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WEAK REGULARIZATION BY STOCHASTIC DRIFT : RESULT AND

COUNTER EXAMPLE

Paul-Eric Chaudru de Raynal

Univ. Savoie Mont Blanc, CNRS, LAMA
F-73000 Chambéry, France

Abstract. In this paper, weak uniqueness of hypoelliptic stochastic differential equation with Hölder
drift is proved when the Hölder exponent is strictly greater than 1/3. This result then “extends” to a
weak framework the previous works [4, 23, 10], where strong uniqueness was proved when the regularity
index of the drift is strictly greater than 2/3. Part of the result is also shown to be almost sharp thanks
to a counter example when the Hölder exponent of the degenerate component is just below 1/3.

The approach is based on martingale problem formulation of Stroock and Varadhan and so on
smoothing properties of the associated PDE which is, in the current setting, degenerate.

This is a reprint version of an article published in Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1269-1291.

1 Introduction

Let d be a positive integer and Md(R) be the set of d×d matrices with real coefficients. For a given
positive T , given measurable functions F1, F2, σ : [0, T ]×R

d×R
d → R

d×R
d×Md(R) and (Bt, t ≥ 0) a

standard d-dimensional Brownian motion defined on some filtered probability space (Ω,F ,P, (Ft)t≥0)
we consider the following R

d × R
d system for any t in [0, T ]:

{

dX1
t = F1(t,X

1
t ,X

2
t )dt+ σ(t,X1

t ,X
2
t )dBt, X1

0 = x1,
dX2

t = F2(t,X
1
t ,X

2
t )dt, X2

0 = x2,
(1.1)

where x1 and x2 belong to R
d and where the diffusion matrix a := σσ∗ is1 supposed to be uniformly

elliptic.

In this work, we aim at proving that this system is well-posed (i.e. there exists a unique solution),
in the weak sense, when the drift is singular. Indeed, in that case, uniqueness of the associated martin-
gale problem from Stroock and Varadhan’s theory [21] fails since the noise of the system degenerates.
We nevertheless show that under a suitable Hölder assumption on the drift, Lipschitz condition on
the diffusion matrix, and hypoellipticity condition on the system, weak well-posedness holds for (1.1).
By suitable, we mean that there exists a threshold for the Hölder-continuity of the drift with respect
to (w.r.t.) the degenerate argument. This Hölder-exponent is supposed to be strictly greater than
1/3. We also show that this threshold is almost sharp thanks to a counter-example when the Hölder

1991 Mathematics Subject Classification. Primary: 60H10, 34F05; Secondary: 60H30.
Key words and phrases. regularization by noise, martingale problem, Kolmogorov hypoelliptic PDEs, parametrix,

gradient estimate.
1The notation “∗” stands for the transpose.
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2 PAUL-ERIC CHAUDRU DE RAYNAL

exponent is strictly less than 1/3.

Mathematical background. It may be a real challenge to show well-posedness of a differential
system with drift less than Lipschitz continuous (see [9] for a work in that direction). The Peano
example is a very good illustration of this phenomenon: for any α in (0, 1) the equation

dYt = sign(Yt)|Yt|
αdt, Y0 = 0, t ∈ [0, T ], (1.2)

has an infinite number of solutions of the form ±cα(t − t⋆)1/(1−α)1[t⋆;+∞), t⋆ ∈ [0, T ]. Nevertheless,
it has been shown that this equation is well-posed (in a strong and weak sense) as soon as it is
infinitesimally perturbed by a Brownian motion. More precisely, the equation

dYt = b(Yt)dt+ dBt, Y0 = 0, t ∈ [0, T ], (1.3)

admits a unique strong solution (i.e. there exists an almost surely unique solution adapted to the
filtration generated by the Brownian motion) as soon as the function b : Rd ∋ x 7→ b(x) ∈ R

d is
measurable and bounded. This phenomenon is known as regularization by noise.

Regularization by noise of systems with singular drift has been widely studied in the past few years.
Since the pioneering one dimensional work of Zvonkin [26] and its generalization to the multidimen-
sional setting by Veretenikov [22] (where stochastic system with bounded drift and additive noise
are handled), several authors extended the result. Krylov and Röckner [17] showed that SDE with
additive noise and Lp drift (where p depends on the dimension of the system) are also well-posed
and Zhang [24] proved the case of multiplicative noise with uniformly elliptic and Sobolev diffusion
matrix. More recently, Flandoli, Issoglio and Russo [11] studied the case of weak well-posedness of
(1.3) for a distributional drift, i.e. in the Hölder space Cα where α is strictly greater than −1/22 and
Delarue and Diel [5] for Hölder regularity strictly greater than −2/3 in the one dimensional case. This
last result has been generalized in any dimension by Cannizzaro and Chouk [2]. Also Catellier and
Gubinelli [3] considered systems perturbed by fractional Brownian motion. We refer to the notes of
Flandoli [12] for a general account on this topics.

