
HAL Id: hal-01333279
https://hal.science/hal-01333279

Submitted on 28 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

P2PCP : a peer-to-peer middleware for on-demand
context provisioning in spontaneous networks

Tuan Dung Nguyen, Siegfried Rouvrais, Antoine Beugnard, Guy Bernard

To cite this version:
Tuan Dung Nguyen, Siegfried Rouvrais, Antoine Beugnard, Guy Bernard. P2PCP : a peer-to-peer
middleware for on-demand context provisioning in spontaneous networks. ASNS 2007 : 2nd workshop
on Autonomous and Spontaneous Networks, Oct 2007, Paris, France. pp.III-1 - III-5. �hal-01333279�

https://hal.science/hal-01333279
https://hal.archives-ouvertes.fr


P2PCP: A Peer-to-Peer Middleware for On-Demand

Context Provisioning in Spontaneous Networks

Tuan Dung Nguyen∗†,Siegfried Rouvrais∗, Antoine Beugnard∗ and Guy Bernard†

∗GET / ENST Bretagne

Technopôle de Brest Iroise, 29238 Brest, France

Email: {td.nguyen,siegfried.rouvrais,antoine.beugnard}@enst-bretagne.fr
†GET / INT CNRS SAMOVAR

9 rue Charles Fourier, 91011 Evry, France

Email: guy.bernard@int-evry.fr

Abstract— Nowadays, context-awareness has been widely ac-
cepted as an important requirement to provide appropriate
services to users in dynamic environments. In this paper, context
can be considered as any information relevant to an entity’s
situation. In spontaneous networks, the large number of context
sources and the heterogeneity of mobile devices have raised new
research challenges for supporting context-aware collaborative
applications. This paper presents an ongoing work towards
P2PCP, a peer-to-peer middleware for on-demand context pro-
visioning based on a component-oriented approach.

Index Terms— middleware, context provisioning, overlay, com-

ponent, peer-to-peer, epidemic

I. INTRODUCTION

The increasing popularity of personal wireless-capable com-

puting devices (e.g. PDAs, smart phones) has engendered a

new networking paradigm, namely spontaneous networks. Net-

work nodes communicate using autonomously created ad hoc

networks, without the need for any predefined infrastructure.

These networks are also characterized by their mobile and het-

erogeneous participating devices. Applications in such highly

dynamic environments [1] should be context-aware in order

to provide appropriate services to users based on their current

context (e.g. time, location, social-related).

Let’s consider the following application scenario. Bob,

equipped with a PDA, has just arrived in a supermarket. He

has some information to share with others in proximity such

as the outside temperature, or the nearest parking availability.

He may be also interested in other information such as

new products or flashed discounts. This information can be

obtained directly from other users without depending on any

specific and costly infrastructure.

Dey [2] defined context as any information that can be used

to characterize the situation of an entity. Most existing context-

aware systems often limit to only contextual information

acquired from integrated logical or physical sensors. Some

works in the literature have recently proposed a broader

definition of context and clearly motivated the distributed

provisioning of contextual information to provide more useful

contexts in dynamic environments [3], [4]. Context provision-

ing consists of context acquisition, sharing and interpretation.

Internal contexts are those acquired using integrated physical

and/or logical sensors while external contexts come from

the surrounding environment in a centralized or decentralized

manner. In the former approach, specific entities are used for

context storage and lookup while in the latter case, context

data is provided by any entities within the proximity of an

ad hoc network [4]. The centralized approach is rarely relevant

to spontaneous networks due to the lack of infrastructure and

the frequent mobility. The principal design requirements for

context provisioning systems can be summarized as follows.

• Generalized context representation. Contextual informa-

tion coming from different sources needs a common

abstract representation to facilitate their management re-

garding to application’s requirements. Component-based

approach can be an suitable solution due to its abstraction

and separation of concern.

• Efficient context sharing. Contextual information should

be spontaneously shared among mobile, resource-

constrained and heterogeneous devices. Comparing to

other different distributed architectures (e.g. client/server,

publish/subscribe), peer-to-peer [5] is a promising one

as it provides a scalable and decentralized data sharing

mechanism.

Our main contribution is a middleware to facilitate the

construction of context-aware applications. It answers to the

aforementioned requirements by combining a component-

based context representation with a peer-to-peer provisioning

architecture.

The paper is organized as follows. We present our general

design principles in Section II. Then the management of

on-demand contexts and their distributed provisioning are

discussed respectively in Section III and Section IV. Next,

section V presents the early implementation of our framework.

