W, Dk 4 U,d
where T', = 879(;’) o V= W _and ¥, = %;’y) . Interestingly, in all

considered cases, the cost of evaluating I'y, ¥, and ¥, is of about the same as the
cost of evaluating v and ¥. As a result, the complexity of (51) is of about twice
the complexity of (50). Note that in practice, 'y, ¥, and ¥, can be implemented
either by investigating their closed form expression or in a black box manner using
automatic differentiation tools. The later strategy has been well studied and we refer
to [25, 30] for a comprehensive study.

6.2. Finite difference based differentiation. Another strategy is to approx-
imate the directional derivative by finite differences, for any direction d € R™ and
>0, as

Hy +ed) —i(y)

(52) Jz(y)d = 6

As a result, the complexity of evaluating (52) is also twice the complexity of (50) since
Z must be evaluated at both y and y+ed. The main advantage of this method is that
2 can be used as a black box, i.e., without any knowledge on the underlying algorithm
that provides &(y). For & small enough, it performs as well as the approach described
in (51) (with #(y) = z%) that requires the knowledge of the derivatives. Indeed, if
y +— &(y) is Lipschitz-continuous, then (52) converges to (51) when ¢ — 0 (by virtue
of Rademacher’s theorem and [22, Theorem 1-2, Section 6.2]). This implies that the
value € can so be chosen as small as possible (up to machine precision) yielding to an
accurate approximation of J;z(y)d. This finite difference approach has been used in
many fields, and notably for risk estimation, see, e.g., [51, 39, 34].
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6.3. Two-step computation for the general case. In the most general case,
the computation of the covariant re-fitting, given by

(53) Relo) = ilu) + pJ(y = B3(s)) with p= ek and 5=y 0i(y)

requires to evaluate sequentially Z(y) and J(y — ®i(y)).

In the case of finite difference differentiation, two steps are required. First Z(y)
must be computed with the original algorithm and next J(y — ®2(y)) is obtained by
finite difference (52) on the direction of the residual d = y— ®&(y). Once J(y— P& (y))
is computed, p can be evaluated and subsequently (53). The overall complexity is
about twice that of the original algorithm producing Z(y).

In the case of algorithmic differentiation, as J(y — ®%(y)) depends on Z(y), the
original iterative scheme (50) must be run first. In the second step, J(y — ®&(y))
is obtained with the differentiated version (51) on the direction of the residual d =
y — ®i(y). As a result, #(y) is unfortunately computed twice, first by (50) and next
by (51) leading to an overall complexity of about three times the one of the original
algorithm. Nevertheless, in several cases, one can avoid the first step by running only
Algorithm (51). This is the topic of the next section.

6.4. One-step computation for specific cases. When #(y) fulfills the as-
sumption J®z(y) = Z(y) of Proposition 27, the covariant re-fitting reads as

(@(Jy —2(y)), y — ®2(y))
|®(Jy — &(y))l3 '

The computations of Z(y) and Jy are then sufficient to directly compute the re-fitting
Rz(y). As a result, in the case of algorithmic differentiation, only Algorithm (51)
can be run to get R;(y) since using the direction d = y provides directly &(y), Jy
and subsequently p. Compared to the two step approach, the complexity of the re-
fitting reduces to about twice the one of the original step from (50). Recall, that the
condition J®i(y) = Z(y) is met for several cases of interest including the Lasso, the
Generalize Lasso, aniso-TV and iso-TV. Hence, all of them can be re-enhanced with
a complexity being twice the one of the original algorithm.

(54) Ra(y) = (1= p)i(y) +pJy with p=

6.5. Example for a primal dual optimization of the /; analysis problem.
In this section we instantiate Algorithm (51) to the case of the primal-dual sequence
of [8]. To that end, let us first recall some of the properties of primal-dual techniques.
By dualizing the ¢; analysis norm x — A|T'z|;, the primal problem (14) can be
reformulated, with * = &(y), as the following saddle-point problem

1
* ok iy _ 2 _
(55) (2%,2%) € arg max min o |z —y||° + Tz, 2) — 5, (2) ,
where z* € R™ is the dual variable, and By = {z € R™ : |z|c < A} is the £y ball.
Problem (55) can be efficiently solved using the primal-dual algorithm of [8]. By
taking o7 < W, 6 € [0,1] and initializing (for instance,) #° = v* = 0 € RP,
2
2% =0 € R™, the algorithm reads
L =T, (2% + oTw) |

(56) xh+l (Id+ 727 @)~ (2% + 7(®Ty —TT2H)
DR = gL (kL gk
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where the projection of z over B) is done component-wise as

Z if |Zl| < A s
A sign(z;) otherwise .

(57) s (); = {

The primal-dual sequence x*

(14) as proved in [§].

It is easy to check that the primal dual sequence defined in (56) can be written
in the general form considered in (50), see for instance [16]. As a result, we can use
the algorithmic differentiation based strategy described by (51) and that reads, for
initializations 2° =7 =0 € R?, 2° =0 € R™, and for 8 =0, as

converges to a solution z* of the ¢; analysis problem

AL — Tl (2F + oTo%) |
Sl (Id—FT(I’T(I’)_l (xk +T(¢)Ty_FTzk+1))
58 P gt gt g
2k+1 = sz'+al“v"' (2k + O—Ff}k) ’
ShHL (Id+T<I>T‘I))71 (jk +T(<I>Ty*FT5k+1))
okl — Fk+1 —+ Q(karl - "Ek) ’
o & if |z <A+B,
where I1.(2); = { 0 otherwise

Recall that the re-fitting is directly R+ (y) = Z*, since J® is an orthogonal projector
for the ¢; analysis case.

Remark that the algorithmic differentiation of (56) is exactly (58) for 8§ = 0,
hence, ¥ = R, x(y). However, if one wants to guarantee the convergence of the
sequence 7% towards R;(y), one needs a small 3 > 0 as shown in the next theorem.
In practice, 8 can be chosen as the smallest available positive floating number.

THEOREM 36. Assume that z* satisfies (15) with ®U full-column rank'. Let o >
0 be the minimum non zero value’of |Tx*|; for all i € [m]. Choose 3 such that
ac > 8 > 0. Then, the sequence % = R, (y) defined in (58) converges to the
re-fitting Rz (y) of &(y) = z*.

