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1 Introduction

The stability analysis of a continuous-time dynamical system:

ẋ = f(x), f : Rn → Rn, (1)

is a fundamental question in control theory. This paper focuses on the simple but important case of
exponentially stability. If x? is an exponentially stable equilibrium, all the trajectories starting inside
a neighborhood A(x?) of x? are known to converge to x? faster than an exponential decay, that is:

∀x0 ∈ A(x?), ∃t0, ∀t ≥ t0, ‖x(t)− x∗‖ ≤ α‖x0 − x∗‖e−βt (2)

for some nonnegative constants α and β. The value of β characterizes the strength of attraction: the
greater β, the more attractive x?.

Proving exponential stability is a classical result. The point x? is an exponentially stable equilibrium
if f(x?) = 0 and all the eigenvalues of the jacobian matrix Df(x?) has strictly negative real parts.
These eigenvalues also characterize the attraction strength as it is easy to derive from their real parts a
bound for β in (2). However, they give no information about the size of the basin of attraction A(x?).
In fact, this basin can be arbitrarily small for arbitrarily strongly attracting equilibria. Consider, for
example, the system

ẋ = c3x3 − cx. (3)

The linearization at the equilibrium x? = 0 is ẋ = −cx and the basin of attraction is A(x?) = (− 1
c ,

1
c ).

Thus, the greater c, the more attracting 0 but the smaller the basin of attraction. Inversely, for the
system

ẋ =
x3

c
− cx. (4)

with the same linerization as before, we have A(x?) = (−c, c) so the more attracting 0, the larger the
basin.

It is therefore valuable to estimate the basin of attraction for a stable equilibrium in addition of
assessing the stability based on the linearization. However, estimating the actual shape of the basin
is too complicated. One could proceed, for instance, statistically by simulating trajectories from a
sample of initial conditions, but the result is not reliable, the computational cost is high and blows
up with the dimension n. In this paper, we only build a subset of A(x?) but the algorithms are fast
(in polynomial time) and reliable, in the sense that the computed subset is proven to be included in
the basin.

Our paper is based on Lyapunov theory, which is the usual framework for addressing this kind of
problems. A Lyapunov function is a real-valued function of the state space that can be interpreted,
locally around x?, as the energy of the system. It must decrease with time for all trajectories
converging to the equilibrium, where the energy must be minimal. Then, all the level sets of this
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energy function are inside the basin of attraction. Formally, a function V : Rn → R is a Lyapunov
function if

V (x?) = 0 (5)

and there exists an open neighborhood N of x∗ such that

∀x ∈ N\{x?}

{
V (x) > 0

V̇ (x) < 0 with V̇ (x) := ∇V (x)T f(x).

(6)

(7)

Building a Lyapunov function is actually simple in the case of an exponentially stable point. One
just has to consider the linearized system:

ẋ(t) = Df(x?)× x(t), (8)

and solve the corresponding Lyapunov equation:

Df(x?)TP + P Df(x?) = −I. (9)

where the positive definite matrix P ∈ Rn×n is the unknown. Then, the quadratic function

V (x) = (x− x?)TP (x− x?) (10)

is a Lyapunov function. The remaining difficulty is to find a set N where (7) is true since, by
construction, (6) is already true for any neighborhood.

Interval analysis seems promising in this context. We can indeed fix the set N to an arbitrary box
enclosing x? and try to prove (6) using interval artihmetic. However, two issues make this approach
inapplicable:

(i) Proving that V̇ is strictly negative excepted at one point where it is zero is not in the scope of
interval methods, subject to rounding errors and which can only prove generic properties.

(ii) The equilibrium x? cannot be computed exactly, but is instead enclosed inside a tiny box [x?].
Therefore, the Lyapunov function V and its attracting level-sets are uncertain.

We propose two algorithms for building such a set in a guaranteed way, taking into account the
uncertainty on x? and rounding errors. Both take as input an initial ellipsoid and return a smaller
elliposid. The first algorithm uses only first-order derivatives of f but requires to fix heuristically
the size of the input ellipsoid until it succeds (the algorihm is proven to succeed for sufficiently small
input size). The second algorithm always succeeds, for any input size, but resorts to second-order
derivatives.