In our case the setting is a bit different since the noise added in the system acts only by means of
random drift (i.e. the system degenerates). Indeed, taking F1 = 0, σ = Id, F2(t, x1, x2) = x1+f2(x2),
the archetypal example of system (1.1) writes

dX2
t =

(

Bt + f2(X
2
t )
)

dt, X2
0 = x2, (1.4)

where the function f2 is supposed to be only Hölder-continuous. Thus, the system can be seen as a
classical ODE whose drift is perturbed by a Brownian motion: the perturbation is then of macroscopic
type. We hence consider a regularization by stochastic drift.3

The first work in that direction is due to Chaudru de Raynal [4] where strong well-posedness of (1.1)
is proved when the drift is Hölder continuous with Hölder exponent w.r.t. the degenerate argument
strictly greater than 2/3 and where the system is also supposed to be hypoelliptic. Since then, several
Authors have studied the strong well-posedness of (1.1) with different approaches and have obtained,
with weaker conditions, the same kind of threshold: in [23], the Authors used an approach based

2 see [14] for a definition of such a space
3 Note that in our general case, we consider a non-linear perturbation of the drift of the second component by a

diffusion process which also depends on the perturbed component.
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on gradient estimates on the associated semi-group to show that the system is strongly well-posed
when the drift satisfies a Hölder-Dini condition with Hölder exponent of 2/3 w.r.t. the degenerate
component; in [10], the Authors used a PDE approach and obtained strong well-posedness as soon as
the drift is weakly differentiable in the degenerate direction, with order of differentiation of 2/3.

Hence, many techniques have been used to study the strong well posedness of such a system and all
of them end with this particular threshold of 2/3. Thus, this critical value seems to be not an artefact,
but something which is deeper and related to the nature of the system and of the well posedness as
well. When investigating the sharpness of such a threshold, we obtained a class of counter examples for
the weak uniqueness as soon as the Hölder regularity of the drift (of the degenerate component) is less
than 1/3. Actually, this counter-example in somehow more general since it allows to obtain thresholds
for the weak well-posedness of a large class of perturbation of (1.2) (including our present degenerate
setting). This then leads us to investigate what could be expected in that case. Using the Zvonkin
theory together with a martingale problem approach, we succeeded in extending the previously known
results to this setting and obtain almost sharp weak well posedness result for the drift of the second
component.

Strategy of proof. Our strategy relies on the martingale problem approach of Stroock and
Varadhan [21]. We indeed know that under our setting (coefficients with at most linear growth) the
system (1.1) admits at least a weak solution. We then show that this solution is unique. To do so, we
investigate the regularity of the (mild) solution of the associated PDE. Namely, denoting by Tr(a) the
trace of the matrix a, “·” the standard Euclidean inner product on R

d and L the generator of (1.1):

L :=
1

2
Tr(a(t, x1, x2)D

2
x1
) + [F1(t, x1, x2)] · [Dx1

] + [F2(t, x1, x2)] · [Dx2
] , (1.5)

we exhibit a “good” theory for the PDE

(∂t + L)u = f (1.6)

set on the cylinder [0, T )×R
2d with terminal condition 0 at time T and where the function f belongs

to a certain class of functions F .

By “good”, we mean that we can consider a sequence of classical solutions (un)n≥0 and associ-
ated derivative in the non-degenerate direction (Dx1

un)n≥0 along a sequence of mollified coefficients
(Fn

1 , F
n
2 , a

n)n≥0 that satisfy a priori estimates depending only on the regularity of (F1, F2, a). By
using Arzelá-Ascoli Theorem, this allows to extract a converging subsequence to the mild solution of
(1.6) on every compact subset of [0, T ]× R

2d.

Hence, thanks to Itô’s Formula, one can show that the quantity

(

u(t,X1
t ,X

2
t )−

∫ t

0
f(s,X1

s ,X
2
s )ds

)

0≤t≤T
,

is a martingale. By letting the class of function F be sufficiently rich, this allows us to prove unique-
ness of the marginals of the weak solution of (1.1) and then of the law itself.

Here, the crucial point is that the operator is not uniformly parabolic: the second order differenti-
ation operator in L only acts in the first (and non-degenerate) direction “x1”. Therefore, we expect
a loss of the regularization effect w.r.t. the degenerate component of (1.1). Nevertheless, we show
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that the noise still regularizes, even in the degenerate direction, by means of the random drift: we can
benefit from the hypoellipticity of the system.

The system (1.4) indeed relies on the so-called Kolmogorov example [16], which is also the archetypal
example of hypoelliptic system without elliptic diffusion matrix. In our setting, the hypoellipticity
assumption translates as a non-degeneracy assumption on the derivative of the drift function F2 w.r.t.
the first component. Together with the Hölder assumption, this can be seen as a weak Hörmander
condition, in reference to the work of Hörmander [15] on degenerate operators of divergent form.

Let us emphasize that, from this Hörmander’s framework point of view, the term of regularization
by stochastic drift lies into the fact that one needs the vector field of the drift of the second component
to be (uniformly) non degenerate w.r.t. the first spatial direction in order to make the family of Lie
bracket associated with the vector fields of L spans the whole space, even the degenerate direction.

Our system appears as a non-linear generalization of Kolmogorov’s example. Degenerate operators
of this form have been studied by many authors see e.g. the works of Di Francesco and Polidoro [8],
and Delarue and Menozzi [7]. We also emphasize that, in [19], Menozzi proved the weak well-posedness
of a generalization of (1.1) with Lipschitz drift and Hölder diffusion matrix.