The proof of this theorem is postponed to Appendix C.

A similar result was obtained in [14] when solving the ¢; analysis problem (14)
with the Douglas-Rachford splitting algorithm described in [18, 9].

6.6. Example for a primal dual optimization of the /; — /> analysis prob-
lem. The algorithm for the ¢; — /> analysis regularization can be derived with the
exact same considerations as for the /1 analysis case. The only difference in the ap-
plication of the primal dual algorithm comes from the non linear operation (57) that
now reads, for z € R™*? as

)\ﬁ otherwise .
i

iso % if ||Z74H2 <A ’
(59) By (2)i = {

1This could be enforced as shown in [47].
21f |Tz*|; = 0 for all 5 € [m], the result remains true for any o > 0.
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Algorithm Non-local means [4] and its directional derivative

Inputs: noisy image vy, direction d, noise standard-deviation o

Parameters: half search window width s, half patch width b, kernel function ¢
Outputs: z* = &(y) and & = Jz(y)d

Initialize W ¢ ©(20%(2b + 1)) 1p; xps (add weights for the central pixels [38])
Initialize W, < p(202(2b 4 1)?) y (accumulators for the weighted sum)

Initialize W' < Op, xp,
Initialize W} < ¢(20°(2b +1)%) d
for k € [—s,s] x [—s,s] \ {0,0} do

Compute e« [(y— Sk(¥))? | xk (error between each k shifted patches [12, 13])
Compute w + p(e) x kK (contribution for each patch of its k shift)
Update W+ W+w (add weights at each position)
Update W, + W, + wSk(y) (add contribution of each k shifted patches)

Compute €'+ [2(y — Sk(y))(d — Sk(d)) | * &

Compute w’ < [€e'¢’'(e) ] xk

Update W'+ W'+’

Update W, < W, +w' Sk(f) + wSk(d)
end for
Compute z* + W,/W (weighted mean)
Compute Z < (W, — W'z*)/W

Fic. 6. Pseudo-algorithm for the computation of the block-wise non-local means and its Jaco-
bian in a direction d. All arithmetic operations are element wise, Sy is the operator that shift all
pizels in the direction k, % is the discrete convolution operator, and k € RP1*P2 js such that k; j = 1
if (¢,7) € [=b,b] X [=b,b], O otherwise.

It follows that the algorithmic differentiation strategy reads as

2L =TI (2% + oTwF)

gFH = (Id+ 70T ®) ! (28 + (@ Ty —TT (M)
(60) Y T PO

z =150, pr (27 + 0'0%)

= (Id+ 70" e)7 (& + r(@Ty —T T ),

,&k-ﬁ-l — Fk+1 + 9(5;.]64‘1 _ i’k) ,

i Jaile <A+ 8
A . _ [=. Z; Zi :
il (zz <zl, quzH2> 7||z1'|\2) otherwise .

Unlike the ¢; case, the re-fitted solution is not Z* itself, but following Subsection 6.4,
can be obtained at the last iteration k as

where TI¥°(%); = {

(®(z" — %), y — ®ak)
| (2" — 2%)]3

(61) R (y) = (1 — p)a® 4 pzF  with p =

6.7. Example for the non-local means. In this section, we specify the update
rule (51) to an acceleration of the block-wise non-local means inspired from [12, 13].
We use the procedure of [38] to correctly handle the central pixel. Again, one can check
that this implementation can be written in the general form considered in the update
rule (50), where the fixed point solution is obtained directly at the first iteration.
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Fic. 7. (a) Noisy observation y = g + w and (d) noise-free signal zo. (b) Iso-TV denoising
Z(y) and (e) the residual £(y) — xzo. (c) Our re-fitting Rz (y) and (f) the residual Rz (y) — xo.

The pseudo-code obtained with the algorithmic differentiation scheme, as de-
scribed in (51) is given in Figure 6. All variables with suffix / correspond to the
directional derivative obtained by using the chain rule on the original variables. This
fast computation relies on the fact that all convolutions can be computed with in-
tegral tables, or in the Fourier domain, leading to a global complexity in O(s%n),
resp. O(s?nlogn), for both the computation of the estimator #(y) and its directional
derivative Jd. Recall that the covariant re-fitting is obtained from its general form
with two steps, by computing first #(y), and applying next the proposed pseudo-code
in the direction d = y — (y).

7. Numerical experiments and comparisons with related approaches.
In this section, we first give illustrations of our CLEAR method on toy image restora-
tion problems. Then, we evaluate the performance of the re-fitting and discuss about
its benefit in several scenarios, and we compare our method with related popular
approaches from the literature.

7.1. Denoising with isotropic total-variation (iso-TV). Figure 7 gives an
illustration of our covariant re-fitting of the 2D iso-TV, where the regularization pa-
rameter A has been chosen large enough in order to highlight the behavior of the
re-fitting. We apply it for the denoising (i.e., ® = Id) of an approximate 8bits piece-
wise constant image damaged by AWGN with standard deviation ¢ = 20, known as
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Fic. 8. (a) Partial and noisy observation y = ®xo + w (red indicates missing pizels) and (d)
notse-free signal xg. (b) Iso-TV restoration &(y) and (e) the residual &(y) — xzo. (c) Our re-fitting
Rz (y) and (f) the residual Rz(y) — zo.-

the Shepp-Logan phantom. As discussed in Subsection 3.6, iso-TV introduces a signif-
icant loss of contrast [41], typically for thin detailed structures, which are re-enhanced
in our result.

The residuals Z(y) — xg and Rz(y) — 2o highlight that our re-fitting technique
re-enhances efficiently the attenuated structure while it leaves the lost structures un-
changed. Nevertheless, after re-fitting, some small residuals around the edges appear.
In fact, in the vicinity of edges, iso-TV finds (barely visible) discontinuities that are
not in accordance with the underlying image. This creates an overload of small con-
stant regions. When re-fitting is performed, all such regions are re-fitted to the noisy
data, and such regions becomes barely visible artifacts. In other words, the re-fitting
has re-enforced the presence of a modeling problem, resulting to an increase of residual
variance, that iso-TV had originally compensated by attenuating the amplitudes.