2 Background

2.1 Notations

All along this paper we consider a differentiable mapping f : Rn → Rn and denote Df the jacobian of
f . For our second-order algorithm, we require f to be twice differentiableNeed to change from f twice
differentiable to f ∈ C2. and denote D2f the tensor of second-order derivativesNo need to define D2f
the tensor... Not used in the article.. We assume x? is an equilibrium point, that is, f(x?) = 0, and
denote A(x?) the basin of attraction of x?.

An application V : Ω ⊆ Rn → R is positive definite (PD) if

∀x ∈ Ω, V (x) ≥ 0 and V (x) = 0 ⇐⇒ x = 0, (11)
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and negative definite (ND) if the inequality is reversed. A matrix P is positive (resp. negative)
definite if the application x 7→ xTPx is positive (resp. negative) definite. We use the abbreviations
SPD (resp. SND) for symmetric positive (resp. negative) definite matrices.

Throughout this paper, we consider a SDP matrix P ∈ Rn×n, which, in practice, is obtained by
considering the linearized system

ẋ(t) = Df(x̂)× x(t), (12)

where x̂ stands for an approximation of x?, and solving the corresponding Lyapunov equation:

Df(x̂)TP + P Df(x̂) = −I. (13)

We use the P -norm, induced by P :
‖x‖P :=

√
xTPx (14)

Add definition A ∈ Rn×n, ‖A‖∞, ‖A‖2 and ‖A‖P and denote E(x, r) the following ellipsoid of center
x and radius r:

E(x, r) := {y ∈ Rn | ‖y − x‖P ≤ r} . (15)

Moreover, λ and λ denote respectively strictly positive upper and lower bounds on the eigenvalues of
P , i.e., 0 < λ ≤ λmin(P ) ≤ λmax(P ) ≤ λ.

Finally, we note V |Ω the restriction of a function V to a set Ω.

2.2 Interval Arithmetic

An interval matrix [Q] is ND if ∀Q ∈ [Q], Q is ND.Add definition [A] ∈ IRn×n, ‖[A]‖∞, ‖[A]‖2 and
‖[A]‖P

3 Related Works

3.1 Using Sum of Square Decomposition

When the function f is polynomial1, a symbolic-numeric approach can be applied. In particular,
[7] shows how a polynomial Lyapunov function can be automatically built, using sum of square
(SOS) decomposition. They do not consider basins of attraction, but since they accept systems with
inequalities, their main theorem can be easily adapted to fit our need. More precisely, the following
result holds as a corollary:

Given a SPD matrix P and r > 0, if there exists a polynomial p(x) such that

p ≥ 0 ∧ −Pf(x) + p(x)
(
‖x− x?‖P − r

)
≥ 0 (16)

then E(x?, r) ⊆ A(x?).

If we now replace each positivity condition by the more strict condition of being SOS, finding such a
polynomial p(x) becomes a tractable problem that can be solved using LMI solvers.

However, this approach is not applicable to the whole class of nonlinear systems. It is also not robust
to rounding errors and turns out to be slower than ours, as our experiments will show.

1More generally, the approach applies if f can be transformed to a polynomial by introducing auxiliary variables
subject to polynomial constraints.
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4 Ω-Lyapunov Functions

We present in this section preliminar concepts and results that will serve further as a basis for the
computation of the basin of attraction. More precisely, we give a test for a quadratic function to be
a so-called Ω-Lyapunov function. In this section, we also assume, with no loss of generality, that the
equilibrium is the origin (x? = 0).

Our test will involve the slope matrix, defined as follows:

Definition 1 (Slope Matrix).

∀x ∈ Rn, we call slope matrix the matrix S(x) :=

∫ 1

0

Df(tx)dt. (17)

The fundamental theorem of analysis then gives

∀x ∈ Rn f(x) = f(0) + S(x)x = S(x)x. (18)

Df([x]) ⊇ S([x])

Definition 2.
Given a neighborhood Ω ⊆ Rn of 0, a differentiable mapping V : Rn → R is called a Ω-Lyapunov
function if

V |Ω is PD and V̇ |Ω is ND, (19)

where
V̇ (x) := ∇V (x)T f(x). (20)

Proposition 1.
Let Ω be a 0-stared set0-stared to convex?. ∀x ∈ Ω, define Q(x) as follows:

Q(x) := S(x)TP + PS(x). (21)

If Q(Ω) contains only ND matrices, then the application V : x 7→ xTPx is an Ω-Lyapunov function.