Nevertheless, to the best of our knowledge a “good” theory, in the sense mentioned above, for the
PDE (1.6) has not been exhibited yet. We here prove the aforementioned estimates by using a first
order parametrix (see [13]) expansion of the operator L defined by (1.5). This parametrix expansion
is based on the knowledge of the related linearized and frozen version of (1.1) coming essentially from
the previous work of Delarue and Menozzi [7].

Minimal setting to restore uniqueness. Obviously, all the aforementioned works, as well as
this one, lead to the question of the minimal assumption that could be done on the drift in order to
restore well-posedness. Having in mind that most of these works use a PDE approach, it seems clear
that the assumption on the drift relies on the regularization properties of the semi-group generated
by the solution. In comparison with the previous works, the threshold of 1/3 can be seen as the price
to pay to balance the degeneracy of the system: the smoothing effect of the semi-group associated to
a degenerate Gaussian process is less efficient than the one of a non-degenerate Gaussian process. We
prove that our assumptions are (almost) minimal by giving a counter-example in the case where the
drift F2 is Hölder continuous with Hölder exponent just below 1/3.

Although this example concerns our degenerate case, we feel that the method could be adapted
in order to obtain the optimal threshold (for the weak well posedness) in other settings. This is the
reason why we wrote it in a general form. Let us briefly explain why and expose the heuristic rule
behind our counter example.

It relies on the work of Delarue and Flandoli [6]. In this paper, the Peano example is investigated:
namely, the system of interest is

dYt = sign(Yt)|Yt|
αdt+ ǫdBt, Y0 = 0, ǫ > 0, 0 < α < 1. (1.7)

The Authors studied the zero-noise limit of the system (ǫ → 0) pathwise. When doing so, they
put in evidence the following crucial phenomenon: in small time there is a competition between the
irregularity of the drift and the fluctuations of the noise. The fluctuations of the noise allow the
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solution to leave the singularity while the irregularity of the drift (possibly) captures the solution in
the singularity. Thus, the more singular the drift is, the more irregular the noise has to be.

This competition can be made explicit. In order to regularize the equation, the noise has to dominate
the system in small time. This means that there must exists a time 0 < tǫ < 1 such that, below this
instant, the noise dominates the system and pushes the solution far enough from the singularity, while
above, the drift dominates the system and constrains the solution to fluctuate around one of the
extreme solution of the deterministic Peano equation. A good way to see how the instant tǫ looks like
is to compare the fluctuations of the extreme solution (±t1/(1−α)) with the fluctuations of the noise.
Denoting by γ the order of the fluctuations of the noise this leads to the equation

ǫtγǫ = t1/(1−α)
ǫ ,

which gives tǫ = ǫ(1−α)/(1−γ(1−α)) and leads to the condition:

α > 1− 1/γ. (1.8)

The counter example, which also especially compares the fluctuations of the noise with the extreme
solution, leads to the same threshold and says that weak uniqueness fails below this threshold.

Obviously, cases where α < 0 have to be considered carefully. But if we formally consider the case
of a Brownian perturbation, we get γ = 1/2 and so α > −1, which is the sharp threshold exhibited in
the recent work of Beck, Flandoli, Gubinelli and Maurelli [1].

In our setting, as suggested by the example (1.4), the noise added in (4.1) can be seen as the inte-
gral of a Brownian path, which gives γ = 3/2. We deduce from equation (1.8) that the threshold for
the Hölder-regularity of the drift is 1/3. We finally emphasize that this heuristic rule gives another
(pathwise) interpretation for our threshold in comparison with the one obtained in the non-degenerate
cases. Since the noise added in our system degenerates, the fluctuations (which are typically of order
3/2) are not strong enough to push the solution far enough from the singularity when the drift is too

singular (say less than C1/3).

Organization of this paper. This paper is organized as follows. In Section 2, we give our main
results: weak existence and uniqueness holds for (1.1) and almost sharpness of part of this result.
Smoothing properties of PDE (1.6) are given in Section 3 as well as the proof of our main result.
Then, we discuss on the almost sharpness of the result in Section 4 by giving a counter-example.
Finally, the regularization properties of the PDE (1.6) are proved in Section 5.

2 Notations, assumptions and main results

Notations. In order to simplify the notations, we adopt the following convention: x, y, z, ξ, etc.
denote the 2d−dimensional real variables (x1, x2), (y1, y2), (z1, z2), (ξ1, ξ2), etc.. We denote by g(t, x) =
g(t, x1, x2) any function g from [0, T ] × R

d × R
d to R

N , N ∈ N evaluated at point (t, x1, x2). Below

we sometimes write Xt = (X1
t ,X

2
t ) and, when necessary, we write (Xt,x

s )t≤s≤T for the process defined

by (1.1) which starts from x at time t, i.e. such that Xt,x
t = x.

We denote by Md(R) the set of real d×d matrices, by “Id” the identity matrix of Md(R) we denote
by B the 2d × d matrix: B = (Id, 0Rd×Rd)∗. We write GLd(R) the set of d × d invertible matrices
with real coefficients. We recall that a denotes the square of the diffusion matrix σ, a := σσ∗. The
canonical Euclidean inner product on R

d is denoted by “·”.
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Subsequently, we denote by c, C, c′, C ′, c′′ etc. a positive constant, depending only on known
parameters in (H), given just below, that may change from line to line and from an equation to
another.

