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Estimating the robust domain of attraction for non-smooth

systemsusing an interval Lyapunov equation

Alexandre Goldsztejn a,1 Gilles Chabert b

aCNRS, Ecole Centrale de Nantes, LS2N
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Abstract

The Lyapunov equation allows finding a quadratic Lyapunov function for an asymptotically stable fixed point of a linear
system. Applying this equation to the linearization of a nonlinear system can also prove the exponential stability of its
fixed points. This paper proposes an interval version of the Lyapunov equation, which allows investigating a given Lyapunov
candidate function for non-smooth nonlinear systems inside an explicitly given neighborhood, leading to rigorous estimates of
the domain of attraction (EDA) of exponentially stable fixed points. These results are developed in the context of uncertain
systems. Experiments are presented, which show the interest of the approach including with respect to usual approaches based
on sum-of-squares for the computation of EDA.
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1 Introduction

This paper addresses the computation of estimates of the
domain of attraction (EDA), i.e., subsets of the domain
of attraction (DA), of exponentially stable fixed points
for nonsmooth uncertain systems. It is well known that
the size of the DA is not related to the strength of attrac-
tion of the fixed point, as shown by the following simple
exemple.

Example 1 Consider the system x′(t) = θ3 x(t)3 −
θ x(t), for which the origin is an attracting fixed point.
Since f ′(0) = −θ, the greater θ the stronger the attrac-
tion of the origin. However, the DA of 0 is the open
interval (−θ−1, θ−1), which decreases as θ increases.

The computation of EDA hence brings complementary
information to the study of the system linearization at
the fixed point, and is of practical importance.

Lyapunov functions have turned out to be a central tool
in the study of the stability of fixed points. They can
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also be used to estimate their DA since, under mild as-
sumptions, level sets of Lyapunov functions are included
inside the DA. Proving that a function v is a Lyapunov
function involves proving that a related function, namely
the Lie derivative v̇(x) = ∇v(x)T f(x) of the Lyapunov
function with respect to the flow, is negative definite
(ND), i.e., negative inside a given neighborhood of the
fixed point except at the fixed point where it is zero.
This can be done formally for simple systems:

Example 2 Continuing Example 1, we choose a
quadratic Lyapunov function v(x) = x2. The Lie deriva-
tive of v with respect to the flow is v̇(x) = v′(x)f(x) =
2x(θ3 x3 − θ x). Its sign can be formally investigated as
follows. It has 4 roots: 0 is a double root, with negative
second derivative, therefore v̇ is locally negative definite
at 0. The two other roots are ±θ−1. Therefore, v̇ is neg-
ative inside the open interval (−θ−1, θ−1), except for
v̇(0) = 0. From Lyapunov theory, (−θ−1, θ−1) is inside
the DA of 0 (it is actually the RA of 0).

However, numerical algorithms, which are required for
more realistic problems, are faced to a specific difficulty
for proving this property: Indeed, v̇(x) gets arbitrarily
close to zero as x approches the fixed point, hence pre-
venting any attempt from proving directly numerically
that it is positive except at the fixed point. This issue
has been resolved in the framework of two different the-
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ories by checking indirectly that v̇ is ND.

First, in the context of polynomial dynamical systems,
proving that the Lie derivative is ND inside a region can
be expressed as finding positive definite (PD) polynomi-
als satisfying some constraints:

Example 3 Proving that v̇ is negative inside a set
V(c) = {v(x) ≤ c} can be done by finding polynomials
p(x), q1(x) and q2(x) that are positive for x 6= 0 and
furthermore satisfying

p(x) + q1(x)v̇(x) = q2(x)(v(x)− c). (1)

Indeed, the right hand side is negative if and only if x ∈
V(c), while the left hand side is positive if v̇(x) is positive.
Therefore v̇(x) is proved to be negative for x ∈ V(c) (see
Theorem 4.1 from [1]). Continuing Example 1, for c =
θ−2, we have the degenerated solution p(x) = 0, q1(x) = 1
and q2(x) = 2θ3x2, which proves v̇(x) ≤ 0 inside V(c) =
[−θ−1, θ−1]. In fact, non degenerated solutions can be
found for c < θ−2, which prove that v̇(x) < 0 inside
V(c)\{0} for c < θ−2.

Finding such PD polynomials can be relaxed to finding
polynomials that are sum of squares (SOS). Finding such
SOS polynomials amounts to solve linear matrix inequal-
ities (LMIs), LMIs being convex and solved by efficient
solvers today. This way, SOS polynomials have been ap-
plied to prove that functions are Lyapunov functions
for polynomial systems, see, e.g., [2,3,1], and further ex-
tended to non-polynomial systems [4,5,6] and to hybrid
systems [7]. In spite of its powerfulness, this approach
presents several drawbacks: Its computational complex-
ity turns out to be sensitive to both the dimension of
the system and the degree of the polynomials involved in
the description of the system (see Subsection 5.7). Fur-
thermore, the current developments of this approach do
not allow to handle fixed points that depend on the un-
certainties. Finally, this approach happens to lack rigor
in the computed results: LMI solvers are not certified,
e.g., a relatively small uncertainty on the fixed point can
cause the warning ”SeDuMi numerical problems warn-
ing” of the LMI solver SeDuMi used in smrsoft [8],
which is difficult to interpret. Verified automatic proce-
dures for LMI error bounds [9] could be used, but were
not investigated in this context up to our knowledge.