Proof.
First, V |Ω is PD since P is PD by hypothesis. Second,

∀x ∈ Ω, V̇ (x) = ∇V (x)T f(x) = ∇V (x)TS(x)x (using (18)) (22)

= 2xTPS(x)x (because ∇V (x) = 2xTP ) (23)

= xT (S(x)TP + PS(x))x (because xTAx = 1
2x

T (AT +A)x) (24)

= xTQ(x)x (25)

and since Q(x) is ND by hypothesis, V̇ |Ω is ND. Hence, V is a Ω-Lyapunov function.

5 A First-Order Ellipse Computation

We now consider again the general case of an equilibrium x?, which can be any point. The point
x̂ represents an approximation of x?. Although P can be chosen arbitrarily, the following corollary
works if P is an approximate solution of (13).

We first give a condition on the radius r̂ of an ellipse centered on x̂ for being included in an ellipse
centered on x? and for containing x?.
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Lemma 1. Let r̂ > 0, x̂ ∈ Rn and ∆ ≥ ‖x? − x̂‖P . Then

(i) E(x̂, r̂) ⊆ E(x?, r̂ + ∆).

(ii) ∆ ≤ r̂ =⇒ x? ∈ E(x̂, r̂).

Proof.
(i) x ∈ E(x̂, r̂) =⇒ ‖x‖p ≤ r̂ =⇒ ‖x − x?‖P ≤ r̂ + ∆ =⇒ x ∈ E(x?, r̂ + ∆).=⇒ ‖x − x?‖P ≤
‖x− x̂‖P + ‖x̂− x?‖P ≤ r̂ + ∆
(ii) ∆ ≤ r̂ =⇒ ‖x? − x̂‖P ≤ r̂ =⇒ x? ∈ E(x̂, r̂).

We give now our first corollary, the main result of this section, which gives a test for proving that
an ellipse is inside the basin of attraction of the equilibrium x?. We take now into account the
uncertainty on x?, by considering that only a box [x?] ∈ IRn enclosing x? is known. In practice, [x?]
is a tiny box and x̂ ≈ mid[x?].

The proof is based on the famous Lyapunov Why is Lyapunov’s theorem here and not in the Ω-
Lyapunov function since it is used in both first and second order? stability criterion:

Theorem 1 (Lyapunov). A system is asymptotically stable in 0 if and only if there exists an Ω-
Lyapunov function V for some neighborhood Ω of 0. Furthermore, the level sets of V included in Ω
are inside the basin of attraction A(0).

Corollary 1. Let x?, x̂ ∈ [x?] ∈ IRn and r̂ ≥ 0. Define ∆ ≥ 0, [x] ∈ IRn and [J ], [Q] ∈ IRn×n such
that

∆ ≥
√

([x?]− x̂)TP ([x?]− x̂), (26)

[x] ⊇ [x?] + �
(
E(0, r̂ + ∆)

)
, (27)

[J ] ⊇ [Df ]([x]), (28)

[Q] ⊇ [J ]TP + P [J ]. (29)

If [Q] is ND and ∆ ≤ r̂ then x? ∈ E(x̂, r̂) ⊆ E(x?, r̂ + ∆) ⊆ A(x?).

Proof. We prove the three inclusions from left to right. First, if ∆ ≤ r̂, by Lemma 1.(ii), x? ∈ E(x̂, r̂).
Second, E(x̂, r̂) ⊆ E(x?, r̂ + ∆) by Lemma 1.(i).
Third, we can consider without loss of generality x? = 0, since such a translation preserves derivatives.
We have [J ] ⊇ S([x]) and therefore Q([x]) ⊆ [Q]. Hence, by Proposition 1, V : u 7→ uTPu is a [x]-
Lyapunov function. Now, E(x?, r?) is by definition a level set of V and (27) implies E(x?, r?) ⊆ [x].
So, by Theorem 1, E(x?, r?) is inside the attraction basin of x?.Remove the r? and use r̂+ ∆ no?

6 A Second-Order Ellipse Computation

Lemma 2. LetM be a path connected set of symmetric nonsingular matrices. Then ∃M ∈M such
that M is SPD implies ∀M ∈M, M is SPD. As a consequence, ‖M − I‖ < 1 implies M is SPD, or
equivalently, ‖M + I‖ < 1 implies M is SND.