For any function from [0, T ]×R
d ×R

d, we use the notation D to denote the total space derivative,
we denote by D1 (resp. D2) the derivative with respect to the first (resp. second) d-dimensional space
component. In the same spirit, the notation Dz means the derivative w.r.t the variable z. Hence, for
all integers n, Dn

z is the nth derivative w.r.t z and for all integers m the n ×m cross differentiations
w.r.t z, y are denoted by Dn

zD
m
y . Furthermore, the partial derivative ∂/∂t is denoted by ∂t.

Assumptions (H). We say that assumptions (H) hold if the following assumptions are satisfied.

(H1) Regularity of the coefficients: there exist 0 < βj
i ≤ 1, 1 ≤ i, j ≤ 2 and three positive

constants C1, C2, Cσ such that for all t in [0, T ] and all (x1, x2) and (y1, y2) in R
d × R

d

|F1(t, x1, x2)− F1(t, y1, y2)| ≤ C1(|x1 − y1|
β1

1 + |x2 − y2|
β2

1 )

|F2(t, x1, x2)− F2(t, y1, y2)| ≤ C2(|x1 − y1|
β1

2 + |x2 − y2|
β2

2 )

|σ(t, x1, x2)− σ(t, y1, y2)| ≤ Cσ(|x1 − y1|+ |x2 − y2|).

Moreover, the coefficients are supposed to be continuous w.r.t the time and the exponents
β2
i , i = 1, 2 are supposed to be strictly greater than 1/3. Note that β1

2 = 1 but we keep it for
notational.

(H2) Uniform ellipticity of σσ∗: The function σσ∗ satisfies the uniform ellipticity hypothesis:

∃Λ > 1, ∀ζ ∈ R
d, Λ−1|ζ|2 ≤ [σσ∗(t, x1, x2)ζ] · ζ ≤ Λ|ζ|2,

for all (t, x1, x2) ∈ [0, T ]× R
d × R

d.
(H3-a) Differentiability and regularity of x1 7→ F2(., x1, .): For all (t, x2) ∈ [0, T ]×R

d, the
function F2(t, ., x2) : x1 7→ F2(t, x1, x2) is continuously differentiable and there exist 0 < η < 1
and a positive constant C̄2 such that, for all (t, x2) in [0, T ]× R

d and x1, y1 in R
d

|D1F2(t, x1, x2)−D1F2(t, y1, x2)| ≤ C̄2|x1 − y1|
η .

(H3-b) Non-degeneracy of (D1F2)(D1F2)
∗: There exists a closed convex subset E ⊂ GLd(R)

(the set of d × d invertible matrices with real coefficients) such that for all t in [0, T ] and
(x1, x2) in R

2d the matrix D1F2(t, x1, x2) belongs to E . We emphasize that this implies that

∃Λ̄ > 1, ∀ζ ∈ R
d, Λ̄−1|ζ|2 ≤ [(D1F2)(D1F2)

∗(t, x1, x2)ζ] · ζ ≤ Λ̄|ζ|2,

for all (t, x1, x2) ∈ [0, T ]× R
d × R

d.

Here are the main results of this paper:

Theorem 2.1. Suppose that assumption (H) hold and in addition that

for i = 1, 2, β2
i > 1/3. (2.1)

Then, there exists a unique weak solution to (1.1).

Theorem 2.2. There exists a drift (F1, F2) satisfying (H) and such that β2
2 < 1/3 for which unique-

ness fails.
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Remark. Let us tell more about the regularity assumed on F2 w.r.t. the non degenerate variable x1:
the uniform differentiability assumption together with the non-degeneracy of the derivative (H3-b) are
crucial in that framework because they guarantee the hypoellipticity of the solution and so it allows the
noise to propagate through the second component.

We emphasize that one may object, as it is proved in the work [25] and [10], that the optimal condition
on the drift of the non degenerate component F1 that ensures weak uniqueness is an appropriate
integrability condition. This is, in our opinion, true. But the main thing is that in those two works
the system considered is linear in the second component: F2(t, x1, x2) = x1. This permits, in particular,
to use Girssanov Theorem and to reduce the system to a degenerate Ornstein Uhlenbeck process. Here,
the dependence of F2 upon x2 as well as the non linearity break down the arguments and as far as we
can see the generalization in our case is non trivial.

The way we apply our parametrix method to investigate the smoothing properties of the semi-group
of (1.1) is somehow global, in the sense that it does not allow to differentiate the different components
(F1, F2) of the drift of (1.1). We then have to ask same kind of assumptions on the drift function F1

and the linearized drift of F2 (see system (5.2) below). This is the reason why both β1
1 and η are strictly

positive and β2
1 and β2

2 are supposed to be strictly greater than 1/3 although our counter example only
holds for the Hölder exponent of the drift of the second component in the degenerate variable. Finally,
let us mention that in [20], the Author proved Lp estimate for the the semi-group of (1.1) by using
parametrix approach when the drift functions are supposed to be Lipschitz in space. This could be a
first step to extend our result in further work.

Finally, let us comment the almost sharpness of this result namely Theorem 2.2 which will be proved
in Section 4. This exponent of 1/3 can be immediately deduced from the heuristic rule previously given.
Concerning the critical value for the Hölder exponent (1/3) our feeling in that weak uniqueness holds
but we were not able to prove this result especially because our approach is not adapted to reach this
critical case.