Second, interval analysis basically allows to check the
sign of a given function, either by simple interval evalu-
ation or using branch and bound algorithms. However,
this approach fails because of the issue mentioned above.
A more elaborated application of interval analysis to
this end was proposed in [10]: The Lie derivative is for-
mally computed and its Hessian is evaluated over a box
centered on the fixed point. The negative definiteness
of this interval matrix, which can be checked automat-
ically, then implies under mild hypothesis that the Lie

derivative is concave and therefore negative, hence that
the Lyapunov candidate function is actually a Lyapunov
function. This test is called the interval Hessian test in
the rest of the paper.

Example 4 Continuing Example 1, the second order
derivative of v̇(x) is v̇′′(x) = −4 θ + 24 θ3 x2. A simple
interval evaluation of this expression on any interval [x]
strictly included inside [− 1

θ
√

6
, 1
θ
√

6
] has a negative upper

bound, hence proving that v̇ is concave inside [x]. Since
v̇(0) = 0 and v̇′(0) = 0 (by construction), v̇ is proved to
be negative inside [x].

Remark 1 Although not directed related to the present
work, [11] proposed an interval method that builds a
Lyapunov-like fonction to prove some capture property
in a more general setting than fixed point stability. How-
ever, it requires an initial EDA.

In the present paper, we propose another approach based
on interval analysis: So-called slope matrices are used to
rigorously linearize the system and the Lyapunov equa-
tion dedicated to linear systems is applied to this lin-
earization, leading to a sufficient condition that requires
only the interval evaluation of the first derivatives of
the flow. This approach is carefully developed so as to
handle uncertain dynamical systems and non-quadratic
Lyapunov functions. Finally, we define a nonlinear op-
timization problem, which solution provides the largest
estimate of the robust domain of attraction (LERDA)
that can be computed given a Lyapunov function. We
stress that the present paper considers a given Lyapunov
candidate function and addresses the problem of prov-
ing that it is actually a Lyapunov function and building
ERDA from it. The problem of finding good Lyapunov
function candidates is not in the scope of this paper.

The paper is organized as follows: Section 2 introduces
the basics of interval analysis that will be used. Section 3
presents the Interval Lyapunov Equation (8), which pro-
vides a verifiable sufficient condition for a Lyapunov can-
didate function to actually be Lyapunov function. Sec-
tion 4 presents theoretical developments that use this
sufficient condition to build an ERDA, as well as the non-
linear optimization problem that can extend this ERDA
to the LERDA. Finally, Section 5 presents several aca-
demic systems to evaluate the proposed approach and
compares it to the state of the art.

2 Interval analysis

2.1 Interval evaluation of an expression

Interval analysis is a branch of numerical analysis that
was born in the 1960’s. It consists in computing with
intervals of reals instead of reals, providing a framework
for handling uncertainties and verified computations (see
e.g. [12,13]).
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An interval is a closed connected subset of R, the set of
intervals being denoted by IR (which includes the empty
set as well as unbounded intervals). An interval vector
[x] ∈ IRn, also called a box, is the cartesian product of
its interval components, i.e., [x] = [x]1× [x]2×· · ·× [x]n.
Interval matrices are defined similarly: [A] ∈ IRn×m and
A ∈ [A] ⇐⇒ ∀(i, j) ∈ {1, . . . n}2, Aij ∈ [A]ij . A real
number x ∈ R (respectively a real vector x ∈ Rn or
a real matrix A ∈ Rn×m) will be identified with the
degenerated interval (respectively a degenerated interval
vector or a degenerated interval matrix).

The image of a setX by a function is the set of all images
of points in this set, i.e., f(X) = {f(x) : x ∈ X} , called
the range of f over X. So-called interval extensions of
functions intend to compute over-approximations of this
range. They are first defined for elementary functions.
Operations ◦ ∈ {+,×,−,÷} are extended to intervals
in the following way: [x] ◦ [y] := {x ◦ y : x ∈ [x], y ∈ [y]}
(which is an interval since these functions are contin-
uous). The division is defined for intervals [y] that do
not contain zero. Unary elementary functions f(x) like
exp(x), ln(x), sin(x), etc., are also extended to intervals
similarly: f([x]) = {f(x) : x ∈ [x]}. All these elementary
interval extensions form the interval arithmetic (IA). As
real numbers are identified to degenerated intervals, the
IA actually generalizes the real arithmetic, and mixed
operations like 1 + [1, 2] = [2, 3] are interpreted as inter-
val operations, e.g. in this case [1, 1] + [1, 2] = [2, 3]. An
interval function [f ] : IRn −→ IRm is an interval exten-
sion of the real function f : Rn −→ Rm if for all [x] ∈ IRn
we have [f ]([x]) ⊇ f([x]). Thus interval extensions allow
computing enclosures of real functions range over boxes.
So-called natural interval extensions of a function are
obtained by evaluating an expression of this function for
interval arguments using the IA. In particular when ev-
ery variable has one unique occurrence in the function’s
expression the natural interval extension is optimal, i.e.
it computes the exact function range. However, when
a function expression has several occurrences of some
variables, its interval evaluation may overestimate the
range.

Example 5 Consider the function v̇(x) = 2x(x3 − x)
with θ = 1. The range of this function over [x] = [−1, 1] is
[−0.5, 0]. The interval evaluation of this expression for [x]
is [−4, 4], which overestimates the range of the function.
The interval evaluation of the factorized expression v̇ =
2x2(x−1)(x+ 1) is [−8, 0], which also overestimates the
range but proves that v̇(x) ≤ 0 inside [x].