Proof. This follows from the continuity of eigenvalues with respect to the matrix entries: LetM,M ′ ∈
M such thatM is SPD andM ′ is not, and consider a continuous path Γ : [0, 1]→M such that Γ(0) =
M and Γ(1) = M ′. Since all eigenvaluesMissing argument that M are symmetric then eigenvalue is
real, or that the real part does not crosses imaginary axis. of Γ(0) are strictly positive and at least
one eigenvalue of Γ(1) is strictly negative, one matrix Γ(t) needs to have a null eigenvalue, hence is
singular, which contradicts the nonsingularity hypothesis. Todo: Prove the second statement.
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Corollary 2. Add nu, [J?] and [Q?] in requirements Let x?, x̂ ∈ [x?] ∈ IRn and r̂ > 0. Suppose
furthermore that 0 < λ ≤ λ are lower and upper bounds respectively on the eigenvalues of P . Define
∆ ≥ 0 and [x] ∈ IRn such that

∆ ≥
√

([x?]− x̂)TP ([x?]− x̂), (30)

[x] ⊇ [x?] + �
(
E(0, r̂ + ∆)

)
, (31)

[J?] ⊇ [Df ]([x?]), (32)

[Q?] ⊇ [J∗]TP + P [J∗], (33)

ν ≥

√
nλ

λ
‖[Q?] + I‖∞, (34)

Suppose that ν < 1Move to conditions? and S(x) is Lipschitz continuous inside [x], entailing
S(x)TShouldn’t it be Df(x)? is Lipschitz continuous inside [x], We should say that L and L′ are
constants for the P-normwith constants L and L′Move to intro of corollary? respectively. Finally
define

ř :=
1

(L+ L′) λ
1−ν

−∆. (35)

If min{r̂, ř} ≥ ∆ then x? ∈ E(x̂,min{r̂, ř}) ⊆ A(x?).

Remark 1. As previously, we expect ∆ � 1. Furthermore, since Df(x̂)TP + PDf(x̂) ≈ −I and
[J?] 3 Df(x̂) is tiny, we expect that ν � 1 too.

Proof. Without loss of generality, we can consider x? = 0 since such a translation preserves first and
second derivatives. We will prove that Q(E(x?,min{r̂, ř} + ∆)) contains only SPD matrices. This
entails by Theorem 1 that V (x) = (x−x?)TP (x−x?) is a Lyapunov function inside this ellipsoid, and
therefore that E(x?,min{r̂, ř} + ∆) ⊆ A(x?). Finally, by Lemma 1 we have x? ∈ E(x̂,min{r̂, ř}) ⊆
E(x?,min{r̂, ř}+ ∆), which will end the proof. First, we prove that Q(x?) is SND and that

‖Q(x?)−1‖P ≤
1

1− ν
. (36)

We haveq

‖Q(x?) + I‖P ≤
Lemma 4

√
nλ

λ
‖Q(x?) + I‖∞ ≤

(34)
ν < 1, (37)

As a consequence, Q(x?) is SND by Lemma 2, and the Neumann series
∑∞
k=0(Q(x?) + I)k converges

toward (I − (Q(x?) + I))−1 = −Q(x?)−1. Furthermore

‖Q(x?)−1‖P = ‖
∞∑
k=0

(Q(x?) + I)k‖P ≤
∞∑
k=0

νk =
1

1− ν
. (38)

We can prove thatQ(E(x?,min{r̂, ř}+∆)) contains only SNDmatrices. Note thatQ(E(x?,min{r̂, ř}+
∆)) is path connected, as the image of a path connected set by continuous function. Furthermore we
proved that Q(x?) is SND, therefore it is enough by Lemma 2 to prove that Q(E(x?,min{r̂, ř}+ ∆))
contains only nonsingular matrices. In fact, we prove thatQ(x?)−1Q(x) is nonsingular using Neumann

6



series:

‖Q(x?)−1Q(x)− I‖P = ‖Q(x?)−1(Q(x)−Q(x?))‖P (39)
≤ ‖Q(x?)−1‖P ‖Q(x)−Q(x?)‖P (40)

≤ 1

1− ν
‖Q(x)−Q(x?)‖P (41)

=
1

1− ν
‖S(x)TP + PS(x)− S(x?)TP − PS(x?)‖P (42)

=
1

1− ν
‖(S(x)T − S(x?))P + P (S(x)− S(x?))‖P (43)

≤ ‖P‖P
1− ν

(
‖S(x)T − S(x?)‖P + ‖S(x)− S(x?)‖P

)
(44)

≤ ‖P‖P
1− ν

(L+ L′) ‖x− x?‖P . (45)

The proof is concluded using Lemme 3.

