M Sghiar
email: msghiar21@gmail.com

Keywords: Graph, Hamilton cycles, P=NP

Atomic algorithm and the servers's use to find the Hamiltonian cycles

M Sghiar

Introduction

It is known both theoretically and computationally so difficult to find a Hamilton cycles(paths) in simple graphs, and that this prblem is a classical NP Complete problem. (see [START_REF] Du | A polynomial time algorithm for hamilton cycle[END_REF] [2] [START_REF] Johnson | Computers and intractability :a guid to the theory of np-completeness[END_REF] and [START_REF] Diestel | Graph theory[END_REF]).

Inspired by the movement of the particles in the atom, I demonstrated in [START_REF] Sghiar | Algorithmes quantiques, cycles hamiltoniens et la k-coloration des graphes[END_REF] the exsitence of a ploynomial algorithm of the order O(n 3) for finding Hamiltonian cycles in a graph. In this article I will give an improvement in space and in time of the algorithm says : we know that there exist several methods to find the Hamiltonian cycles like the Monte Carlo method, Dynamic programming, or DNA computing.

Unfortunately they are either expensive or slow to execute it. Hence the idea to use multiple servers to solve this problem.

The first code is faster but consumes more memory, while the second, although slower, but uses less memory since it uses writing to files during the search of Hamilton cycles.

These two algorithms give the idea of the servers' use. for j in range (n): for j in range (n): Each point x i on the graph will be considered as a server, and each server x i sends F(j,T) -T is in d[i]-to each server x j with which it is connected . And finally the server x 0 will receive and display the Hamiltonian cycles if they exist.

The First code

G[i][j]=1 #G [i][j]= input () # print " G[" ,i , "][" ,j , "] " #G [i][j]= input () # if i <= j : #G [i][j]= random . randint (0 ,1) # else : G[i][j]= G[j][i] # print " G[" ,i , "][" ,j ,"]= " ,G[i][j] d ={} d [0]=[[n ,0]] for j in range (n): if G [0][j]!=0 and 0!= j : d[j]=[[n -1 ,j ,0]] d [0]=[] # print d [j] else : d[j]=[[0 , j]] # print d [j] L =[] H =[]
G[i][j]=1 #G [i][j]= input () # print " G[" ,i , "][" ,j , "] " #G [i][j]= input () # if i <= j : #G [i][j]= random . randint (0 ,1) # else : G[i][j]= G[j][i] # print " G[" ,i , "][" ,j ,"]= " ,G[i][j] d ={} f ={} for i in range (n): f [i]=
Obviously the servers can work simultaneously, which speeds up the execution of the program and solves the problem of full memory.

 from scipy import * import numpy as np import random import time start = time . time () # The Feynman code in Python : # Written by sghiar 24 may , 2016 was 21:25 p. m .. # This code allows you to find the Hamilton cycle if it exists . . eye (n ,n) # for i in range (n):

#

 for k in range (0 , n **2) : if len (H) != 0 : print H print (" Time :" , time . time () -start) break print (k , " Time :" , time . time () -start) print " The program is looking for the Hamiltonien cycles ... " if k %n ==0: for T in d [k %n] : if T [0] == 0 : H. append (T) else : pass del d [0] d [0]=[] elif k %n !=0: for T in d [k %n] : for j in range (0 , n) : if T [0] <=0 or (j in R (T) and j !=0) : pass else : if G[k% n][j]!=0 and (k %n) != j : d[j]+=[F (j ,T)] else : pass del d[k% n] d[k% n]=[] # Hamiltonians Cycles : if len (H) !=0: for elt in H : print (" There exist the Hamiltonian cycles ") print (R(elt) ," Is one Hamiltonien cycle , Its distance is :" , D (elt)) else : print (" No Hamiltonian cycles ") # End of code3 The second code And if we want to use less memory ram , we can use this algorithme : / usr / bin / env python # coding = utf -8 import decimal from scipy import * import numpy as np import random import time start = time . time () import os # The Feynman code in Python : # Written by sghiar 28 may , 2016 mai 14:53 p. m .. # This code allows you to find the Hamiltonian cycle if it exists . We construct the graph G : print (" number of cities =") n = input () G = np . eye (n ,n) # for i in range (n):

 file (" fichier_ % d . txt "%i , " w") f [0]. write (str ([n ,0]) + "\ n") for j in range (1 , n): if G [0][j]!=0 and 0!= j : f[j]= file (" fichier_ %d . txt "%j , " a") f[j]. write (str ([n -1 ,j ,0]) +" \n ") else : f[j]. write (str ([0 , j]) +" \n ") , " Time :" , time . time () -start) print " The program is looking for the Hamiltonien cycles ... " if k% n ==0: #f [k %n]= file (" fichier_ % d. txt " %(k% n) , "r ") f[k% n]= open (" fichier_ %d . txt " %(k %n) , " r") for T in f [k %n] : = file (" fichier_ %d . txt " %(k %n) , " a") # os . remove (" fichier_0 . txt ") elif k %n !=0: f[k% n]= open (" fichier_ %d . txt " %(k %n) , " r") for T in f [k %n]: T. split ('= ') exec ('T= '+T) x= T for j in range (0 , n) : if x [0] <=0 or (j in R (x) and j !=0) : pass else : if G[k% n][j]!=0 and (k %n) != j : f[j]= file (" fichier_ % d. txt " % j , "a ") f[j]. write (str (F(j , x))+ "\ n") f[j]. close () else : pass del f [k% n] # os . remove (" fichier_ %d . txt " %(k % n)) f [k %n]= file (" fichier_ % d . txt " %(k %n) , " a") # Hamiltonians Cycles : if len (H) !=0: for elt in H : print (" There exist the Hamiltonian cycles ") print (R(elt) ," Is one Hamiltonien cycle , Its distance is :" , D (elt)) else : print (" No Hamiltonian cycles ") for i in range (n): f [i]. close () # End of code Note : The two algorithms above can be modified to use at least n servers to find the Hamiltonian cycles , so we will win time and space (memory) : There exist several methods to find the Hamiltonian cycles such as the Monte Carlo method, Dynamic programming, or DNA computing. Unfortunately they are either expensive or slow to execute it. Hence the idea to use multiple servers to solve this problem.