The overestimation of the range illustrated in the previ-
ous example is one of the critical issue to be tackled when
applying interval analysis. This example shows the main
issue to be resolved in this paper: The function v̇(x) is
positive definite, but the simple interval evaluation of
its expression will fail proving this fact. In general for
higher dimensional non trivial systems, no factorization

will be able to prove that a function is ND by a simple
interval evaluation.

In practice, the interval arithmetic is implemented us-
ing machine representable numbers and outer rounding.
Among numerous implementations of IA, we can cite the
C/C++ libraries Gaol [14] and the matlab toolbox
intlab [15]. The developments presented in the rest of
the paper use the ideal real IA. The algorithms are finally
implemented using outwardly rounded floating point IA.

2.2 Slope matrices

Given a function f : Rn → Rn, a box [x] ∈ IRn and a
vector x̃ ∈ [x], a (f, [x], x̃)-slope matrix enclosure is an
interval matrix [S] such that

∀x ∈ [x],∃S(x) ∈ [S], f(x) = f(x̃) + S(x)(x− x̃). (2)

The matrix S(x) is called a (f, [x], x̃)-slope matrix and
[S] its enclosure. For differentiable functions f , a slope
matrix enclosure can be computed using interval evalu-
ations of the derivatives. For example, [S] = [Df ]([x]) is
a (f, [x], x̃)-slope matrix enclosure, which actually holds
for any x̃ ∈ [x]. Hansen proposed in [16] to evaluate the
derivatives in a more clever way on sub-boxes of [x] to
obtain a tighter (f, [x], x̃)-slope matrix enclosure:

[S]ij = [
∂fi
∂xj

]([x1], . . . , [xj ], x̃j+1, . . . , x̃n). (3)

Hansen’s matrix is sharper than the simple interval eval-
uation of the derivatives, but is valid only for a fixed x̃.

Both slope matrix enclosures can be generalized to non-
differentiable Lipschitz functions f using generalized
gradients [17], and the corresponding mean-value the-
orem, or the inclusion algebra described in Section 2.3
of [12]. Although not detailed here, slope matrices can
also be computed using a slope arithmetic [18]. This
approach can lead to tighter slope matrice enclosure,
in particular when max functions are involved, e.g., for
systems with saturations (see Appendix A for an exam-
ple of intlab [15] code that computes a slope matrix
enclosure using the slope arithmetic).

3 Verification of Lyapunov functions

In this section, we consider a Lipschitz continuous vec-
tor field f : [u] ⊆ Rn → Rn, where [u] is a bounded
neighborhood of the origin, such that f(0) = 0. We also
consider a twice differentiable Lyapunov candidate func-
tion v : [u] → R, i.e., v(0) = 0 and v is positive defi-
nite (PD) inside [u]. We say that this Lyapunov candi-
date function is a [u]-Lyapunov function if furthermore
∀u ∈ [u] \{0}, v̇(u) < 0, where v̇(u) = ∇v(u)T f(u).
From Lyapunov theory, the existence of such a Lyapunov
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function entails that the origin is asymptotically stable,
and that any level set V(c) = {u ∈ Rn : v(u) ≤ c} ⊆ [u]
is included inside the DA for the origin.

We consider a (f, [u], 0)-slope matrix A(u) ∈ [A]:

∀u ∈ [u],∃A(u) ∈ [A], f(u) = A(u)u. (4)

We also consider a (∇v, [u], 0)-slope matrix P (u) ∈ [P ]:

∀u ∈ [u],∃P (u) ∈ [P ],∇v(u) = P (u)u. (5)

Note that neither P (u) nor [P ] are symmetric in general.

As seen in (4) and (5), these slope matrices allow rewrit-
ing the vector field and the Lyapunov candidate function
gradient under the form of linear functions. As a conse-
quence, the Lie derivative of v has the following form:

v̇(u) = ∇v(u)T f(u) = uTP (u)TA(u)u (6)

The following proposition uses these rigorous lineariza-
tions to extend the Lyapunov equation for linear systems
to the nonlinear system in the neighborhood [u].

Proposition 1 Given a Lyapunov candidate function v,
define

Q(u) = P (u)TA(u) +A(u)TP (u), (7)

and suppose that Q([u]) contains only SND matrices.
Then v is a [u]-Lyapunov function for f . In particular,
v is a [u]-Lyapunov function if the interval matrix

[Q] = [P ]T [A] + [A]T [P ] (8)

is SND, i.e., all symmetric matrices inside [Q] are SND.

Proof. The same quadratic form as (6) is obtained by
symmetrizing its matrix, i.e., v̇(u) = 1

2u
T
(
P (u)TA(u)+

A(u)TP (u)
)
u, which is equal to 1

2u
TQ(u)u by definition

of Q(u). Since Q(u) is assumed to be SND, v̇(u) < 0
for u ∈ [u]\{0}, and v is proved to be a [u]-Lyapunov
function for f . Finally, since P (u) ∈ [P ] and A(u) ∈ [A],
we have Q(u) ∈ [Q]. Therefore, [Q] SND implies Q(u)
SND for all u ∈ [u], and the first statement implies that
v is a [u]-Lyapunov function. 2

Remark 2 In fact, Proposition 1 also proves that 0 is
exponentially stable. Therefore, it can succeed only if the
fixed point is actually exponentially stable.