We review the related work in Section VI and finally, conclude

the paper in Section VII.

II. DESIGN PRINCIPLES

We introduce two new concepts of context peer and context

overlay for context provisioning in spontaneous networks, then

present the supporting middleware architecture.



A. Context peer and context overlay

In reality, a resource-constrained mobile device often sup-

ports only a limited number of physical or logical sensors for

capturing the corresponding contextual information. However,

as depicted in Figure 1, it may require some other contexts due

to its hosted application requirements. To cope with this issue,

we propose the concept of context peer, namely CXTPEER,

as an abstract representation of a specific context [6]. These

logical peers are dynamically created on-demand and can

be associated or not with the hosting device’s inherently

integrated sensors. Due to the fact that an application normally

needs only a subset of contexts, managing all available con-

texts at any time becomes a cumbersome task. By representing

each context with a distinct logical peer, our approach respects

the separation of concern design paradigm. The system keeps

only necessary information thus avoids unnecessary processing

overhead.

Context peers located on different mobile devices, but

representing the same kind of context, organize them-

selves in a common overlay network. Figure 1 presents

an example where there are two distinct context overlays,

namely CXTOVERLAY1 and CXTOVERLAY2 (e.g. temper-

ature, prices). A CXTPEER can query other peers in the

same overlay to obtain the required information. The context

value can be cached at a CXTPEER for later use during a

predefined freshness timer. This allows a CXTPEER to acquire

contextual information in an opportunistic fashion [7] in case

of partitioned networks. When there is no end-to-end path

between a CXTPEER and another peer owning the context,

information can be acquired through other peers with the help

of device’s mobility.

CxtPeerCxtPeer

Sensor

Device

CxtPeer CxtPeerCxtPeer

Sensor Sensor

CxtPeer

Device

CxtPeer CxtPeerCxtPeer

Sensor

Device

Sensor

CxtOverlay 2

CxtOverlay 1

Fig. 1. Context peers and context overlays

B. Middleware architecture

To facilitate application’s development with respect to the

aforementioned design principles, a middleware layer between

network operating systems and context-aware applications is

necessary. Figure 2 shows our general middleware architecture

which consists of the two following main components.

1) CXTMANAGER: responsible for managing locally lo-

cated CXTPEER components (e.g. adding, removing,

querying) and offering common programming interfaces

to applications.

CxtPeer CxtPeer

CxtManager

CxtOverlayManager

Network OS

CxtPeer

Context−aware applications

Fig. 2. Middleware architecture

2) CXTOVERLAYMANAGER: responsible for maintaining

any available CXTPEEROVERLAY networks. This com-

ponent exploits the co-existence of multiple overlays to

optimize these operations.

The association between different software components of

the middleware is illustrated using a UML class diagram in

Figure 3. A CXTPEER is associated with a CONTEXT which

can be associated or not with a SENSOR. A CXTPEER can be

associated with several neighboring CXTPEER. These compo-

nents are associated with their managing CXTMANAGER and

CXTOVERLAYMANAGER components.

Context

- name : string

- value : CxtDataType

- freshness : int

CxtPeer

+ queryIndividualData() : Context

+ queryEnvironmentalData() : Context

CxtOverlayManager

+ register() : bool

+ updateOverlay() : bool

+ deregister() : bool

CxtManager

+ queryContext() : Context

+ createCxtPeer() : CxtPeer

+ destroyCxtPeer(peer : CxtPeer) : bool

«156»

CxtDataType

Sensor

-value

0..1

1

0..*

-peers

0..*-peers

1 1

-data

0..*+neighbors

Fig. 3. Software class diagram

III. CONTEXT PEER MANAGEMENT

We followed a component-based approach for context peer

modeling and implementation. There are several component

models proposed in the literature, such as CCM [8], Frac-

tal [9]. Fractal is a component model which has many interest-

ing features (e.g. recursivity, reflectivity, component sharing)

and supports different platforms. Its goal is to reduce the

development, deployment and maintenance cost of software

systems in general (e.g. applications, middleware platforms,

operating systems).

A. From specification to deployment

In our system, a CXTPEER is modeled as a primitive

component using Fractal. Multiple CXTPEER components can

be managed in a CXTMANAGER composite component as de-

picted in Figure 6. Adding, removing a CXTPEER are realized

using the container’s control interfaces (e.g. ContentController

2



(CC), LifeCycleController (LC)). These operations are carried

out on-demand based on current application’s requirement.

