Tuan Dung Nguyen
email: td.nguyen@enst-bretagne.fr

Siegfried Rouvrais
email: siegfried.rouvrais@enst-bretagne.fr

Towards a Peer-to-peer Middleware for Context Provisioning in Spontaneous Networks

Context-awareness has been widely considered important for applications to provide adaptable services to changes in dynamic environments. Classical approaches have mainly focused on gathering and representing internal contextual information from integrated sensors. Recent work has shown that useful external contexts can also be acquired from the surrounding environment in a distributed manner. However, the dynamism and heterogeneity of spontaneous networks raise new challenges for the provisioning of such information. This paper describes our ongoing work on a peer-to-peer middleware for abstracting contexts as logical peers in independent overlay networks. Context data retrieval then becomes transparent to applications and other middleware services. The proposed middleware will support efficient construction and maintenance of these overlays and offer common interfaces to applications. We discuss in detail its architecture and the open issues to be resolved.

Introduction

The increasing popularity of wireless computing devices has resulted in the spontaneous networking paradigm where a large number of nodes (e.g. PDAs, smart phones) collaborate to provide services without neither predefined infrastructures nor any manual interventions. Such environments are characterized by node's heterogeneity, potential mobility, unpredicted disconnection and limited resources. Systems and applications should be able to provide appropriate services based on user's current context (e.g. location, time, social situation).

Dey [START_REF] Dey | Understanding and Using Context[END_REF] defined context as any information that can be used to characterize the situation of an entity (e.g. person, place, and object). This information helps applications to dynamically adapt their behavior according to their require-ments and to changes in the environment. Contexts can be either internal (e.g. user's profile, device's battery level) or external (e.g. nearby resources, temperature). They can also be static (e.g. user agenda) or dynamic (e.g. network bandwidth). For instance, a car may need various contextual information such as weather, nearby petrol stations, road status.

Context provisioning mainly consists of contextual information acquisition, sharing and interpretation. Internal contexts are often captured by inherently integrated physical and/or logical sensors. External contexts are acquired from the surrounding environment either in a centralized or distributed manner. In the former approach, specific entities are used for context storage and lookup while in the latter case, context data is provided by any entities in proximity of an ad hoc network [START_REF] Riva | Contory: A Middleware for the Provisioning of Context Information on Smart Phones[END_REF]. The centralized approach is not relevant to spontaneous networks due to the lack of infrastructure and the frequent mobility.

Overlay networks are fundamental building blocks of peer-to-peer systems where nodes are connected by logical links on top of underlying physical networks. Their selforganization and sharing capability is a good support for dynamic environments.

Our work is highly motivated by the following requirements for context provisioning in spontaneous networks:

• Context representation. Various contexts can be gathered from different sources. An adequate representation should respect the separation of concerns design principle for context management and enable transparent context provisioning to upper applications.

• Context sharing. Resource-constrained and heterogeneous devices have only a limited number of sensors for capturing contextual information. Peer-to-peer context sharing allows nodes to obtain needed contexts not only from their integrated sensors but also from their neighbors.

The contribution of this paper is a peer-to-peer middle-1 ware for managing different contexts on independent overlays. This framework allows resources-constrained nodes to maintain only currently needed contexts according to their available resources and their own non-functional requirements.

The rest of this paper is organized as follows. Section 2 presents our middleware architecture for multiple context overlays. Next, Section 3 reviews related work and finally, Section 4 concludes the paper by discussing some open questions.

Dynamic overlays for context provisioning

A physical device can have several integrated sensors for capturing contexts. However, as illustrated in Figure 1, a device can have a number of context peers (CxtPeer) corresponding to its needed contexts. According to application's needs and available resources, logical peers can be created and destroyed on-the-fly. Peers are connected in independent self-organized overlays. The context data stored in each peer can be provided by integrated sensors or by querying other peers. The content can be cached in a peer during a defined period for later lookup operations. The software model of our proposed system is depicted in Figure 3. CxtPeer maintains list of neighbors representing a local view of the corresponding overlay. These neighbor lists are dynamically maintained by CxtOverlayManager. A CxtPeer has a Context data which can be associated or not with an integrated sensor.

When a context lookup query arrives at CxtManager, it is forwarded to the corresponding CxtPeer. Then the context data can be retrieved from a cached content, an integrated sensor or by querying other peers. These operations are carried out in the middleware layer and transparent to applications. By this way, some context data can be retrieved thanks to node's mobility even in partitioned networks.

Figure 3. Context provisioning model

Fractal [START_REF]Fractal[END_REF] is a modular, extensible and languageindependent component model to design, implement, deploy and reconfigure middleware systems and applications. Our middleware model based on the Fractal is depicted in Figure 4. CxtPeer is a primitive component representing a context. These components are managed in a composite component called CxtManager. Its content part is composed 2 of a finite number of CxtPeer components. Its controller interfaces (namely CC, LC) permit the creation and destruction of primitives peers on-the-fly. A CxtPeer has a server interface providing the corresponding contextual information. Its client interface is connected to the client interface of its surrounding component CxtManager. Different context overlays are maintained dynamically by distributed binding between server and client interfaces of CxtManager components (e.g. using Fractal RMI [START_REF]Fractal[END_REF]). These maintenance operations are carried out by CxtOverlayManager component.