3 PDE result and proof of Theorem 2.1

Let us first begin by giving the smoothing properties of the PDE (1.6). Let (Fn
1 , F

n
2 , a

n)n≥0 be a
sequence of mollified coefficients (say infinitely differentiable with bounded derivatives of all orders
greater than 1) satisfying (H) uniformly in n that converges to (F1, F2, a) uniformly on [0, T ]×R

d×R
d

(such an example of coefficients can be found in [4]). Let us denote by (Ln)n≥0 the associated sequence
of regularized versions of the operator L defined by (1.5). We have the following result.

Theorem 3.1. Let F be the set of continuous in time and 1-Lipschitz in space functions f : [0, T ]×
R
d×R

d → R
d. For each n, the PDE (1.6) with Ln instead of L admits a unique classical solution un.

Moreover, there exist a positive T3.1, a positive δ3.1 and a positive ν, depending on known param-
eters in (H) only, such that for all T less than T3.1 the solution of the regularized PDE (1.6) with
source term f satisfies:

||D2u
n||∞ + ||D1u

n||∞ + ||D2
1u

n||∞ + ||D1u
n||∞,∞,ν ≤ CT

δ3.1 , (3.1)

where

||D1u
n||∞,∞,ν = sup

t∈[0,T ],x1∈Rd

sup
x2 6=z2

|D1u
n(t, x1, x2)−D1u

n(t, x1, z2)|

|x2 − z2|+ |x2 − z2|β
2

1 + |x2 − z2|β
2

2 + |x2 − z2|ν
. (3.2)
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Moreover, each classical solution un is uniformly bounded on every compact subset of [0, T ]×R
d×R

d.

Let us just notice that the constant C above depends also on the class of functions F though the
Lipschitz norm of functions belonging to this class.

Proof. The proof of this result is postponed to Section 5. �

We are now in position to prove uniqueness of the martingale problem associated to (1.1). Under
our assumptions, it is clear from Theorem 6.1.7 of [21] that the system (1.1) has at least one weak
solution (the linear growth assumption assumed here is not a problem to do so).

Let f : [0, T ] × R
d × R

d → R
d be some continuous in time and 1-Lipschitz in space function, let

un be the classical solution of the regularized version of the PDE (1.6) with source term f and let
(X1,X2) be a weak solution of (1.1) starting from x at time 0. Let now suppose that T is less than
T3.1 given in Theorem 3.1. Applying Itô’s Formula on un(t,X1

t ,X
2
t ) we obtain that

un(t,X1
t ,X

2
t ) = un(0, x1, x2) +

∫ t

0
(∂t + L)un(s,X1

s ,X
2
s )ds

+

∫ t

0
Dxu

n(s,X1
s ,X

2
s )Bσ(s,X

1
s ,X

2
s )dBs

= un(0, x1, x2) +

∫ t

0
(∂t + Ln)un(s,X1

s ,X
2
s )ds

+

∫ t

0
(L − Ln)un(s,X1

s ,X
2
s )ds

+

∫ t

0
Dxu

n(s,X1
s ,X

2
s )Bσ(s,X

1
s ,X

2
s )dBs

= un(0, x1, x2) +

∫ t

0
f(s,X1

s ,X
2
s )ds+

∫ t

0
(L − Ln)un(s,X1

s ,X
2
s )ds

+

∫ t

0
Dxu

n(s,X1
s ,X

2
s )Bσ(s,X

1
s ,X

2
s )dBs,

since un is the solution of the regularized version of (1.6) and where we recall that B is the 2d × d
matrix: B = (Id, 0Rd×Rd)∗.

Thanks to Theorem 3.1 and Arzelà -Ascoli Theorem, we know that we can extract a subsequence
of (un)n≥0 and (D1u

n)n≥0 that converge respectively to a function u and D1u uniformly on compact
subset of [0, T ]×R

d×R
d. Thus, together with the uniform convergence of the regularized coefficients,

we can deduce that
(

u(t,X1
t ,X

2
t )−

∫ t

0
f(s,X1

s ,X
2
s )ds− u(0, x1, x2)

)

0≤t≤T

, (3.3)

is a P-martingale by letting the regularization procedure tend to the infinity.

Let us now come back to the canonical space, and let P and P̃ be two solutions of the martingale
problem associated to (1.1) with initial condition (x1, x2) in R

d ×R
d. Thus, for all continuous in time
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and Lipschitz in space functions f : [0, T ]×R
d ×R

d → R we have from (3.3) (recall that by definition
we have that u(T, ·, ·) = 0),

u(0, x1, x2) = EP

[
∫ T

0
f(s,X1

s ,X
2
s )ds

]

= E
P̃

[
∫ T

0
f(s,X1

s ,X
2
s )ds

]

,

so that the marginal law of the canonical process are the same under P and P̃. We extend the result
on R

+ thanks to regular conditional probabilities, see [21] Chapter 6.2. Uniqueness then follows from
Corollary 6.2.4 of [21].