7.2. De-masking with isotropic total-variation (iso-TV). Figure 8 gives
another illustration of our covariant re-fitting of the 2D iso-TV used for the restoration
of an approximate 8bits piece-wise constant image damaged by AWGN with standard
deviation o = 20, known as Boat. The observation operator ® is chosen as a random
mask removing 40% of pixels. Again, iso-TV introduces a significant loss of contrast,
typically for thin details such as the contours of the objects, which are re-enhanced
in our re-fitting result.

Inspecting the map of residuals in Figure 8.(e)-(f) illustrates again that our re-
fitting technique eliminates most of the bias to the price of a small variance increase.
This becomes clear by looking at the mast and the ropes of the Boat. While the mast
was preserved by iso-TV and re-enhanced by our re-fitting, the ropes remains lost for
both the iso-TV and our re-fitting.



24 C-A. Deledalle, N. Papadakis, J. Salmon and S. Vaiter

Atte_huated
structures-.

P

Residual
t structures

Fic. 9. (a) Noisy observation y = zo + w and (d) noise-free signal xg. (b) Non-local means
Z(y) and (e) the residual &(y) — xo. (c¢) Our re-fitting Rz (y) and (f) the residual Rz(y) — xo.

7.3. Denoising with non-local means. Figure 9 gives another illustration
of our re-fitting procedure for the block-wise non-local means algorithm used in a
denoising problem of the 8bits image Pirate, enjoying many repetitive patterns and
damaged by AWGN with standard deviation ¢ = 20. Again, we choose a regularizing
kernel ¢(-) = exp(-/h), h > 0 that leads to strong smoothing in order to highlight the
behavior of the re-fitting. Our re-fitting technique provides again favorable results:
many details are enhanced compared to the dull standard version. This reveals that
the standard non-local means is actually able to well capture the repetitions of many
patterns but this information is not used properly to create a satisfying result. The
re-fitting produces a sharper result, by enforcing the correct use of all the structures
identified by patch comparisons.

The maps of residuals Figure 9.(e)-(f) highlight that our re-fitting technique sup-
presses efficiently this dull effect while it preserves the model originally captured by
patch redundancy. Again the suppression of this phenomenon is counter balanced
by an increase of the residual variance prominent where the local patch redundancy
assumption is violated.

In these examples, the overall residual norm is clearly reduced by the re-fitting
because the amount of reduced bias surpasses the increased of residual variance. This
favorable behavior depends on the internal parameters of the original estimator acting
on the bias-variance trade-off. This is the subject of the next section.

7.4. A bias-variance analysis for the covariant re-fitting. Previous exper-
iments have revealed that while CLEAR tends to reduce the bias, it increases (as
expected) the residual variance. It is therefore important to understand under which
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— — — Original &(y)
Re-fitted Rz (y)
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% Optimum re-fitted
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Fic. 10. Ezperiment with aniso-TV: (top) poorly approzimate piece-wise constant case. (bot-
tom) pure piece-wise constant case. (a) Noise-free image xg. (b) Noisy image y = zo + w. (e)
Mean square error of the aniso-TV estimator £(y) and its re-fitted version Rz (y) with respect to the
parameter A. Two values of \ are selected corresponding to (c) re-fitted version for a sub-optimal
A value, (d) original version for a sub-optimal X\ value, (f) original version for its optimal \ value,
(g) re-fitted version for its optimal A value.
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Fic. 11. Ezperiment with block-wise non-local means: (top) moderate patch redundancy case.
(bottom) high patch redundancy case. (a) Noise-free image xo. (b) Noisy image y = zo + w. (e)
Mean square error of the estimator £(y) and its re-fitted version Rz (y) with respect to the parameter
h. Two values of h are selected corresponding to (c) re-fitted version for a sub-optimal h value, (d)
original version for a sub-optimal h value, (f) original version for its optimal h value, (g) re-fitted
version for its optimal h value.
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conditions the bias-variance trade-off is in favor of our re-fitting technique.

Figure 10 illustrates the evolution of performance, measured in terms of mean
squared error (MSE), of both the aniso-TV and its re-fitting version as a function of
the regularization parameter A\. Two images are considered: a crude approximation
of a piece-wise constant image (the Cameraman in the top), and an actual piece-wise
constant image (in the bottom).

This experiment highlights that optimal results for both approaches are not
reached at the same A value. Visual inspection of the optima seems to demonstrate
that due to the bias, the optimal solution of aniso-TV is reached for a A value that
promotes a model subspace that is not in accordance with the underlying signal:
typically the presence of an overload of (barely visible) transitions in homogeneous
areas. These transitions become clear when looking at the re-fitted version where each
small region is re-fitted on the noisy data, revealing an excessive residual variance.
Conversely, the optimal A value for the re-fitting seems to retrieve the correct model,
i.e., with transitions that are closely in accordance with the underlying signal. More-
over, comparing their relative performance, when both are used at their own optimal
A value, reveals that our re-fitting brings a significant improvement if the underlying
image is in fact piece-wise constant.

Figure 11 provides a similar illustration of the evolution of performance for the
block-wise non-local means and its re-fitted version as a function of the smoothing
parameter h of the kernel function ¢(-) = exp(-/h). Two images are considered: a
crude approximation of an image with redundant patterns (the Lady in the top part
of the figure), and an image with many redundant patterns (the Fingerprint in the
bottom part of the figure). Similar conclusions can be made from this experiment.
In particular, comparing their relative performance, when both are used at their own
optimal h value, seems to demonstrate that the re-fitting brings an improvement when
most of patches of the underlying image are redundant.

While it is difficult to make a general statement, we can reasonably claim from
these experiments that the re-fitting is all the more relevant in terms of MSE than
the underlying image x is in accordance to the retrieved subspace model M;(y). In
other words, re-fitting is relatively safe when the original restoration technique was
chosen wisely with respect to the underlying image of interest. Beyond the MSE per-
formance, visual inspection of the re-fitted results at their optimal parameters choice
might nevertheless be preferable. Even tough the MSE is not necessarily improved,
intensities and contrasts are recovered better.

7.5. Comparisons with other techniques devoted to the ¢; case. We
detail hereafter two different alternative strategies devoted to re-enhance the solution
of the ¢; analysis regularization.