Remark 3 Slope matrices have been used similarly in
the more general context of hyperbolic fixed points in [19]
(see Lemma 2.13 in that paper). The scope of Proposi-
tion 1 is smaller since it applies only to exponentially
stable fixed points, but is stronger for this smaller class
of fixed points.

Checking if [Q] is SND is NP-hard [20]. However, eas-
ily implementable polynomial sufficient conditions are
available, e.g., checking the Sylvester criterion using the
interval LU-decomposition for computing the determi-
nant enclosures.

In the special case of quadratic Lyapunov functions,
P (u) = P = D2v(0) is symmetric, therefore (8) becomes
[Q] = P [A] + [A]TP .

4 Certified ERDA and LERDA

In this section, we consider an uncertain vector field
f(x, θ), θ being an uncertain parameter, whose domain
is Θ = {θ ∈ [θ] : g(θ) ≤ 0}, where the box [θ] is bounded.
We suppose that for all θ ∈ Θ the system has a fixed
point xθ ∈ [xθ], an uncertain fixed point box enclosure
[xθ] being given. Let Dθ be the DA of xθ for the system
ẋ = f(x, θ). The robust domain of attraction (RDA) is
then defined by

DΘ =
⋂
θ∈Θ

Dθ. (9)

In [1,6] only fixed points that do not depend on the un-
certainty are considered. Notice that in the case where
the fixed point actually depends on the uncertainty, the
RDA may be empty although each uncertain system has
a nonempty DA.

For a fixed uncertainty θ ∈ Θ, let fθ(u) = f(xθ + u, θ),
whose fixed point is the origin. Note thatDθ−xθ = {x−
xθ : x ∈ Dθ} is the domain of attraction of 0. Given a box
[u] 3 0, we denote by [Aθ] a (fθ, [u], 0)-slope matrix en-
closure and Aθ(u) its corresponding slope matrix. Since
translations affect neither derivatives nor slope matri-
ces, e.g., Dfθ(u) = Dxf(xθ + u, θ), one easily verifies
that for any fixed value θ ∈ Θ both [Aθ] = [Dxf ]([x], θ)
with [x] = [u] +xθ, and its Hansen improvement, whose
(i, j) entry is

[Aθ]ij = [
∂fi
∂xj

]([x]1, . . . , [x]j , (xθ)j+1, . . . , (xθ)n, θ),

(10)
are (fθ, [u], 0)-slope matrix enclosures. A slope matrix
enclosure [AΘ] valid for all values θ ∈ Θ is then [AΘ] =
[Dxf ]([x], [θ]), with [x] = [xθ] + [u], or its Hansen im-
provement

[AΘ]ij = [
∂fi
∂xj

]([x]1, . . . , [x]j , [xθ]j+1, . . . , [xθ]n, [θ]).

(11)
Note that these slope matrices are valid for all θ ∈
[θ], which is a superset of Θ. This can sensibly over-
approximate the slope matrix in the case where Θ is ac-
tually smaller than [θ], this issue being addressed below
by splitting [θ].
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We also consider a given Lyapunov candidate function
v : Rn → R, together with a PD quadratic minorant
denoted by

w(u) = uTWu ≤ v(u), (12)

with W ∈ Rn×n being SPD. Such a minorant implies
in particular that v is radially unbounded and therefore
has bounded level sets. If v is quadratic PD then w = v.
We also consider a (∇v, [u], 0)-slope matrix enclosure
denoted by [P ], which can be the interval evaluation
[P ] = [D2v]([u]) of the second derivatives of v, or its
Hansen improvement whose (i, j) entry is

[P ]ij = [
∂2v

∂ui ∂uj
]([u]1, . . . , [u]j , 0, . . . , 0). (13)

The corresponding (∇v, [u], 0)-slope matrix is denoted
by P (u).

Given an approximation of the fixed point(s) x̂ ∈ Rn,
the aim of this section is to compute c > 0 such that

V(x̂, c) = x̂+ {u ∈ Rn : v(u) ≤ c} ⊆ DΘ. (14)

Subsection 4.1 provides a test to decide, whether V(x̂, c)
is inside the RDA. Subsection 4.2 provides a nonlin-
ear optimization problem that allows computing the
LERDA, i.e., given v and x̂ to compute the maximal c∗

such that V(x̂, c) is inside the RDA if and only if c < c∗.
This value of c∗ is called the LERDA radius, although
it is actually not a distance but a squared distance.

4.1 Certifying an ERDA

The following proposition requires the computation of
a box enclorure [u] of a level set V(0, c). Since w is a
minorant of v, we have V(0, c) ⊆ W(0, c), and w being
quadratic PD,

[u] = c
1
2 [−1, 1] diag

1
2
(
P−1

)
⊇ W(0, c), (15)

where diag
1
2 is the square root of the diagonal elements

(the interval hull of an ellipsoid is given, e.g., in [21]).

Furthermore, for absorbing the uncertainty of the fixed
point inside a level set of the Lyapunov function, we will
need a Lipschitz constant for this Lyapunov candidate
function. It is given by the following lemma.

Lemma 1 The Lyapunov candidate function v is L-
Lipschitz continuous inside [u] (for the Euclidean dis-
tance) with L = ‖[P ]([u])[u]‖2.

Proof. Consider arbitrary u, u′ ∈ [u]. Then using the
mean-value theorem for several variables, there exists
u′′ ∈ [u] such that v(u) − v(u′) = ∇v(u′′)T (u − u′).