For example, when an application needs a context, it defines

the corresponding logical CXTPEER. Then the middleware is

in charge for managing this new component and returning

the required contextual information. Applications can query

a context in a synchronous or asynchronous fashion without

caring about its sources.

Basically, a definition of CXTPEER using Fractal ADL [9]

can be illustrated in a XML format as follows.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE definition PUBLIC

"-//objectweb.org//DTD Fractal ADL 2.0//EN"

"classpath://org/objectweb/fractal/adl/xml/basic.dtd">

<definition name="CxtPeer">

<interface name="out" role="server" signature="CxtService"/>

<interface name="in" role="client" signature="CxtService"/>

<content class="CxtPeerImpl"/>

</definition>

A CXTPEER has a provided interface, namely out, as

well as a required interface, namely in, to respectively offer

and acquire contextual information. Context acquisition is

first locally done using the available corresponding sensor,

otherwise basing on a query in the corresponding overlay.

We proposed a specification language to allow applications

to define an on-demand CXTPEER. This XML-format speci-

fication is written by application’s developers basing on their

application’s context needs. It provides the CXTMANAGER

with all necessary information to autonomously manage the

required CXTPEER component.

As depicted in Figure 4, an interpreter is responsible for

converting the original specification into two parts: meta-

information and Fractal ADL. The meta-information is used

for high-level management of several CXTPEER (e.g. moni-

toring, caching) while the Fractal ADL is used for deploying

the corresponding component.

Specification Interpreter

Context Manager

Fractal ADL
 

Meta−information

Context specification

Fig. 4. Context specification processing

Later, the proposed language should also fulfill the follow-

ing requirements:

• Take into account the potential relations between contexts

and non-functional requirements (e.g. performance, reli-

ability, security). The middleware will manage to create

the related contexts based on application’s non-functional

requirements.

• Avoid potential ambiguities between different contexts. A

specific context (e.g. temperature) should not appear in

two distinct overlays. We plan to investigate an ontology-

based approach to cope with this issue.

B. Context peer composition

The result of a query to a CXTPEER is a primitive contex-

tual information. However, applications also need aggregated

information from several contexts. This requirement leads to

the dynamic composition of several CXTPEER components

representing different contexts (cf. Figure 5). Recent works

in the literature [10] have shown some benefits of component-

based approach for processing of context information. We plan

to investigate this issue in detail in our future work.

CxtPeer CxtPeer

CxtPeer

Fig. 5. Context peer composition

IV. CONTEXT OVERLAY MAINTENANCE

Context peers are connected in several peer-to-peer overlays.

Generally speaking, a peer-to-peer network can be structured

or unstructured [5]. We proposed using non-unstructured

context overlay as it allows more flexible queries and less

maintenance overhead in frequently changing environments.

An overlay link is concretely represented by a distributed

binding of interfaces between two CXTPEER components (cf.

Figure 6). This kind of binding can be realized using Fractal

RMI framework [11]. Due to node’s physical mobility and its

changing application’s context demand, the overlay topologies

change over time. In order to maintain these overlays in such

dynamic environments, we have investigated several existing

epidemic-style approaches [12], [13].

CC

CxtPeer

CxtPeer

LC

outin

Sensor

CC

CxtPeer

LC

out

Sensor

in

in

CC

CxtPeer

CxtPeer

LC

out
CxtManager CxtManager

CxtManager

Fig. 6. Fractal-based component system modeling

3



A. Epidemic-style overlay maintenance

Epidemic-style algorithms have been widely studied in

distributed systems (e.g. for failure detection, resource discov-

ery, database replication, information dissemination). Inspired

from the spreading mechanism of a contagious disease, in-

formation is disseminated from an entity to a set of randomly

chosen neighbors. In turn, each of these entities buffers the re-

ceived information for a defined period, does the same dissem-

ination process, and so forth. These failure-resilient algorithms

are efficient and reliable solutions for large-scale dynamic

environments [14]. An epidemic-style overlay maintenance

consists of two phases: peer sampling and peer clustering [13].

The former provides randomly selected peer candidates to the

latter in order to update the corresponding overlay topology

based on its semantic.