Iterative hard-thresholding. As shown earlier, the hard-thresholding is the re-
fitted version of the soft-thresholding. Given an iterative solver (k,y) ~ 2* com-
posed of linear and soft-thresholding (such as the primal-dual algorithm), one could
consider replacing all soft-thresholding by hard-thresholding while keeping linearities
unchanged: a technique often referred to as “iterative hard-thresholding” [3]. Unfor-
tunately, the convergence of such techniques is not ensured in general (typically when
® £ 1d), and even if so, they usually do not converge to the sought re-fitting Rz (y).

Co-support identification based post re-fitting. Another solution referred to as
post re-fitting, and studied in, e.g., [20, 35, 2, 27, 2], consists in identifying the
(co-)support Z = {i : (T'#(y)); # 0} and solving a least-square problem constrained
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Fic. 12. (a) Noise-free image zo. (b) Noisy image y = xo + w. (c) Original aniso-TV
estimate &(y). Enhanced results by (d) iterative hard-thresholding, (e) post re-fitting with support
identification, and (f) our proposed covariant re-fitting.

Fic. 13. (a) Original image zo. (b) Blurred and noisy image y = Pxo + w. (c) Original
aniso-TV estimate Z(y). Enhanced results by (d) iterative hard-thresholding, (e) post re-fitting with
support identification, and (f) our proposed covariant re-fitting.
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to {z : (Tx)ze = 0} typically with a conjugate gradient. However, &(y) is usually
obtained thanks to a converging sequence =¥, and unfortunately, supp(I'z¥) can be
far from supp(I'Z(y)) even though z*¥ can be made arbitrarily close to (y). Such
erroneous support identifications can lead to results that strongly deviates from the
solution Rz (y).

Figure 12 provides a comparison of our re-fitting method with the two other
approaches mentioned earlier for the aniso-TV used on a 8bits image damaged by
AWGN with standard deviation o = 20, known as peppers. The iterative hard-
thresholding approach does not preserve the model space: transitions are not localized
at the same positions as in the original solution and suspicious oscillations are created.
The post re-fitting and our approach have both improved #(y) by enhancing each piece
and preserving the location of transitions. Our method is nevertheless more stable
than support identification which produces many errors due to wrong co-support
identification.

Figure 13 provides another illustration highlighting the problem of support iden-
tification in an ill-posed problem. It consists of an 8bits image damaged by a Gaussian
blur of 2px and AWGN with standard deviation ¢ = 20, known as Cameraman. Again,
while aniso-TV reduces the contrast, the re-fitting recovers the original amplitudes
and keep unchanged the discontinuities. Post re-fitting offers comparable results to
ours except for suspicious oscillations due to wrong co-support identification.

In contrast with the support identification, CLEAR does not require the identi-
fication of the co-support, nor the identification of the model subspace Mg (y). This
is an appealing property since the co-support of the optimal solution #(y) is difficult
to identify, particularly in the analysis context. Being computed during the iterations
of the original algorithm, jointly with Z(y), our re-fitting strategy also provides more
stable solutions.

7.6. Comparisons with boosting strategies. We detail hereafter other pop-
ular alternatives designed to re-enhance results of an arbitrary estimator.

Twicing and boosting. The boosting iterations introduced in [5] is a simple ap-
proach that consists in re-injecting to the current solution * a filtered version of its
residual y — ®ZF. The idea is that if parts of the signal where lost at iteration k, they
might be retrieved in the residual. Given z° = 0, the iterations reads

(62) P =gk 4 2y — ek |

The first iterate is Z' = #(y), and #? is known as the twicing estimate [46]. When k
increases, the bias of this estimator tends to decreases while its variance increases, see
for instance [42]. In denoising (i.e., when ® = Id) with a linear estimator Z(y) = Wy
(e.g., the Tikhonov regularization), we get #* = (Id — (Id — W)¥)y, for k > 0. In
particular, the twicing reads as #2 = (2W — W?)y. Recall that the covariant re-fitting
reads in this case as Rz (y) = (W +pW — pW?)y and it coincides when p = 1. Such an
approach is also popular for instance in kernel smoothing in non-parametric statistics
[11].

Iterative Bregman refinement. In [32], the authors proposed an iterative proce-
dure, originally designed to improve iso-TV results, given by

k
(63) gl =g <y + Z(y - <I>£’“)>

i=1
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Unlike boosting that iteratively filters the residual, the idea is to filter a modified
version of the input y amplified by adding the sum of the residuals. When ¢ = Id and
#(y) = Wy, the iterative Bregman refinement reads as &% = (Id — (Id — W)*)y, and
it coincides with the boosting approach. This has led to several related approaches,
and we refer the interested reader to [6, 50, 24, 33| for more details.

S0S-boosting. In [36], the authors follows a similar idea by iteratively filtering
a strengthened version of the input y. Their method, named Strengthen Operate
Substract boosting (SOS-boosting) performs iteratively the following update

(64) P =12y + a®F) — (ra+ 17— 1)3F .

where « and 7 are two real parameters. The first one controls the emphasis of the
solution (and the convergence of the sequence), while the second one controls the rate
of convergence. When ® = Id and &(y) = Wy, the SOS refinement with 7 = 1 reads as
% = Wy+a(W—Id)Z*~!, and in particular, for k = 2, we get 72 = (W —aW +aW?)y
which coincides with our covariant re-fitting for the choice a = —p. Note that for all
the estimators we have considered, we have always observed that p > 0, contrarily
to [36], where a > 0 is implicitly assumed. Hence, we cannot concludes that the two
models match in a specific setting. Another difference, is that while we provide an
automatic way to compute p, see for instance Equation (54), the o parameter of the
SOS-boosting must be tuned by the practitioner, which my be cumbersome for the
practitioner (e.g., when using cross-validation on a specific dataset of images and/or
for specified noise levels).

SAIF-boosting. As described in [29], the diffusion of a filter consists in iteratively
re-applying the filter to the current estimate #*™' = # (z*). The authors of [42]
noticed that, unlike the boosting method of [5], the bias of this estimator increases
and its variance decreases with k. As a consequence, the authors suggest mixing
the two approaches by deciding at each iteration between performing a boosting or
a diffusion step. To that end, they proposed a plug-in risk estimator that crudely
estimates the MSE from a pre-filtered version of y. This approach is in fact applied
locally on image patches, and is referred to as the Spatially Adapted Iterative Filter
(SATF)-boosting. Unlike the other techniques, the SAIF-boosting cannot be used as
a black-box. Indeed, it requires to perform an eigen decomposition of z locally for
each patch of y. This can be efficiently done for some kernel-based averaging filters,
but can be very challenging for arbitrary estimators, such as for instance iso-TV.