The proof is concluded noting that |∇v(u′′)T (u−u′)| ≤
‖∇v(u′′)‖2 ‖u−u′‖2 by the Cauchy-Schwartz inequality,
and that ∇v(u′′) = P (u′′)u′′ ∈ [P ]([u])[u]. 2

Proposition 2 Given a Lyapunov candidate function v,
x̂ ∈ Rn, c > 0 and [u] ⊇ V(0, c), suppose that the interval
matrix

[Q] = [P ]T [AΘ] + [AΘ]T [P ] (16)

is SND and that c > ∆ := L ‖[xθ] − x̂‖2 with L =
‖[P ]([u])[u]‖2. Then V(x̂, c−∆) ⊆ DΘ.

Proof. We first prove that

∀xθ ∈ [xθ],V(x̂− xθ, c−∆) ⊆ V(0, c). (17)

For arbitrary θ ∈ Θ and u′ ∈ V(x̂ − xθ, c − ∆), we
have u′ = x̂ − xθ + u with v(u) ≤ c − ∆. Therefore,
|v(u) − v(u′)| ≤ L‖u − u′‖2 ≤ ∆, which proves that
v(u′) ≤ v(u) + ∆ ≤ c, i.e., u′ ∈ V(0, c), from which (17)
follows.

For an arbitrary θ ∈ Θ, (16) and Proposition 1 prove that
v is a Lyapunov function for fθ inside [u]. Furthermore,
since V(0, c) ⊆ [u] by hypothesis, V(0, c) ⊆ Dθ − xθ. As
a consequence of (17), V(x̂ − xθ, c − ∆) ⊆ DΘ − xθ or
equivalently V(x̂, c−∆) ⊆ DΘ. 2

Given x̂ (usually chosen as x̂ ≈ mid[xθ]) and c, Propo-
sition 2 can fail for the following reasons:

• The interval matrix (16) is not SND. This can be the
consequence of a too large [u], which can be reduced by
decreasing c, or a too large Θ, which can be reduced by
splitting [θ] and applying Proposition 2 to all resulting
subdomains Θi = {θ ∈ [θi] : g(θ) ≤ 0} (empty sub-
domains being discarded). Then, the smallest ERDA
obtained applying Proposition 2 to all subdomains Θi,
i.e., c − ∆ = mini ci − ∆i, gives rise to the ERDA
V(x̂, c−∆) valid for all uncertainties inside Θ.

• The condition c ≤ ∆ is not satisfied. This does not
happen if [xθ] is small enough, in particular if the fixed
point does not depend on the uncertainty. A too large
uncertainty on the fixed point may prevent Proposi-
tion 2 from building any ERDA.

In the case where the fixed point does not depend on
the uncertainty, i.e., xθ = x0 for all θ ∈ Θ, and the vec-
tor field is smooth in a neighborhood of the fixed point
Proposition 2 will succeed in building an ERDA pro-
vided that the Lyapunov candidate function is chosen
correctly: Indeed, since (15) converges to zero as c does
and the interval extension of the derivatives are conver-
gent, decreasing c and splitting [θ] makes the slope ma-
trix enclosure converge to thin matrices, and therefore
Proposition 2 will eventually succeed provided that

D2v(0)Df(x0) +Df(x0)TD2v(0) (18)
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is SND. This is the case when D2v(0) is chosen as the
solution of the Lyapunov equation for the linearized sys-
tem. Note that the worst-case complexity of splitting [θ]
to obtain an ERDA is exponential with respect to the
number of uncertain parameters.

However, if the vector field in non-smooth at the fixed
point then generalized derivatives may not converge to
thin intervals and the approach may fail to compute any
ERDA.

4.2 LERDA computation

The following proposition shows how to increase a given
ERDA to a LERDA by solving a nonlinear optimization
problem.

Proposition 3 Suppose that the Lyapunov function v
is radially unbounded, which is entailed by w(u) ≤ v(u),
and consider a given ERDA V(x̂, c). Let c∗ be the (global)
solution of the following nonlinear optimization problem:

min v(x− x̂)

subject to v(x− x̂) ≥ c
∇v(x− x̂)T f(x, θ) ≥ 0

θ ∈ Θ.

(19)

Then for all positive lower bound c+ < c∗, we have
V(x̂, c+) ⊆ DΘ.

Proof. Since c∗ is the global minimum, there is no fea-
sible (x, θ) such that v(x) ≤ c+ < c∗, i.e., ∀(x, θ) ∈
Rn×Θ, c ≤ v(x−x̂) ≤ c+ implies∇v(x−x̂)T f(x, θ) < 0.
That is, for any fixed θ ∈ Θ and any trajectory x(t)
starting in V(x̂, c+)\V(x̂, c), we have d

dtv(x(t) − x̂) ≤ ε
with

ε = max
c≤v(x−x̂)≤c+

θ∈Θ

∇v(x− x̂)T f(x, θ). (20)

Since v is radially unbounded, the feasible set of this op-
timization problem is compact and ε < 0. This trajec-
tory therefore reaches V(x̂, c) in a finite time, and then
converges to xθ because V(x̂, c) ⊆ DΘ. 2

The initial ERDA V(x̂, c) can be computed using Propo-
sition 2. The nonlinear optimization problem (19) can be
solved using branch and bound algorithms, which com-
pute a certified lower bound c+ < c∗ arbitrarily close to
c∗.