7 Algorithmic Considerations

In this section we discuss several issues encountered while implementing and different solutions we
have explored. We provide the procedures and equations so as this article to be self-contained.

We first start by tackling issues encountered before applying the corollaries. The use of these does not
require an exact knowledge of x? but rather rely on an enclosure [x?] ∈ IRn. This can be performed
using guaranteed algorithms such as Newton interval. For details about such approaches, see [4, 5].
In addition, computations require a point x̂ ∈ [x?]. It has usually been chosen as x̂ ≈ mid[x?). In
practice, we used the approximation Ĵ ≈ mid[Df ]([x?]). Thus, the matrix P was obtained by solving

ĴTP + P Ĵ = −I. (46)

This equation can be solved naively by solving the n2-by-n2 system of equations. However, this
solution only works for small values of n since its computational complexity isO(n6) (using a numerical
method that can solve a system of equation in O(n3)). More sophisticated approaches can be used
here, such as the Bartels-Stewart algorithm which complexity is O(n3). For more details, see [2].

Now we discuss the problem of testing positive definiteness of an interval matrix [M ] ∈ IRn×n. In fact,
so as to apply both Corollaries 1 and 2, one must be able to test whether P is indeed PD. Moreover,
to use Corollary 1 one must be able to test negative definiteness of matrix [Q] outputted by equation
(29). These are the reasons we implemented and tested three different methods to verify positive
definiteness2. From the least precise to the most precise, and at the same time from the cheapest to
the most expensive: strict diagonal dominance test, Sylvester’s criterion and Rohn’s criterion. Strict
diagonal dominance implies positive definiteness, thus it can be used as quick verification. For interval
matrices, strict diagonal dominance is written as:

1 ≤ i ≤ n, min{|mii|, |mii|} >
∑
j 6=i

max{|mij |, |mij |}. (47)

We can see that this test takes n2 operations, hence it is linear in the size of the matrix. Sylvester’s
criterion relies on computing the leading minors, which is indeed heavier since it requires usually at
least n2 operations, thus the overall O(n3) for Sylvester’s criterion. However, one must note that this
test is a necessary and sufficient condition. Henceforth, this test is particularly more precise than
the diagonal dominance one, even if the pessimism on the determinant computation might end-up in
rejecting PD matrices. But this fact is negligible. Finally, Rohn’s criterion is the most precise one.
It uses 2n−1 tests of positive definiteness on the corners of [M ]. The approach is the following: let

2Since −[M ] is PD implies [M ] is ND.
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Mc = 1
2

(
M +M

)
, M∆ = 1

2

(
M −M

)
, Z = {z ∈ Rn | |zi| = 1, 1 ≤ i ≤ n} and Tz the matrix whose

diagonal components are those of z. Then [M ] is PD if

∀z ∈ Z, Mz = Mc − TzM∆Tz (48)

is PD. In fact, one can show that ifMz is PD, thenM−z is PD as well, this divides the number of tests
by a factor 2. In practice, Rohn’s procedure for testing is quiet heavier since one must then verify
that each Mz is PD as well, using Sylvester’s criterion for instance. In practice, for random matrices,
one will get better results using either Sylvester’s or Rohn’s criterion. However, by construction, the
interval matrix [Q] obtained by Corollary 1 is close to −In. Thus the diagonal dominance test is in
fact not as less precise. This will be highlighted in Section ??.

In the following paragraphs, one must be able to compute a guaranteed enclosure of a given interval
matrix [M ] ∈ IRn×n. For self-containment again, we provide a short description on how to proceed. It
is taken from [6]. Using a standard linear algebra tool, compute the approximation Ñ ≈ (mid[M ])

−1.
Let the scalar β = ‖Ñ × [M ]− In‖∞, vectors u and w ∈ Rn, u having all components equal to 1 and
wi = ‖Ñ:,i‖∞, Ñ:,i being the i-th column of Ñ . If β < 1, then we have the following enclosure of the
inverse of [M ]

[M−1] ⊆ Ñ +
β

1− β
[−uTw, uTw] (49)

Replace P−1 by [P−1] and according notations.