It is worth mentioning that boosting approaches are scarcely used for linear es-
timators. The successive re-application of a non-linear estimator & allows to recover
parts of the signal that were lost at former iterations. Nevertheless, to boost the
solution, the internal parameters of & often need to be re-adapted at each iteration,
leading to cumbersome tuning of parameters in practice, even if this can be done using
cross-validation on a specific set of images for each targeted noise level investigated.
Unlike boosting methods, a re-fitting approach should not modify the regularity and
the structure of the first estimate. This is the reason why CLEAR only considers the
linearization of & at y through the Jacobian.

It is important to have in mind that theoretical results of the aforementioned
methods are well grounded in the case where, even though % is non-linear, it acts
locally as an averaging filter. In other words, locally, there exists a row stochastic
linear operator W, i.e., W1, = 1,, (or even bi-stochastic, symmetric or independent
of y) such that #(y) = Wy. Such theoretical results could not be applied to the
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Fic. 14. (a) A cartoon image zo with large constant pieces. (b) Its noisy version y = zg + w.
(¢) Result Z(y) of iso-TV. (d) Our covariant re-fitting Rz (y). (e.f,g.h) From top to bottom, results
of boosting [46, 5], Bregman iterations [6] and SOS-boosting [36] at respectively 1, 2, 5 and 20
iterations.

soft-thresholding (nor to more advanced methods we have considered). Indeed, from
Subsection 3.3, for the soft-thresholding, a natural candidate for W is the diagonal
matrix defined as

A .

0 otherwise ,

which is not row stochastic. In this context, the matrix W is not the Jacobian, which
is given in this case by the diagonal matrix

(66) i = { 0 otherwise ,

which, unlike W, is row stochastic and locally a projector. A second limitation is that
even though W is row stochastic, it might still encode a bias part. Typically, for the
{1 analysis described in Subsection 3.5, a natural candidate for W is

(67) W=U@U)t-UuU'e eU)'UT (IR ,
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Fic. 15. (a) A cartoon image zo with large constant pieces. (b) Its noisy version y = xg + w.
(¢) Result Z(y) of non-local means. (d) Our covariant re-fitting Rz (y). (e.f,9,h) From top to bottom,
results of boosting [46, 5], Bregman iterations [6] and SOS-boosting [36] at respectively 1, 2, 5 and
20 iterations.

where R is a diagonal matrix with diagonal elements R;; = A\/|y;| for i € T and
0 otherwise. One can check that if 1, € Ker[['] (which holds true for aniso-
TV), then W is row stochastic. However, as seen in Subsection 3.5, the quantity
UUT®T®U)"'UT(I'T)zR is the term responsible for the systematic contraction of
the ¢; analysis regularization (this simplifies to A/|y;| for the soft-thresholding). As a
consequence, the bias cannot be corrected by a single application of W. The Jacobian
J = U(®U)™", which is again row stochastic, is free of this contraction term. There-
fore our covariant re-fitting gets rid of this bias term after one single application of
the Jacobian J.

Figure 14 and Figure 15 provide a comparison of our covariant re-fitting with
the three first aforementioned boosting approaches, on two 8-bits images (Flinstones
and Barbara) damaged by AWGN with standard deviation o = 20, respectively for
iso-TV denoising and for non-local means. Note that the o and 7 parameters of the
SOS-boosting approach have been tuned to offer the most satisfying results, even
though, we did not observe a significant impact in the iso-TV case. As expected,
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our covariant re-fitting provides results re-enhanced towards the amplitudes of the
noisy inputs. While our re-fitting preserves the structural content and smoothness of
the original dull solution, the boosting approaches re-inject structural contents that
were not originally preserved. Sometimes they do not even re-fit towards the original
amplitudes, or they present a large amount of residual noise. Note that in these
experiments, the original estimator was chosen to be significantly biased. We believe
that unlike re-fitting methods, boosting techniques might be more relevant to improve
the quality of near unbiased estimates.

8. Conclusion. We have introduced a generalization of the popular least-square
re-fitting technique, originally introduced to reduce the systematic contraction of the
Lasso estimator.

Together with this generalization, a generic implementation has been given for a
wide class of ill-posed linear problem solvers. This implementation requires a compu-
tational overload of at most a factor of about three compared to the original solver;
this factor can even be reduced to about two for most popular estimators in image
processing.

While the classical re-fitting is inspired by the standard Lasso debiasing step
(i.e., least-square re-fitting on the estimated support), our generalization leverages
the Jacobian of the estimator and does not rely on the notion of support. In partic-
ular, the proposed implementation only requires chain rules and differentiating the
considered solver. It is free from the unstable step of identifying the underlying sup-
port. In practice, this has the benefit of increasing the stability compared to classical
implementations.

For estimators such as Tikhonov regularization, total-variation or non-local
means, numerical experiments have demonstrated the efficiency of the CLEAR tech-
nique in retrieving correct intensities while respecting the structure of the original
biased estimator. Moreover, it has been shown in practice that re-fitting is benefi-
cial when the underlying signal structure is well captured by the original estimator.
Otherwise, re-fitting leads to too simplistic approximations, typically reflecting an
inaccurate prior model. In other words, if the considered estimator is adequate with
respect to the application context, then re-fitting is recommended.