It is crucial to note that the resolution has to be per-
formed inside Rn×[θ]. Generally, branch and bound al-
gorithms are not able to handle such unbounded do-
mains. Some specific techniques were recently proposed

der
10−3 Han

10−3 Hes
10−3 opt

10−3 opt
10−4

c(1) 0.00198 0.00198 0.000862 0.2889 0.288990

t. 4 < 1 < 1 376 464

c(2) 0.0345 0.0345 0.0121 1.799802 1.800811

time < 1 4 4 300 386

Table 1
Example 4.6 from [1]: The largest EDA that Proposition 2
can validate, using either the interval evaluation of the
derivative or its Hansen improvement and the interval
Hessian test [10], as well as the LEDA radius enclosure com-
puted by solving (19) (decimals in exponent show the lower
bound, decimals is subscript the upper bound). The computa-
tion time is given in ms.

in [22] to handle unbounded domains using quadratic
minorants. In the same line, the quadratic PD minorant
w(u) gives rise to a specific contractor using (15), which
allows handling unbounded domains.

5 Experiments

In all experiments, an approximate fixed point x̂ was
provided and used as the center of the EDA. An interval
Newton operator was used in order to compute a certi-
fied enclosure of the fixed point(s) starting at x̂, includ-
ing in Subsection 5.5 where the fixed point actually de-
pends on the uncertainties. The Sylvester criterion was
used to test whether an interval matrix is SPD or SND,
the determinant being computed using an interval LU-
decomposition.

A dichotomic search is used for finding the greatest value
of c that can be validated using Proposition 2. The
nonlinear problem (19) is solved using Ibex [23,24,25]
with standard settings with an initial upper bound for
the objective v(x − x̂) of 108, which does not impact
the rigorousness since the domain of the variables are
kept unbounded, but sensibly speeds up the solving pro-
cess 2 . Experiments are performed on a standard laptop
equipped with an Intel i7 3 GHz and 8 Gb of memory.
The C++ code used to perform these experiments is
available at http://ibex-lib.org/papers.

The interval Hessian test proposed in [10] has also be
used in the framework proposed here, which handles
more carefully EDA and tackles uncertain systems and
non-quadratic Lyapunov functions. This allows a de-
tailed comparison with our approach. A detailed com-
parison with [1] is also presented.
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der
10−3 Han

10−3 Hes
10−3 opt

10−3 opt
10−4

c 0.0247 0.0565 0.00987 0.320912 0.321059

time < 1 < 1 < 1 52 52

Table 2
Example 1 from [5]: Same data as in Table 1.

5.1 Example 4.6 from [1]

The following 3D polynomial system was considered
in [1]:

ẋ1 = x1 − x3
1 + 1

2x3 + x2
2

ẋ2 = −x2 − x3
2 + 1

2x
2
3 − x2

1

ẋ3 = x1 + 2x2 − x3
3 + x2

1 − x2
2

(21)

This system has two attractive fixed points, which
approximations are x(1) = (1.362,−0.829, 0.956) and
x(2) = (−1.110,−0.524,−1.063). The Lyapunov candi-
date function v(x) = x2

1 + x2
2 + x2

3 was used for both
fixed points, and the following LEDA were found in [1]:
c(1) = 0.291 and c(2) = 1.803.

The results obtained using the proposed approach
are given in Table 1, with the same conclusion as
in the previous subsection. However, the LEDA pro-
vided by [1] are not compatible with the enclosures
found here. The following feasible points are pro-
vided by Ibex using a relative precision of 10−4:

x
(1)
f = (1.23994309,−1.03446048, 0.47379879) and

x
(2)
f = (0.22508293,−0.49578243,−0.92706316). They

have positive Lie derivatives and belong to the LEDA
provided in [1], which are therefore slightly larger than
the LEDA. However, we ran smrsoft 1.2 [8] for this
problem, which computed a slightly smaller LEDA
compatible with the enclosures provided here. Timing
for the LEDA computations by smrsoft 1.2 [8] are 10
secondes for the first fixed point, and 13 secondes for
the second.

5.2 Example 1 from [5]

This system is a non-polynomial system defined by

ẋ1 = −x1 + x2 + 1
2 (exp(x1)− 1)

ẋ2 = −x1 − x2 + x1x2 + x1 cos(x1).
(22)

The origin is an attractive fixed point, which was studied
using the quadratic Lyapunov function v(x) = x2

1 + x2
2

in [5,6]. Using sixth order Taylor expansions of the non-
polynomial operations, the LEDA c = 0.3210 was found
in [1], which was improved to c = 0.3216 in [6].

2 This also has the advantage of letting the algorithm halt
in case the feasible set is empty, e.g., when the fixed point
is globally attractive. In this case, V(x̂, 108) is proved to be
inside the domain of attraction.

der
10−3 Han

10−3 Hes
10−3 opt

10−3 opt
10−4

c 0.0288 0.0288 0.00995 0.698996 0.69924

time < 1 4 < 1 215 248

Table 3
Whirling Pendulum. Same data as in Table 1.

der
10−3 Han

10−3 Hes
10−3 opt

10−3

c 0.00858 0.0120 0.00385 0.3023

time < 1 4 < 1 1992

Table 4
Example 5.6 from [1]. Same data as in Table 1.

The results obtained using the proposed approach are
given in Table 2, with the same conclusion as in the
previous subsection. In particular, the LEDA found
in [1] is compatible with the enclosure found here.
However, this enclosure is not compatible with the
LEDA found in [6]. The following feasible point has
been found by Ibex using a relative precision of 10−4:
xf = (0.460239373, 0.330548554). This point has a pos-
itive Lie derivative and belongs to the LEDA computed
in [6], which is therefore slightly larger than the LEDA.