Corollaries 1 and 2 require to compute an enclosure of an ellipsoid. Let P ∈ Rn×n be a PD matrix,
E(x, r) the ellipsoid of characteristic matrix P , of center x ∈ Rn and radius r. In [3] one can find a
method to compute the hull of E(x, r). The procedure is the following: one first needs to compute
x̃, d ∈ Rn and δ ∈ R defined by 

x̃ = −P−1x

di =
√

(P−1)ii

δ =
√
r + xTP−1x.

(50)

(51)

(52)

Then Theorem 1.7 in [3] provides a hull [x] ∈ IRn for the ellipsoid, given by

�E(x, r) = [x̃− δd, x̃+ δd]. (53)

In Corollary 1 we considered the radius r̂ to be given. In practice, one gets this value from an
overheard algorithm, for instance, a dichotomy process can be used to build an enclosure of the
largest r̂ for which the test passes.

We continue by addressing the issue of computing guaranteed bounds λ and λ on the eigenvalues of
a given symmetric interval matrix [M ] ∈ IRn×n. This is required in order to apply Corollary 2. We
suggest here an interval adaptation of Gerschgorin’s Circles Theorem Reference?. First, define the
radius of the i-th Gerschgorin’s circle, 1 ≤ i ≤ n, by

Ri =
∑
j 6=i

max{|mij |, |mij |}. (54)

Then, an enclosure of the i-th Gerschgorin’s circles ∀M ∈ [M ] is given by

[gi] = [aii −Ri, aii +Ri]. (55)

Finally, Gerschgorin’s Theorem Reference? entails that

σ([M ]) ⊆
⋃
i

[gi] ⊆ [min
i
{aii −Ri},max

i
{aii +Ri}] =: [g], (56)

where σ([M ]) is the set of all eigenvalues ∀M ∈ [M ]. One must note that the enclosure relies on the
Ri’s which can be arbitrarily big, even for diagonal dominant matrices. However, using the eigenvalue
decomposition M = UTDU , where D is the diagonal matrix of eigenvalues and U an orthonormal
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eigenvectors basis, can lead to drastic improvements. Suppose you can compute an approximation Ũ
of U , with a standard linear algebra tool. Let [Ũ−1] be a guaranteed enclosure of its inverse. Since
Ũ is orthogonal, one can compute [D̃] = ŨM [Ũ−1], which is an interval matrix close to be diagonal,
and with same eigenvalues as M since Ũ is nonsingular. Now, the values of the R̃i’s computed on [D̃]
are really small compared to the initial Ri’s. The previous procedure will again provide an enclosure
[g̃]. As expected, [g̃] will be tighter than [g], which results in tighter bounds λ and λ.

We close this section by discussing an optimization problem that can be run once one has obtained a
radius r̂ from Corollary 1 or 2. This optimization problem aims to find the largest attractive ellipsoid
that can be built using V .

min r s.t. V (x) ≥ r̂2 ∧ V (x) = r2 ∧ V̇ (x) = 0, (57)

where V is the quadratic Lyapunov function obtained from the corollaries and V̇ its orbital derivative,
i.e. V (x) = (x− [x?])

T
P (x− [x?]) and V̇ (x) = (x− [x?])

T
Pf(x). Another way of expressing this

problem can be done by relaxing the two last constraints:

min r s.t. V (x) ≥ r̂2 ∧ V (x) ≤ r2 ∧ V̇ (x) ≥ 0. (58)

One must note that several parameters impact particularly the execution time for solving this opti-
mization problem. First the radius. Obviously, there are categories of initial r̂, if it is ε-comparable,
the algorithm will require a large amount of time in its initial steps, which would dramatically affect
the overall execution time. Second, the dimension. Usually, such problem is solved by bisecting boxes
on the boundary, which is reflected exponentially in the execution time.

8 Numerical Example

In this section we illustrate the different algorithms on an example with numerical values. The
algorithms have been implemented in C++ using the Ibex [1] library, implementing interval arithmetic
routines and interval Newton method.

The system we study is the following:{
ẋ = −y
ẏ = x− (1− x2)y

. (59)

It is a modified version of the well-known Van Der Pol equation, such that the origin is a stable
equilibrium and the limit cycle is repulsive.