We have highlighted the importance in distinguishing boosting approaches from
the re-fitting one. In particular, re-fitting should be preferred in applications where
the content of the original solution must be preserved. While boosting approaches are
mostly used to enhance near unbiased estimators (typically coming from combinatorial
or non-convex problems), the re-fitting is all the more relevant for estimators that
present biases. For instance, re-fitting is essential for estimators solution of a convex
problem that require a large bias correction to accurately retrieve the content of
the signal of interest, a canonical example being the isotropic total-variation (iso-
TV). Nevertheless, we believe that the notion of Jacobian based re-fitting could be of
interest for boosting applications and we leave this to future work.
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Appendix A. Sketch of proofs. This section details how to retrieve closed-
form expressions of some of the estimators studied in the paper, that are either well
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known results or easy to derive.
A.1. Retrieving the Least-square solution. We aim at retrieving here the

solution of the constrained least-square problem

(68) argmin |®z — y[* + tc(z)
z€RN

where C' = b+ Im[A], b € R? and A € RP*". Note that the initial problem can be
recast as

(69) argmin |®x — y|? = b+ A - argmin |PAt — (y — b)|? .
zeC tERn

F(t,y)

The problem being differentiable and convex, a minimum can be obtained by studying
its first optimality conditions given by

(70) % =0 ATO DAt =ATD T (y— DD) .
In particular ¢ = (PA)*(y — ®b) is a solution, and hence z = b + At, ie., v =
b+ A(PA)T(f — ®b) is a solution.

A.2. Retrieving the Tikhonov solution. We consider the optimization prob-
lem defined, for ' € R™*P and A > 0, as

1 A
(71) argmin —|Px — yH2 + f||Fx||2 .
rcRN 2 2

The objective function being again differentiable and convex, a minimum can be
obtained by studying the first order optimality conditions given by

(72) T (Pr—y) + ATz =0 (PO T)z=0"f.
Provided Ker ® NKerT' = {0} and A > 0, the quantity &' ® + AI'" T is invertible and
r=(®T® 4+ A\[''T")"'® Ty is the unique solution of (71).

A.3. Retrieving the hard-thresholding solution. We consider the mini-
mization problem defined, for A > 0, as

. 1 22
(73) argmin {E(m,y) = 5”;U — yH2 + ?Hxﬂg } .
TERN

The problem is separable meaning that [argmin E(x, y)} = argmin F;(z;,y;) with
TeRN i z; ER

74 Ez »wYi) = 5 ' i
(74) (w4, 1) 2 {(Sﬂz — ;) + A% otherwise .

Since y7 < ming, [(z; — y:)? + X?*] & |y <A, we get

1

2 1 | <
(75) min B (i, y:) = 5 { Z)/\E iyl <A

2 otherwise ,

which is reached by setting x; = 0 when |y;| < X and z; = y; otherwise.
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A.4. Retrieving the soft-thresholding solution. We consider the minimiza-
tion problem defined, for A > 0, as

. 1
(76) arganin { B(o.) = gl — 2 + Mol }

z€RN

which is, as for the hard-thresholding, separable with
1 2
(77) Ei(zi,yi) = 5(331' —yi)" + Az

The problem being convex, a minimum is reached when zero belongs to its sub-
differential given by

(o) = 3 — sign(z;) if [x] >0,
(78) OEi(xi,yi) = x5 —yi + A { [-1,1] otherwise .
Hence, z; is solution if

o ooy ) osign(xi) i [z >0,
(79) 0 € OEi(wi,yi) < @i € yi /\{ [-1,1] otherwise ,

which holds true by setting x; = 0 when |y;| < A and z; = y; — Asign(y;) otherwise.

A.5. Retrieving the non-local means. The periodical boundary conditions
lead to the following relationship, where [ € [—b,b] x [—b,b], given by

1 1
(80) F(x,y) = 5 Zwu |Pix — 77;‘21”2 9 Zwu Z(%‘H - Z/j+l)2
,J i,J l

%Z [Z wi,j(ﬂfu_l - yj+l)2] = % Z [Z ’UJi—l,j—l(xi - yj)2
4,J l !

1,J
= %Z lz ’LUi—l,j—l] (z; — yj)2 = %Zw”(xl — yj)2 .
4,3 l i,j

For all i € [p1] x [p2], studying the first optimality conditions gives

OF (z,y

) _ > Wiy
axi :O@;wi,j(xifyj):O@xi* J

1 T

Appendix B. Proof of Theorem 28.
Before turning to the proof of this theorem, let us introduce a first lemma.

LEMMA 37. For all y, let Z(y) be a solution of

(82) Z(y) € argﬂrﬁnin F(y — ®z) + G(z) ,

with F, G two convex functions and G being 1-homogeneous. Then for all € € [0,1],
the following holds

(83) (1-e)z(y) € arggrcnin F(y — e®2(y) — ox) + G(x) .
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Proof. Note that if G is a convex and 1—homogeneous function, then G is sub-
additive, i.e., G(a)+ G(b) = G(a+b). Next, assume that, for some ¢ € [0, 1], Eq. (83)
does not hold, so that there exists v such that

It follows that

(85)  Fly —e®i(y) — ®v) + G(v) +eG(2(y) < Fy — 2(y)) + G(2(y)) -

We also have G(v) + eG(2(y)) = G(v) + G(ez(y)) = G(v + ez(y)), since G is 1-
homogeneous and sub-additive. Hence, for w = v + e&(y), we get

(86) Fly = Qw) + G(w) < Fy — ®2(y)) + G(2(y)) ,

which is in contradiction with Z(y) € argmin F'(y — ®z) + G(x), and then concludes

the proof of this lemma. ]

Proof of Theorem 28. By virtue of Lemma 37 and definition of #(y), we have
(1—-¢e)i(y) = #(y — ePi(y)) since Z(y) is supposed to be the unique solution for all
y. Now, recall that the linear Jacobian operator applied to ®&(y) is the directional
derivative of Z(y) in the direction ®i(y), then, for almost all y, we get

(87 JDi(y) & lim TW ZEW=e®EW) ) = (1 = 2)i)

e—0 € =0 €
which concludes the proof. 0

Appendix C. Proof of Theorem 36.
Before turning to the proof of this theorem, let us introduce a first lemma.