5.3 Whirling pendulum [5,6]

This model is a non-polynomial system defined by

ẋ1 = x2

ẋ2 = − c
mx2 + ω2 sin(x1) cos(x1)− g

l sin(x1),
(23)

with c = 2
10 , m = 1, ω = 9

10 and g = l = 10. The origin
is an attractive fixed point, which is used as the center of
the computed EDA. The following quadratic Lyapunov
function is used in [5,6]: v(x) = x2

1 + x1x2 + 4x2
2. Using

seventh order Taylor expansions of the non-polynomial
operations, the LEDA c = 0.6990 was found in [1], which
was improved to c = 0.6998 in [6].

The results obtained using the proposed approach are
given in Table 3, with the same conclusion as in the
previous subsection. The LEDA enclosure is compati-
ble with the one given in [5]. However, it is not com-
patible with one given in [6]: The feasible point xf =
(−0.74135892, 0.30717105), computed by Ibex using a
relative precision of 10−4, has a positive Lie derivative
and belongs to V(0, 0.69931), which contradicts [6].

5.4 Example 5.6 from [1]

This system is an uncertain polynomial system defined
by

ẋ1 = −2x1 − x2 − (1− θ2)x2
1 + θ1x1x2

ẋ2 = −2x1 − 3x2 − θ2x1x2 + (2 + θ1)x2
2.

(24)

The domain for the uncertain parameters is Θ = {θ ∈
R2 : θ2

1 +θ2
2 ≤ 1}. The origin is an attractive fixed point,
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der
10−3 Han

10−3 Hes
10−3 opt

10−3

c 0 0.0968 0 4.5960

time < 1 < 1 4 86

c′ 0.00010 0.171 0 NA

time 34 33 132 NA

Table 5
A simple microbial growth process. Same data as in Table 1.
The EDA c′ are computed by a dichotomic search using Propo-
sition 2 and splitting regularly the parameters domain into
25 subdomains (in this case, c′ has no meaning).

which does not depend on the uncertainties and is used as
a center for the computed EDA. The following quadratic
Lyapunov function is used in [5]: v(x) = 3x2

1 +x1x2 +x2
2.

The LERDA c = 0.303 was found in [1].

The results obtained using the proposed approach are
given in Table 4, with the same conclusion as in the pre-
vious subsection. The LERDA found is [1] is compatible
with the enclosure found here.

5.5 A simple microbial growth process

This system is an uncertain non-polynomial system:

ẋ = x ( s µm

ks+s − dα)

ṡ = d (si − s)− µm k s x
ks+s ,

(25)

where α = 0.5, k = 10.53, d = 0.36, si = 5.7, µm ∈
[1.19, 1.21] and ks ∈ [7.09, 7.11]. There are therefore two
uncertain parameters. It was studied in [26] where an
initial condition were rigorously simulated and seemed
to converge to a fixed point close to x̂ = (0.845, 1.253).
This fixed point actually depends on the uncertainties,
therefore the ERDA computed here actually proves the
convergence of trajectories towards an uncertain fixed
point.

The results obtained using our approach are given in Ta-
ble 5. Proposition 2 fails using the derivative-based slope
matrix enclosure as well as using the interval Hessian
test [10] because the uncertain domain is too large. The
ERDA V(x̂, c′) is computed by splitting Θ into 25 regu-
lar sub-intervals, the results being shown in Table 5. The
derivative-based slope enclosure now succeeds comput-
ing an EDA, but [10] still fails. In fact, [10] fails comput-
ing any EAD for this system: For arbitrarily small un-
certainty subdomains we have ∆ > c for some of them,
which prevents any application of Proposition 2.

5.6 A linear system with saturation [27]

We consider the following linear system with saturated
input [27]:

ẋ1 = x2

ẋ2 = x1 −max{−5,min{5, 13x1 + 7x2}}.
(26)

der
10−3 Han

10−3 Hes
10−3 opt

10−3

c2 0.0179 0.0179 0.0179 0.2078

time < 1 4 12 60

c4 0.00510 0.00510 0.00139 25.89

time < 1 4 4 184

Table 6
Linear system with saturations. Same data as in Table 1.

-2 -1 0 1 2

-2

-1

0

1

2

Fig. 1. The vector field for the linear system with saturated
input. In green, the area where there is no saturation. In
red, the area where the Lie derivative of the quadratic Lya-
punov function is positive. The smaller ellipsoid correspond
to the EDA computed using Proposition 2 using either the
derivative enclosure or its Hansen improvement, as well as
the interval Hessian test [10]. The medium-size ellipsoid cor-
responds to the EDA computed using Proposition 2 with
the slope arithmetic (see Appendix A). The largest ellipsoid
corresponds to the LEDA computed solving (19).

Linearizing the system at the stable fixed point 0 and
solving the corresponding Lyapunov equation, we se-
lect the Lyapunov candidate function v2(u) = 1.22x2

1 +
0.083x1x2 + 0.077x2

3. In order to extend the EDA com-
puted with this Lyapunov function, we also consider the
degree 4 Lyapunov candidate function v4(x) = v2(x) +
(x1 + x2)4.