Related work

The tuple-space model was first presented with Linda [START_REF] Gelernter | Generative Communication in Linda[END_REF] and then adapted to mobility with LIME [START_REF] Murphy | LIME: A Middleware for Physical and Logical Mobility[END_REF], TinyLIME [START_REF] Curino | Mobile Data Collection in Sensor Networks: The TinyLime Middleware[END_REF] or ErgoSpaces [START_REF] Julien | Egospaces: Facilitating rapid development of context-aware mobile applications[END_REF]. These efforts have proved the interest of this data-sharing model to dynamic environments. However, existing works lack the capacity to efficiently manage different context sources according to various application's needs.

Using peer-to-peer overlays for context lookup was first presented in [START_REF] Gu | A Peer-to-Peer Architecture for Context Lookup[END_REF]. The authors proposed ContextBus, an architecture in which context producers are grouped based on the semantic of their data. An improved version namely Semantic Context Space (SCS), was also proposed to reduce the maintenance cost when the number of semantic groups increases using a one-dimensional ring space [START_REF] Gu | A Peer-to-Peer Overlay for Context Information Search[END_REF][START_REF] Gu | A P2P Context Lookup Service for Multiple Smart Spaces[END_REF]. Unlike this work, we propose a more abstract concept because any devices can have a context peer even if they do not directly produce context data. Moreover, we support dynamic overlay management and effective mechanisms for overlay maintenance.

Research work has recently put great attention on the coexistence of multiple overlays. Gridkit [START_REF] Grace | GRIDKIT: Pluggable Overlay Networks for Grid Computing[END_REF] is a component framework for pluggable overlay networks even at runtime. Behnel et al. [START_REF] Behnel | A Specification-to-Deployment Architecture for Overlay Networks[END_REF] combined Gridkit with an over-lay design modeling framework to enable the generation of specific code from platform-independent design of overlay networks. Maniymaran et al. [START_REF] Maniymaran | Build One, Get One Free: Leveraging the Coexistence of Multiple P2P Overlay Networks[END_REF] presented a mechanism to reduce the multiple overlays maintenance overhead without sacrificing the performance. The authors proposed that the maintenance of one overlay can be leveraged to partly maintain another overlay with no extra cost. These approaches form a good base for the overlay construction and maintenance in our framework. However, the coexistence of multiple context overlays needs further investigation.

Discussion and open questions

We have presented a peer-to-peer middleware architecture for context provisioning in spontaneous networks. The proposed system offers a means for context abstraction and sharing in such dynamic environments. We plan to evaluate our proposition with a prototype working on real PDAs. By comparing it to existing tuple-space based works, we will demonstrate its capacity to answer to its design requirements and its overall overhead is acceptable. We have also identified the three following issues to be investigated.

1. Context peer specification and deployment. We are investigating a specification language and a component framework for the dynamic management of overlays. The language will allow applications to specify new context peers based on their current requirements. The component-based framework enables on-demand deployment of different context peers. To avoid ambiguity among different contexts, ontology-based approaches can be investigated in future work.

Context overlay construction and maintenance.

As context peers are connected in unstructured overlays, the maintenance operations involve two phases: a peer sampling phase providing candidates for the neighbor list establishment based on the semantic of overlays. We plan to exploit epidemic-style approaches [START_REF] Voulgaris | Epidemic-style Management of Semantic Overlays for Content-Based Searching[END_REF] for peer sampling service in spontaneous networks. Then the coexistence of multiple overlays can be leveraged to improve the maintenance efficiency by exploiting the common peer sampling service and the semantic relations among overlays, i.e. binding of subcomponents in a common composite component. The maintenance principle consists of updating neighbors in each overlay through dynamic interface binding of distrbuted components and assuring data consistency among context peers.

Context overlay lookup and composition.

Context provisioning to applications is realized through lookup operations in overlays. Therefore, we need effective lookup mechanisms to improve system performance.

Moreover, a query for higher-level contexts may concern several context peers which results in the composition of multiple overlays. So far, few work has put attention on this issue and further investigation is needed.

Figure 2 .

 2 Figure 2. Middleware architecture

Figure 4 .

 4 Figure 4. Fractal component-based model

Context Overlay 1 Context Overlay 2 Device Device Device CxtPeer CxtPeer CxtPeer Sensor Sensor CxtPeer CxtPeer CxtPeer Sensor Sensor Sensor CxtPeer CxtPeer CxtPeer Sensor Figure 1. Dynamic overlays of context peers

 The maintenance can also be triggered on the creation/destruction of a new context peer.

		Applications	
	CxtManager	CxtOverlayManager
	CxtPeer	CxtPeer	CxtPeer
	Sensor		Sensor
	Figure 2 presents our middleware architecture. The main		
	components are described as follows.		
	• Context Manager. This component is responsible for		
	dynamic context peer creation and destruction. New		
	context peers can be created from a proposed specifica-		
	tion language. It also provides applications a common		
	interface to query context data. The context query pro-		
	cessing can be synchronous or asynchronous, i.e. ap-		
	plications can submit a context query and receive the		
	result after some acceptable delay.		

• Context Overlay Manager. This component is responsible for overlay maintenance due to node's mobility in the proximity. Here, CxtPeer components are grouped based on its context semantic.

th MiNEMA Workshop, 11-12 September 2007, Magdeburg, Germany