4 Counter example

We here prove Theorem 2.2. As we said, we feel that this counter example does not reduce to our
current setting. Hence, we wrote it in a general form in order to adapt it to different cases. Let W be
a random process with continuous path satisfying, in law,

(Wt, t ≥ 0) = (−Wt, t ≥ 0) , ∀t ≥ 0 tγW1 = Wt,

and E|W1| < +∞ for some given γ > 0. Let α < 1 and cα := (1− α)1/(1−α). We suppose that W and
α are such that there exists a weak solution of

Xt = x+

∫ t

0
sign(Xs)|Xs|

αds +Wt, (4.1)

for any x ≥ 0 that satisfies Kolmogorov’s criterion. Given 0 < β < 1 we define for any continuous
path Y from R

+ to R the variable τ(Y ) as

τ(Y ) = inf{t ≥ 0 : Yt ≤ (1− β)cαt
1/(1−α)}.

We now have the following Lemma whose proof is postponed to the end of this section:

Lemma 4.1. Let X be a weak solution of (4.1) starting from some x > 0 and suppose that α < 1−1/γ.
Then, there exists a positive ρ, depending on α, β, γ and E|W1| only such that

Px(τ(X) ≥ ρ) ≥ 3/4. (4.2)

We are now in position to give our counter-example. Note that if (X,W) is a weak solution of
(4.1) with the initial condition x = 0, then, (−X,−W) is also a weak solution of (4.1). So that, if
uniqueness in law holds X and −X have the same law.

Let us consider a weak solution Xn of (4.1) starting from 1/n, n being a positive integer. Since
each Xn satisfies Kolmogorov’s criterion, the sequence of law (P1/n)n≥0 of Xn is tight, so that we can
extract a converging subsequence (P1/nk

)k≥0 to P0, the law of the weak solution X of (4.1) starting
from 0. Since the bound in (4.2) does not depend on the initial condition we get that

P0(τ(X) ≥ ρ) ≥ 3/4,

and, thanks to uniqueness in law
P0(τ(−X) ≥ ρ) ≥ 3/4,

which is a contradiction. Choosing W =
∫ ·

0 Wsds, so that γ = 3/2, we get that weak uniqueness fails
as soon as

α < 1− 1/γ = 1/3.

We now prove Lemma 4.1 which allows to understand how the threshold above, exhibited in the
introduction, also appears in our counter-example.
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Proof of Lemma 4.1. Let X be a weak solution of (4.1) starting from x > 0. Since it has continuous
path, we have almost surely that τ(X) > 0. Then, note that on [0, τ(X)] we have:

Xt = x+

∫ t

0
sign(Xs)|Xs|

αds +Wt

≥ (1− β)αcαt
1/(1−α) +Wt.

Hence, choosing η such that (1− η) = [(1 − β)α + (1− β)]/2 we get that:

Xt ≥ (1− η)cαt
1/(1−α) + (β − η)cαt

1/(1−α) +Wt,

for all t in [0, τ(X)].

Now let ρ be a positive number, set c̃α = (β − η)cα and

A =
{

c̃αt
1/(1−α) +Wt > 0 for all t in (0, ρ]

}

.

Note that on A we have

Xt ≥ (1− η)cαt
1/(1−α) ≥ (1− β)cαt

1/(1−α)

for all t in [0, ρ]. But this is compatible only with the event {τ(X) ≥ ρ} so that A ⊂ {τ(X) ≥ ρ}.
Hence

P(τ(X) ≥ ρ) ≥ P(A). (4.3)

We are now going to bound from below the probability of the event A. We have

P(Ac) = P

(

∃t ∈ (0, ρ] : c̃αt
1/(1−α) +Wt ≤ 0

)

≤ P

(

∃t ∈ (0, ρ] : |Wt| ≥ c̃αt
1/(1−α)

)

= P

(

∃t ∈ (0, 1] : (ρt)γ |W1| ≥ c̃α(ρt)
1/(1−α)

)

= P

(

∃t ∈ (0, 1] : |W1| ≥ c̃α(ρt)
−δ
)

,

where δ = γ − 1/(1 − α). Since α < 1 − 1/γ, we get that δ > 0 and we obtain from the previous
computations that

P(Ac) ≤ P

(

|W1| ≥ c̃αρ
−δ
)

≤ E|W1|c̃
−1
α ρδ,

from Markov inequality. Thus

P(τ(X) ≥ ρ) ≥ P(A) ≥ 1− E|W1|c̃
−1
α ρδ,

so that there exists a positive ρ such that

P(τ(X) ≥ ρ) ≥ 3/4.

�
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5 Smoothing properties of the PDE

This section is dedicated to the proof of Theorem 3.1. This proof is in the same spirit and uses
the same kind of tools as the one introduced in the previous work [4]. We nevertheless emphasize
that our analysis is here quite different: although the tools are the same, the objective differs from
the previously mentioned work. Firstly, our PDE does not have the same source term; secondly the
controls we want to obtain on the solution are weaker; thirdly our regularity assumptions on the
coefficients of the operator L in (1.6) are weaker so that we have to be careful.

Our main strategy for proving Theorem 3.1 rests upon parametrix approach (see [18],[13]). This
perturbation approach consists in expanding the operator L around a well chosen proxy, denoted by
L̃, which enjoys suitable properties and can be handled. Hence we rewrite our PDE (1.6) as:

(∂t + L)u = f ⇔ (∂t + L̃)u = f + (L̃ − L)u,

and we call parametrix kernel the second term on the right hand side of the equation above (i.e. the
approximation error). By doing so, we obtain a representation of our PDE solution in terms of a time
space convolution of the source term and the parametrix kernel against the fundamental solution of
our proxy. This is the reason why the choice of this proxy as well as its property are crucial in our
analysis.