We will suppose that the interval Newton method provides a box [x?] = [−0.03, 0.01]× [−0.01, 0.03].
We will use its center as x̂, that is x̂ = (−0.02, 0.02).

Solving Lyapunov’s linear equation at x̂ leads to

P =

(
1.50025 −0.50050
−0.50050 1.00100

)
. (60)

This matrix is positive definite, hence we can continue.

8.1 First order condition

We will here discuss the first order algorithm, hence verify that conditions of Corollary 1 are met.
We won’t simulate the whole dichotomy process, but instead, we will select a radius and discuss the
different steps of the test algorithm.

Let r̂ = 0.45. This leads to [∆] = [0.00000, 0.03743] and hence r̂ + ∆ = 0.48742. One can verify
that [x] = [−0.46595, 0.44595] × [−0.54376, 0.56376] contains [x?] + �

(
E(0, r̂ + ∆)

)
. The Jacobian
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evaluation of f on [x] is then

[J ] =

(
[0.00000, 0.00000] [−1.00000,−1.00000]
[0.47463, 1.50673] [−1.00000,−0.78289]

)
, (61)

and thus we obtain

[Q] =

(
[−1.50763,−0.47492] [−0.63355, 0.50793]
[−0.63355, 0.50793] [−1.00090,−0.56636]

)
. (62)

One can verify that [Q] is unfortunately not diagonally strictly dominant, hence a straightforward
test would eventually fail. However, using a more sophisticated test, such as the one described by
Rohn, would succeed in proving that [Q] is negative definite. ∆ ≤ r̂ is trivially proven to hold.

Thus condition to apply Corollary 1 are met, hence the ellipse of center x̂ and radius r̂ is included in
the basin of attraction of x?.

The result is shown on Figure ??. The light gray part is the basin of attraction, i.e. A(0), whereas
the dark gray part is outside the basin of attraction. The blue box corresponds to [x?], the dotted
red box corresponds to [x], and the dashed red ellipse to E(x̂, r̂).
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A P -norms

Consider the eigenvalue decomposition P = CTC with C = D
1
2 U , D being the diagonal matrix of

positive eigenvalues and U an orthonormal eigenvector basis.

Lemma 3. ‖A‖P = ‖CAC−1‖2 and ‖P‖P ≤ λ.

Proof. For the first equality,

‖A‖2P := max
‖u‖2P =1

‖Au‖2P = max
uTCTCu=1

uTATCTCAu (63)

= max
vT v=1

vTC−TATCTCAC−1v =: ‖CAC−1‖22. (64)

For the inequality: ‖P‖P = ‖CCTCC−1‖2 = ‖CCT ‖2 = ‖D 1
2 U UT D

1
2 ‖2 = ‖D‖2 ≤ λ.

Lemma 4. ‖x‖∞ ≤
√

1
λ ‖x‖P and ‖A‖P ≤

√
nλ
λ ‖A‖∞.

Proof. First, upper bounds on ‖C‖2 and ‖C−1‖2 are computed:

‖C‖22 := λmax(CTC) = λmax(P ) ≤ λ. (65)

‖C−1‖22 := λmax(C−TC−1) = λmax(D−
1
2UUTD−

1
2 ) = λmax(D−1) ≤ 1

λ
. (66)

Now, for the first statement, using ‖x‖2P := xTPx = (Cx)T (Cx) = ‖Cx‖22,

‖x‖2∞ ≤ ‖x‖22 = ‖C−1Cx‖22 ≤ ‖C−1‖22 ‖x‖2P ≤
1

λ
‖x‖2P . (67)

By Lemma 3, ‖A‖P ≤ ‖C‖2‖C−1‖2‖A‖2 ≤
√
n ‖C‖2‖C−1‖2‖A‖∞. The statement is finally proved

using (65) and (66).

B A Lipschitz constant of S(x) for the P -norm

A Lipschitz constant for S(x) :=
∫ 1

0
Df(τx)dτ and the P -norm is computed using bounds on the

second derivatives of f . First, the Lipschitz constant of S(x) is related to the one of Df(x).

Proposition 2. Given an arbitrary operator norm and an arbitrary vector norm, if Df is L-Lipschitz
continuous on the 0-stared set Ω for these norms then S is L

2 -Lipschitz continuous on Ω for these
norms.