B. Coexistence of multiple overlays

The maintenance of multiple overlays in dynamic networks

can become a costly operation. Therefore, optimization is nec-

essary, especially in our resource-constrained environment. In

the literature, the coexistence of multiple overlays has recently

attracted several research efforts. Maniymaran et al. [15] have

presented a mechanism to reduce the multiple overlays main-

tenance overhead without sacrificing the performance. The

authors proposed that the maintenance of one overlay can be

leveraged to partly maintain another overlay with no extra cost.

However, the coexistence of multiple overlays in resource-

constrained environments requires further consideration. We

are currently investigating two approaches from horizontal and

vertical points of view. The former exploits semantic proximity

among distinct overlays while the latter bases on common

phases of epidemic-style maintenance mechanism. As depicted

in Figure 7, the maintenance of an overlay can be leveraged

to update other overlays or eventually create a new one.

Peer Clustering Peer Clustering

Peer Sampling Peer Sampling

Fig. 7. Overlays maintenance principle

V. IMPLEMENTATION

The early prototype of our middleware has been developed

using Julia [16], a standard Fractal Java-based implementation

on desktop computers. It currently supports the management

of on-demand context peers and context overlays. We plan to

evaluate it with regard to some functional and non-functional

criteria (e.g. performance, reliability) in a real application

scenario. The system should fulfill the requirements already

presented in Section I while remaining efficient in terms of

computing and communication overhead due to its mainte-

nance operations.

VI. RELATED WORK

The use of peer-to-peer overlays for context lookup was

also presented in [17]. The authors proposed ContextBus, an

architecture in which context producers are grouped based

on the semantic of their data. An improved version, namely

Semantic Context Space (SCS), was also proposed to reduce

the maintenance cost when the number of semantic groups

increases using a one-dimensional ring space [18]. Unlike this

work, we propose a more abstract concept because any devices

can have a context peer even if they do not directly produce

context data. Moreover, we support dynamic peer management

and effective mechanisms for overlay maintenance.

Tuple space was first presented in Linda [19] to provide a

persistent and globally shared memory model to distributed

processes. To support mobile ad hoc environment, LIME [20]

proposed to break up the global tuple space into multiple

spaces each located in different mobile components. The

contents of these components are then transiently and transpar-

ently shared in temporary federated tuple space according to

current connectivity. Its extended version, namely TinyLIME,

was proposed to support limited power and computational

resources requirement in sensor networks. EgoSpaces [3] is

another tuple space variation where authors propose the view

abstraction for asymmetric coordination in ad hoc mobile

environments. The context peer concept in our work is close

to tuple space approach but it allows more loosely couple

between mobile devices. The combination of component-based

and peer-to-peer sharing also offers comprehensive program-

ming interfaces for application development.

The coexistence of multiple overlays and their application

have recently gained much research interest. Component-

based approaches facilitate overlay management. Gridkit [21]

is a component framework for managing pluggable overlay

networks at runtime. Behnel et al. [22] combined Gridkit with

an overlay design modeling framework to enable the gener-

ation of specific code from platform-independent design of

overlay networks. These works focus on a generic framework

for overlay management and do not take into account the

characteristics of spontaneous networks as we do.

VII. CONCLUSION

We have proposed P2PCP, a middleware for on-demand

context provisioning in spontaneous networks. It offers an

abstract representation and on-demand context management

using a component-based approach. Context provisioning is

carried out in a peer-to-peer fashion and supports frequently

changing environments. Future work consists of proposing

new lightweight algorithms for overlay maintenance and con-

text composition. We plan to finish the early developed proto-

type and deploy it on real PDA devices in order to make further

evaluations with more realistic environment’s characteristics

and application scenarios.

REFERENCES

[1] L. M. Feeney, B. Ahlgren, and A. Westerlund, “Spontaneous Network-
ing: An Application-Oriented Approach to Ad Hoc Networking,” IEEE

Communications Magazine, vol. 39, no. 6, pp. 176–181, June 2001.

4



[2] A. K. Dey, “Understanding and Using Context,” Personal Ubiquitous
Computing, vol. 5, no. 1, pp. 4–7, 2001.

[3] C. Julien and G.-C. Roman, “Egospaces: Facilitating rapid development
of context-aware mobile applications,” IEEE Transaction on Software

Engineering, vol. 32, no. 5, pp. 281–298, May 2006.
[4] O. Riva, “Contory: A Middleware for the Provisioning of Context In-

formation on Smart Phones,” in Proc. 7th ACM/IFIP/USENIX Int. Mid-

dleware Conference (Middleware’06). Melbourne, Australia: Springer-
Verlag, Dec. 2006, pp. 219–239.