LEMMA 38. The re-fitting Rz (y) of the €1 analysis regularization x* = Z(y) is the
solution of the saddle-point problem

. ~ 2 ~ ~ ~
(88) min max ||82 — y||” + (T'%, 2) — 15, (2) ,

where tg, 18 the indicator function of the convex set Sp = {p € R™ : p; = 0}.
Proof. As ®U has full column rank, the re-fitting of the solution (15) is the unique

solution of the constrained least-square estimation problem (see Example 9)

(89) Ri(y) = U(®U) Ty = argmin ||®F — y||* .
zeM3(y)
Remark that # € Mz (y) = Ker[Id2I] & (T#);. =0 < Ls.. (T'z) = 0, where Sy, =

{peR™ : pr. =0}
Using Fenchel transform, ¢y (T'z) = max; I'z, 2) — L5, (%), where v5 . is the
convex conjugate of ls, . Observing that g = LEIC concludes the proof. O

Given Lemma 38, replacing Il x o+ in (58) by the projection onto Sz, i.e.,
(90) Mg, (2)7e = 27 and g, (2); =0,

leads to the primal-dual algorithm of [8] applied to problem (88) which converges
to the re-fitted estimator R;(y). It remains to prove that the projection I« p,»
defined in (58) converges to Ilg, in finite time.
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Proof of Theorem 36. First consider i € Z, i.e., |I'z*|; > 0. By assumption on
a, [Taz*|, > a > 0. Necessary z; = Asign(I'z*); in order to maximize (55). Hence,
|z* + oTx*|; > A + oa. Using the triangle inequality shows that

(91) M oa < |25+ olz*|; < |2° — 2%, + o|Ta* — Dok, + 2% + o0, .

Choose € > 0 sufficiently small such that ca — &(1 + 0) > 8. From the convergence

of the primal-dual algorithm of [8], the sequence (z*, % v¥) converges to (2*,z*, 2*).

Therefore, for k large enough, |2* — 2|, < ¢, [Tz* — Tw¥|, < ¢, and
(92) |2F 4 oTvf|, > A+ oa—e(l+0)>A+73.

Next consider ¢ € Z¢, i.e., [I'x*|; = 0, where by definition |z*|; < A. Using again
the triangle inequality shows that

(93) |2F 4+ oTwF|, < |27 — 2|, + o|TW* — Ta*|; + |27, .

Choose € > 0 sufficiently small such that e(1 + o) < 8. As (2%, 2% vF) — (2%, 2%, 2¥),
for k large enough, |2* — 2*|, < e, [Tv* — T'z*|, < ¢, and

(94) |28 +oTo*, < A+ e(l+0) <A+ 3.

It follows that for k sufficiently large |2* + oTv*|; < A + 3 if and only if i € Z¢, and
hence IL« y ;ior (2) = I, (Z). As a result, all subsequent iterations of (58) will solve

(88), and hence from Lemma 38 this concludes the proof of the theorem. d
REFERENCES

[1] H. BauscHkE AND P. CoMmBETTES, Convezr Analysis and Monotone Operator Theory in Hilbert
Spaces, CMS Books in Mathematics, Springer, 2011.

[2] A. BELLONI AND V. CHERNOZHUKOV, Least squares after model selection in high-dimensional
sparse models, Bernoulli, 19 (2013), pp. 521-547.

[3] T. BrumeEnsatH AND M. E. Davies, Iterative thresholding for sparse approximations, J.
Fourier Anal. Appl., 14 (2008), pp. 629-654.

[4] A. Buapgs, B. Corr, AND J.-M. MoREL, A review of image denoising algorithms, with a

new one, SIAM J. Multiscale Model. Simul., 4 (2005), pp. 490-530.
[5] P. BoHLMANN AND B. Yu, Boosting with the L2 loss: regression and classification, J. Am.
Statist. Assoc., 98 (2003), pp. 324-339.

[6] M. Burcer, G. GiLBoa, S. OsHER, J. Xu, ET AL., Nonlinear inverse scale space methods,
Communications in Mathematical Sciences, 4 (2006), pp. 179-212.

[7] A. CuamBoLLE, V. DuvaL, G. PeYRE, aND C. PooN, Geometric properties of solutions to
the total variation denoising problem, Preprint 1602.00087, Arxiv, 2016.

[8] A. CuamBoLLE AND T. Pock, A first-order primal-dual algorithm for convex problems with
applications to imaging, J. Math. Imaging Vis., 40 (2011), pp. 120-145.

[9] P. L. ComBETTES AND J.-C. PESQUET, A Douglas-Rachford splitting approach to nonsmooth

convex variational signal recovery, Selected Topics in Signal Processing, IEEE Journal of,
1 (2007), pp. 564-574.

[10] P. L. ComBETTES AND J.-C. PESQUET, Fized-Point Algorithms for Inverse Problems in Sci-
ence and Engineering, Springer-Verlag, 2011, ch. Proximal Splitting Methods in Signal
Processing, pp. 185-212.

[11] P.-A. CorniLLON, N. W. HENGARTNER, AND E. MATZNER-L@®BER, Recursive bias estima-
tion for multivariate regression smoothers, ESAIM: Probability and Statistics, 18 (2014),
pp. 483-502.

[12] J. DarBoN, A. CunHA, T. F. CHaN, S. OsHER, AND G. J. JENSEN, Fast nonlocal filtering
applied to electron cryomicroscopy, in ISBI, 2008, pp. 1331-1334.

[13] C.-A. DELEDALLE, V. DUVAL, AND J. SALMON, Non-local methods with shape-adaptive patches
(NLM-SAP), J. Math. Imaging Vis., 43 (2012), pp. 103-120.



38

C-A. Deledalle, N. Papadakis, J. Salmon and S. Vaiter

[14] C.-A. DeLeEDALLE, N. Papapakis, AND J. SaLmoN, Contrast re-enhancement of total-

variation regularization jointly with the Douglas-Rachford iterations, in Signal Processing
with Adaptive Sparse Structured Representations, 2015.

[15] C.-A. DELEDALLE, N. PAPADAKIS, AND J. SALMON, On debiasing restoration algorithms:

applications to total-variation and nonlocal-means, in SSVM, 2015, pp. 129-141.

[16] C.-A. DELEDALLE, S. VAITER, G. PEYRE, AND J. M. FApiLI, Stein unbiased gradient es-

timator of the risk (SUGAR) for multiple parameter selection, SIAM J. Imaging Sci., 7
(2014), pp. 2448-2487.

[17] D. L. Donono AND J. M. JoHNSTONE, Ideal spatial adaptation by wavelet shrinkage,

18] J.
[19] V.
[20] B.
[21] M
[22] L.
[23] E.
[24] G.
[25] A.
[26] A.
[27] J.
[28] Y
[29] P
[30] U
[31] G
32] S
33] S
34] S
[35] P
36] Y
[37] L
[38] J
39] X.
[40] C
[41] D
[42] H

Biometrika, 81 (1994), pp. 425-455.