Proof. Consider arbitrary x, y ∈ Ω. Then by direct computations:

‖S(x)− S(y)‖ =

∥∥∥∥∫ 1

0

Df(τx)−Df(τy)dτ

∥∥∥∥ ≤ ∫ 1

0

‖Df(τx)−Df(τy)‖ dτ (68)

≤
∫ 1

0

L ‖τx− τy‖ dτ =
1

2
L‖x− y‖. (69)

The Lipschitz continuity can be used for the second inequality because τx, τy ∈ Ω for all τ ∈ [0, 1],
since Ω is 0-stared. For the last equality, just note that

∫ 1

0
τdτ = 1

2 .

Second, a Lipschitz constant for Df and the ∞-norm is computed using bounds on the second
derivatives of f . This second derivative based Lipschitz constant is classical, but its proof provided
here for completeness.
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Lemma 5. Let Ω ⊂ Rn be convex, g : Ω→ R be differentiable and gk ≥ maxx∈Ω | ∂g∂xk
(x)|. Then for

all x, y ∈ Ω,
|g(x)− g(y)| ≤

(∑
k

gk
)
‖x− y‖∞. (70)

Proof. Since Ω is convex, x + ξ(y − x) ∈ Ω for all ξ ∈ [0, 1]. Hence, the mean-value theorem applies
and there exists ξ ∈ [0, 1] such that g(x)− g(y) = Dg(u)(x−y) with u = x+ ξ(y−x) ∈ Ω. Therefore,

|g(x)− g(y)| =

∣∣∣∣∣∑
k

∂g

∂xk
(u) (xk − yk)

∣∣∣∣∣ ≤∑
k

| ∂g
∂xk

(u)| |xk − yk| ≤
(∑

k

| ∂g
∂xk

(u)|
)
‖x− y‖∞. (71)

Finally, u ∈ Ω entails | ∂g∂xk
(u)| ≤ gk.

Proposition 3. Let Ω ⊆ Rn be convex, f : Ω→ Rn be twice differentiable, and f ijk ≥ maxx∈Ω | ∂2fi
∂xj∂xk

(x)|.
Then, Df is L∞ Lipschitz continuous for the operator and vector ∞-norms inside Ω with

L∞ := max
i

∑
jk

f ijk. (72)

Proof. For some arbitrary x, y ∈ Ω,

‖Df(x)−Df(y)‖∞ = max
i

∑
j

∣∣∣∣ ∂fi∂xj
(x)− ∂fi

∂xj
(y)

∣∣∣∣ . (73)

Using Lemma 5 with g(x) = ∂fi
∂xj

(x), so ∂g
∂xk

(x) = ∂2fi
∂xjxk

(x) and gk := f ijk satisfies the hypothesis of
the lemma, we obtain

‖Df(x)−Df(y)‖∞ ≤ max
i

∑
jk

f ijk‖x− y‖∞ =
(

max
i

∑
jk

f ijk

)
‖x− y‖∞. (74)

The constants f ijk can be computed by evaluating the second derivatives of f using interval arith-
metic. Finally, a Lipschitz constant for Df and the P -norm is computed from a Lipschitz constant
for the ∞-norm.

Proposition 4. Suppose that Df is L∞-Lipschitz continuous inside the convex Ω ⊆ Rn for the vector
and matrix ∞-norms, then it is LP -Lipschitz continuous inside Ω for the vector and matrix P -norms
with

LP := L∞

√
nλ

λ
. (75)

Proof. For arbitrary x, y ∈ Ω,

‖Df(x)−Df(y)‖P ≤

√
nλ

λ
‖Df(x)−Df(y)‖∞ ≤ L∞

√
nλ

λ
‖x− y‖∞ ≤ L∞

√
nλ

λ
‖x− y‖P . (76)

The first and last inequalities result of Lemma 4, the second from the Lipschitz continuity for ∞-
norms.

Finally, S(x) is proved to be L-Lipschitz continuous inside Ω for the P -norm with

L :=
1

2

max
i

∑
jk

f ijk

 √nλ
λ

. (77)

Similarly, one can prove that S(x)T is L′-Lipschitz continuous inside Ω for the P -norm with

L′ :=
1

2

(
max
j

∑
ik

f ijk

) √
nλ

λ
. (78)
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