The results obtained are summarized in Table 6, Fig-
ure 1 and Figure 2, which are in line with the previous
results. We see that the dichotomic search stops at the
same value either using the derivative slope enclosure,
its Hansen improvement or the interval Hessian test [10].
This value corresponds exactly to the interval hull of the
ellipsoid that reaches the saturations, where the slope
enclosures become wider because of the null generalized
derivative of the max function. This can be improved us-
ing the slope arithmetic [18]. Indeed, the short matlab
code presented in Appendix A uses the slope arithmetic
implemented in intlab [15] and proves using Proposi-
tion 2 that V(0, 0.0484) is an EDA, which include satu-
rated inputs, as seen on Figure 1.
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Fig. 2. Same as Figure 1, but for the degree 4 Lyapunov
function. The DA is delimited by dashed lines. The EDA
computed using Proposition 2 is too small to be visible.
However, it supplies a lower bound necessary for solving (19),
which solution gives rise to the non-ellipsoid EDA depicted
in black full line. The gray ellipsoid corresponds to the LEDA
computed using the quadratic Lyapunov function.

5.7 A scalable academic system

The scalable polynomial system

ẋ = −(1−
∏

xi)x (27)

has a stable fixed point at the origin. We consider the
Lyapunov function v(x) = xTx, whose LEDA can be
proved to be V(0, n).

The EDA found by applying Proposition 2 cannot be
better than V(0, 1): Indeed, the slope matrix enclosure
for this EDA is computed over its interval hull [−1, 1]n,
which contains the fixed point (1, . . . , 1). The values of
c actually computed by dichotomy using Proposition 2
using the different slope matrix enclosures are shown in
Figure 3. We see that they are smaller than 1, but con-
verge to 1 as the dimension increases. Timings are shown
in Figure 4. The resolution of the NLP (19) was run with
a relative precision of 10−3 and a timeout of 15 min-
utes. Both the system and the Lyapunov function en-
joy the same symmetry: All variables can be exchanged.
Following [28], we break this symmetry by adding the
symmetry breaking constraints (SBCs) x1 ≤ xi for all
i ∈ {2, . . . , n}. The resolution of the NLP (19) allows
computing a sharp enclosure of the LEDA without reach-
ing the timeout until n = 5 (n = 6 using SBCs). For di-
mensions between n = 6 and n = 11 (n = 7 and n = 15
using SBCs), the branch and bound still allows enlarg-
ing the EDA computed using Proposition 3 but does not
provide a sharp enclosure of the LEDA anymore. No im-
provement over the initial EDA is provided for higher
dimensions.

We use smrsoft [8] to compute EDA for this system.
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Fig. 3. Scalable academic problem: Radii for the differ-
ent methods. Full line with diamond, square and disk: Di-
chotomy with Proposition 2 using respectively [10], deriva-
tive enclosure and Hansen improvement. Dashed line with
upward and downward triangles: Solution of (19) respec-
tively without and with symmetry breaking.
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Fig. 4. Scalable academic problem: Timings for the different
methods. Black: Same as Figure 3. Gray, full line circle and
dashed line empty square: smrsoft for respectively checking
the EDA V(0, 0.5) and computing the LEDA.

It is used to check the EDA V(0, 0.5), and to compute
the LEDA of this system. Timings, shown in Figure 4,
are successfully computed up to n = 5 for the EDA and
n = 4 for the LEDA, higher dimensions requiring too
long computation and making our version of matlab
crashing.

6 Conclusion

The results presented above show the interest of the pro-
posed approach: Given a Lyapunov candidate function,
it successfully builds the LERDA on academic state-of-
the-art examples tackled by the SOS approach. On the
one hand, it has interesting advantages with respect to
the SOS approach: It handles directly non-polynomials
systems, while the SOS approach requires Taylor expan-
sions with bounded remainders, as well as non-smooth
systems. Also, its application to the scalable benchmark
has show its superiority in terms of computational effort,
although the branch and bound algorithm also remains
restricted to small dimensions. On the other hand, the
SOS-based approach has a wider scope: Some other de-
cision variables can be included inside the resulting LMI
problem (e.g. controller parameters or coefficients of the
Lyapunov function), and in some cases, it can prove the
asymptotic stability of non exponentially stable fixed
point using non quadratic functions (see, e.g., Example 1
in [3]).

9



Finally, the interval Lyapunov equation test proposed
here presents several improvements with respect to the
interval Hessian test proposed in [10]: It requires only
first-order derivatives interval evaluation, hence applica-
ble to non-smooth systems, and actually computes larger
ERDA.
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A Slope matrix enclosure using intlab slope
arithmetic

Note: intlab [15] does provide slopes neither for min nor
max function, which have therefore been implemented
using the function abs in the following matlab code.
This is non-optimal, specific slope expressions for these
functions would certainly improve the EDA.

Min=@(a,b)0.5*(- abs(a-b)+a+b);
Max=@(a,b)0.5*( abs(a-b)+a+b);
f=@(x)[x(2);x(1) - Max(-5, Min(5, 13*x(1)

+ 7*x(2)))];

P=[1.22 0.0417 ; 0.0417 0.0774];
c=0.22^2;
xi=midrad ([0;0] , sup(sqrt(intval(c))*sqrt(

diag(inv(intval(P))))));
xs=slopeinit(mid(xi),xi);
fs=f(xs);
J=fs.s;
Q=P*J+transpose(J)*P;
mQ=-Q;
display(mQ(1,1));
display(mQ(1,1)*mQ(2,2)-mQ(1,2)*mQ(2,1));
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The two displayed determinants are positive, therefore
Sylvester criterion proves that the interval matrix −Q is
definite positive. The test fails for c ≥ 0.232.
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