DoucrLas anD H. RacHFORD, On the numerical solution of heat conduction problems in
two and three space variables, Transactions of the American mathematical Society, (1956),
pp. 421-439.

DuvaL, J.-F. AujoL, AND Y. GOUSSEAU, A bias-variance approach for the nonlocal means,
SIAM J. Imaging Sci., 4 (2011), pp. 760-788.

Erron, T. Hastie, I. JounsTONE, AND R. TIBSHIRANI, Least angle regression, Ann.
Statist., 32 (2004), pp. 407-499.

. Erap, P. MiLaNrFAR, AND R. RUBINSTEIN, Analysis versus synthesis in signal priors,

Inverse problems, 23 (2007), p. 947.

C. Evans aND R. F. GARIEPY, Measure theory and fine properties of functions, CRC
Press, 1992.

I. GEORGE, Minimaz multiple shrinkage estimation, Ann. Statist., 14 (1986), pp. 188-205.
GILBOA, A total variation spectral framework for scale and texture analysis, SIAM J. Imag-
ing Sci., 7 (2014), pp. 1937-1961.

GRIEWANK AND A. WALTHER, Fvaluating derivatives: principles and techniques of algo-
rithmic differentiation, Society for Industrial and Applied Mathematics (STAM), 2008.

E. HoerL aAND R. W. KENNARD, Ridge regression: Biased estimation for nonorthogonal
problems, Technometrics, 12 (1970), pp. 55-67.

LEDERER, Trust, but verify: benefits and pitfalls of least-squares refitting in high dimensions,
arXiv preprint arXiv:1306.0113, (2013).

. Lin anD H. H. Zuang, Component selection and smoothing in multivariate nonparametric

regression, Ann. Statist., 34 (2006), pp. 2272-2297.

. MILANFAR, A tour of modern image filtering: New insights and methods, both practical and

theoretical, IEEE Signal Processing Magazine, 30 (2013), pp. 106-128.

. NaumanN, Optimal jacobian accumulation is np-complete, Mathematical Programming,

112 (2008), pp. 427-441.

. R. OBozinski, M. J. WAINWRIGHT, AND M. 1. JorRDAN, High-dimensional support union

recovery in multivariate regression, in Advances in Neural Information Processing Systems,
2008, pp. 1217-1224.

. OsHER, M. BURGER, D. GoLDprARB, J. XU, aAND W. YIN, An iterative regularization

method for total variation-based image restoration, SIAM J. Multiscale Model. Simul., 4
(2005), pp. 460-489.

. OsHER, F. Ruan, J. XionG, Y. Yao, anpD W. YIN, Sparse recovery via differential

inclusions, Appl. Comput. Harmon. Anal., (2016).

. Ramani, T. Bru, aNp M. UNSER, Monte-Carlo SURE: a black-box optimization of reg-

ularization parameters for general denoising algorithms, IEEE Trans. Image Process., 17
(2008), pp. 1540-1554.

. RicoLLET AND A. B. TsyBakov, Ezponential screening and optimal rates of sparse esti-

mation, Ann. Statist., 39 (2011), pp. 731-471.

. Romano anp M. EvaDp, Boosting of image denoising algorithms, SIAM J. Imaging Sci., 8

(2015), pp. 1187-1219.

. I. Rubin, S. OsHER, AND E. Fatewmi, Nonlinear total variation based noise removal algo-

rithms, Physica D: Nonlinear Phenomena, 60 (1992), pp. 259-268.

. SALMON, On two parameters for denoising with non-local means, Signal Processing Letters,

IEEE, 17 (2010), pp. 269-272.
SHEN AND J. YE, Adaptive model selection, J. Am. Statist. Assoc., 97 (2002), pp. 210-221.

. STEIN, Inadmissibility of the usual estimator for the mean of a multivariate normal distri-

bution, in Proc. 3th Berkeley Sympos. Math. Statist. and Prob., vol. 1, 1956, pp. 197-206.

. STrRONG AND T. CHAN, Edge-preserving and scale-dependent properties of total variation

regularization, Inverse problems, 19 (2003), p. S165.

. TaveBi, X. Zuu, aND P. MILANFAR, How to saif-ly boost denoising performance, IEEE

Trans. Image Process., 22 (2013), pp. 1470-1485.



[43]
[44]
[45]
[46]
[47]

[48]

[49]
[50]
[51]

[52]

CLEAR: Covariant LEAst-square Re-fitting 39

R. TIBSHIRANI, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B,
(1996), pp. 267-288.

R. J. TiBsuIirRANI, The lasso problem and uniqueness, Electron. J. Statist., 7 (2013), pp. 1456—
1490.

A. N. TikHoNOV, On the stability of inverse problems, Dokl. Akad. Nauk SSSR, 39 (1943),
pp. 176-179.

J. W. Tukey, Ezxploratory data analysis, Reading, Mass., 1977.

S. Varter, C.-A. DeELEDALLE, G. PEYRE, C. DossaL, AND J. FabiLi, Local behavior of
sparse analysis reqularization: Applications to risk estimation, Appl. Comput. Harmon.
Anal., 35 (2013), pp. 433-451.

S. Vaiter, C.-A. DeLEDALLE, G. PEYRE, J. M. Fapiri, anD C. DossaL, The degrees of
freedom of partly smooth regularizers, to appear in Annals of the Institute of Statistical
Mathematics, (2016).

D. Van DE ViLLE AND M. KocHER, Nonlocal means with dimensionality reduction and sure-
based parameter selection, IEEE Trans. Image Process., 20 (2011), pp. 2683-2690.

J. Xu aAnD S. OSHER, [terative regularization and nonlinear inverse scale space applied to
wavelet-based denoising, IEEE Trans. Image Process., 16 (2007), pp. 534-544.

J. YE, On measuring and correcting the effects of data mining and model selection, J. Am.
Statist. Assoc., (1998), pp. 120-131.

M. YuaN AND Y. LIN, Model selection and estimation in regression with grouped variables, J.
Roy. Statist. Soc. Ser. B, 68 (2006), pp. 49-67.