The idea is to obtain a Gaussian approximation which means that we aim at obtaining a proxy L̃
which is the generator of a Gaussian process. This Gaussian process has to be as closed as possible
of our original process. Having in mind the Kolmogorov Example, this means that the dependence
w.r.t. the noise of each component has to be of linear form (see Section 2 of [4] for more details or [7]
for a more general account on this topic).

We thus end with a proxy L̃ which is an operator whose coefficients are the linearized version of the
one of the operator L. As already emphasized, it is the generator of a degenerate Gaussian process
relying on Kolmogorov Example. Namely this process has a transition density whose covariance matrix
is homogeneous to the covariance matrix of a Brownian motion and its time integral. This proxy is
not new, it has been introduced by Delarue and Menozzi in [7] and then successfully used by Menozzi
in [19, 20] to prove weak well posedness of a generalization of (1.1) when the drifts coefficients are
Lispchitz continuous and the diffusion matrix σ is respectively Hölder continuous and solely continuous.

Since our Gaussian proxy (process, semi-group, generator, transition density) plays a central role in
our analysis, we dedicated the first part of this section (Subsection 5.1) to the study and the properties
of such a system. These tools have already been introduced in [4], we then collect from this work all
the necessary ingredients and let the reader check the proof in the aforementioned paper. Then, we
prove Theorem 3.1 in Subsection 5.2.

Let us notice that Theorem 3.1 concerns the solution of the regularized version of (1.6). Thus, for
the sake of clarity, we forget the superscript n that follows from the regularization procedure and we
suppose throughout this section that the coefficients F1, F2 and a := σσ∗ are smooth (say infinitely
differentiable with bounded derivatives of all orders greater than one). We then specify the dependence
of the constants when necessary.
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5.1 The frozen system

We here defined our Gaussian proxy. As already underlined, this process is a linear (w.r.t. the noise)
version of (1.1). Because of our degenerate setting we have to be careful when doing this linearization:
it has to be done around the forward flow associated to the deterministic version of (1.1) (i.e. when
σ = 0 therein). Namely given any frozen point (τ, ξ) in [0, T ]×R

2d, we consider the following system
on [τ, T ]











d

ds
θ1τ,s(ξ) = F1(s, θτ,s(ξ)), θ1τ,τ (ξ) = ξ1,

d

ds
θ2τ,s(ξ) = F2(s, θτ,s(ξ)), θ2τ,τ (ξ) = ξ2,

(5.1)

which is well posed under our regularized framework and we extend the definition of its solution on
[0, τ) by assuming that for all (v > r) in [0, T ]2, for all ξ in R

2d, θv,r(ξ) = 0. Given the solution
(θτ,s(ξ))s≤T of this system, we define the linearized and frozen version of (1.1):

{

dX̃1,t,x
s = F1(s, θτ,s(ξ))ds+ σ(s, θτ,s(ξ))dWs

dX̃2,t,x
s =

[

F2(s, θτ,s(ξ)) +D1F2(s, θτ,s(ξ))(X̃
1,t,x
s − θ1τ,s(ξ))

]

ds
(5.2)

for all s in (t, T ], any t in [0, T ], and for any initial condition x in R
2d at time t. We then have the

following proposition:

Proposition 5.1. [4, Proposition 3.1] Under our assumptions:

(i) There exists a unique (strong) solution of (5.2) with mean

(mτ,ξ
t,s )t≤s≤T = (m1,τ,ξ

t,s ,m2,τ,ξ
t,s )t≤s≤T ,

where

m1,τ,ξ
t,s (x) = x1 +

∫ s

t
F1(r, θτ,r(ξ))dr, (5.3)

m2,τ,ξ
t,s (x) = x2 +

∫ s

t

[

F2(r, θτ,r(ξ)) +D1F2(r, θτ,r(ξ))(x1 − θ1τ,r(ξ))

+D1F2(r, θτ,r(ξ))

∫ r

t
F1(v, θτ,v(ξ))dv

]

dr,

and uniformly non-degenerate covariance matrix (Σ̃t,s)t≤s≤T :

Σ̃t,s =

( ∫ s
t σσ∗(r, θτ,r(ξ))dr

∫ s
t Rr,s(τ, ξ)σσ

∗(r, θτ,r(ξ))dr
∫ s
t σσ∗(r, θτ,r(ξ))R

∗
r,s(τ, ξ)dr

∫ s
t Rt,r(τ, ξ)σσ

∗(r, θτ,r(ξ))R
∗
t,r(τ, ξ)dr

)

, (5.4)

where:

Rt,r(τ, ξ) =

[
∫ r

t
D1F2(v, θτ,v(ξ))dv

]

, t ≤ r ≤ s ≤ T.