[5] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu, “Peer-to-Peer Computing,” HP
Laboratories Palo Alto, Tech. Rep. HPL-2002-57R1, Mar. 2002.

[6] T. D. Nguyen and S. Rouvrais, “Towards a Peer-to-peer Middleware
for Context Provisioning in Spontaneous Networks,” in Proc. 5th Work-

shop on Middleware for Network Eccentric and Mobile Applications
(ESF/MiNEMA’07), Magdeburg, Germany, Sept. 2007, pp. 54–57.

[7] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic Networking:
Data Forwarding in Disconnected Mobile Ad Hoc Networks,” IEEE

Communications Magazine, vol. 44, no. 11, pp. 134–141, 2006.
[8] CCM. CORBA Component Model. OMG Document formal/06-04-01.

Version 4.0, http://www.omg.org, 2006.
[9] Fractal. Fractal Component Model, http://fractal.objectweb.org, 2006.

[10] D. Conan, R. Rouvoy, and L. Seinturier, “Scalable Processing of Context
Information with COSMOS,” in Proc. 7th IFIP Int. Conf. on Distributed

Applications and Interoperable Systems (DAIS’07). Paphos, Cyprus:
Springer Verlag, June 2007, pp. 210–224.

[11] Fractal RMI, http://fractal.objectweb.org/fractalrmi, 2006.
[12] M. Jelasity and O. Babaoglu, “T-Man: Fast Gossip-based Construction

of Large-scale Overlay Topologies,” University of Bologna, Department
of Computer Science, Tech. Rep., 2004.

[13] S. Voulgaris and M. van Steen, “Epidemic-style Management of Se-
mantic Overlays for Content-Based Searching,” in Proc. 11st European

Conf. on Parallel and Distributed Computing (Euro-Par’05). Lisboa,
Portugal: Springer-Verlag, Aug. 2005.

[14] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié,
“Epidemic Information Dissemination in Distributed Systems,” IEEE

Computer, vol. 37, no. 5, pp. 60–67, May 2004.
[15] B. Maniymaran, M. Bertier, and A.-M. Kermarrec, “Build One, Get One

Free: Leveraging the Coexistence of Multiple P2P Overlay Networks,”
in Proc. 27th IEEE Int. Conf. on Distributed Computing Systems

(ICDCS’07). Toronto, Canada: IEEE CS Press, June 2007.
[16] Julia, http://fractal.objectweb.org/julia, 2006.
[17] T. Gu, E. Tan, H. K. Pung, and D. Zhang, “A Peer-to-Peer Architecture

for Context Lookup,” in Proc. 2nd Int. Conf. on Mobile and Ubiquitous

Systems: Computing, Networking and Services (MobiQuitous’05). San
Diego, CA, USA: IEEE CS Press, July 2005.

[18] T. Gu, H. K. Pung, and D. Zhang, “A Peer-to-Peer Overlay for Context
Information Search,” in Proc. 14th IEEE Int. Conf. on Computer

Communications and Networks (ICCCN’05). San Diego, CA, USA:
IEEE CS Press, Oct. 2005.

[19] D. Gelernter, “Generative Communication in Linda,” ACM Computing

Survey, vol. 7, no. 1, pp. 80–112, Jan. 1985.
[20] A. L. Murphy, G. P. Picco, and G.-C. Roman, “LIME: A Middleware

for Physical and Logical Mobility,” in Proc. 21st IEEE Int. Conf. on

Distributed Computing Systems (ICDCS’01). Arizona, USA: IEEE CS
Press, Apr. 2001, pp. 524–533.

[21] P. Grace, G. Coulson, G. Blair, L. Mathy, W. K. Yeung, W. Cai,
D. Duce, and C. Cooper, “GRIDKIT: Pluggable Overlay Networks for
Grid Computing,” in Proc. 6th OTM Int. Symp. on Distributed Objects

and Applications (DOA’04). Agia Napa, Cyprus: Springer-Verlag, Oct.
2004, pp. 1463–1481.

[22] S. Behnel, A. Buchmann, P. Grace, B. Porter, and G. Coulson, “A
Specification-to-Deployment Architecture for Overlay Networks,” in
Proc. 8th OTM Int. Symp. on Distributed Objects and Applications
(DOA’06). Montpellier, France: Springer-Verlag, Oct. 2006, pp. 1522–
1540.

5