(ii) This solution is a Gaussian process with transition density:

q̃(t, x1, x2; s, y1, y2) (5.5)

=
3d/2

(2π)d/2
(det[Σ̃t,s])

−1/2 exp

(

−
1

2
|Σ̃

−1/2
t,s (y1 −m1,τ,ξ

t,s (x), y2 −m2,τ,ξ
t,s (x))∗|2

)

,

for all s in (t, T ].
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(iii) This transition density q̃ is the fundamental solution of the PDE driven by L̃τ,ξ and given by:

L̃τ,ξ :=
1

2
Tr
[

a(t, θτ,t(ξ))D
2
x1

]

+ [F1(t, θτ,t(ξ))] ·Dx1

+
[

F2(t, θτ,t(ξ)) +D1F2(t, θτ,t(ξ))
(

x1 − θ1τ,t(ξ)
)]

·Dx2
. (5.6)

(iv) There exist two positive constants c and C, depending only on known parameters in (H), such
that

q̃(t, x1, x2; s, y1, y2) ≤ Cq̂c(t, x1, x2; s, y1, y2), (5.7)

where

q̂c(t, x1, x2; s, y1, y2) =
c

(s− t)2d
exp

(

−c

(
∣

∣y1 −m1,τ,ξ
t,s (x)

∣

∣

2

s− t
+

∣

∣y2 −m2,τ,ξ
t,s (x)

∣

∣

2

(s− t)3

))

,

and
∣

∣DNx1

x1
DNx2

x2
DNy1

y1 q̃(t, x1, x2; s, y1, y2)
∣

∣ (5.8)

≤ C(s− t)−[3Nx2+Nx1+Ny1 ]/2q̂c(t, x1, x2; s, y1, y2),

for all s in (t, T ] and any integers Nx1 , Nx2 , Ny1 less than 2.

We now introduce:

Definition 5.2. In order to prove the estimate (3.1) of Theorem 3.1, let us define, for all x ∈ R
2d,

y ∈ R
2d: and any γ ∈ [0, 1]:

∆2
γ(x− y) = |x2 − y2|+ |x2 − y2|

β2

1 + |x2 − y2|
β2

2 + |x2 − y2|
γ (5.9)

We set for all measurable function ϕ : [0, T ]× R
d ×R

d → R, for all t < s in [0, T ]2 and ξ and x in
R
2d:

[

P̃ ξ
t,sϕ
]

(s, x) =

∫

R2d

ϕ(s, y)q̃(t, x; s, y)dy, (5.10)

and
[

P̂ ξ
t,sϕ
]

(s, x) =

∫

R2d

ϕ(s, y)q̂c(t, x; s, y)dy. (5.11)

Finally, we have the following Proposition regarding the smoothing properties of P̃ defined above:

Proposition 5.3. Under our assumptions there exist three positive constants C,C ′ and C ′′, depending
on known parameters in (H) only such that for all t < s in [0, T ]2, ξ and x in R

2d, ζ in R
2d and all

measurable function ϕ : [0, T ]× R
d × R

d → R:

(i) Gaussian decay of the derivatives:
∣

∣

∣
Dxi

[

P̃ ξ
t,sϕ
]

(s, x)
∣

∣

∣
≤ C ′(s− t)−i+1/2

[

P̂ ξ
t,s

∣

∣ϕ
∣

∣

]

(s, x), i = 1, 2,

(ii) Centering argument:
∣

∣

∣
Dx1

[

P̃ ξ
t,sϕ
]

(s, x)
∣

∣

∣
≤ C ′′(s− t)−1+1/2

[

P̂ ξ
t,s

∣

∣ϕ− ϕ(·, ζ)
∣

∣

]

(s, x),
∣

∣

∣
Dx2

[

P̃ ξ
t,sϕ
]

(s, x)
∣

∣

∣
≤ C ′′(s− t)−2+1/2

[

P̂ ξ
t,s

∣

∣ϕ− ϕ(·, ·, ζ2)
∣

∣

]

(s, x),
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Moreover, for all i = 1, 2 and for all γ in (0, 1] we have

(iii) Gaussian smoothing:
[

P̂ ξ
t,s|(· − θt,s(ξ))i|

γ
]

(s, x)

∣

∣

∣

∣

(τ,ξ)=(t,x)

(5.12)

=
[

P̂ x
t,s|(· −mt,x

t,s (x))i|
γ
]

(s, x) ≤ C ′′′(s− t)(i−1/2)γ .

Note that this last property implies in particular that if γ ≤ [β2
1 ∧ β2

2 ] and T < 1 we have
[

P̂ ξ
t,s∆

2
γ(· − θt,s(ξ))

]

(s, x)

∣

∣

∣

∣

(τ,ξ)=(t,x)

=
[

P̂ x
t,s∆

2
γ(· −mt,x

t,s (x))
]

(s, x) ≤ C ′′′(s− t)3γ/2.

Finally, given x2 and z2 in R
2d and defining S :=

{

s ∈ (t, T ] : |x2 − z2| ≤ (s − t)3/2
}

we have the
following Hölder estimate:

(iv) Hölder estimate in diagonal regime: for all s in S we have that for all measurable function
ϕ : [0, T ]× R

d × R
d → R:
∣

∣

∣
Dn

x1

[

P̃ ξ
t,sϕ
]

(s, x1, x2)−Dn
x1

[

P̃ ξ
t,sϕ
]

(s, x1, z2)
∣

∣

∣

≤ C(s− t)−n/2−3ν̄/2
[

P̂ ξ
t,s|ϕ|

]

(s, x1, x2)|x2 − z2|
ν̄ ,

for every 0 < ν̄ < 1 and n in N.

Remark. Concerning (ii), in the following we say that we center the function ϕ around ϕ(·, ζ) and
ϕ(·, ·, ζ2) respectively.

Proof. Assertion (i) follows from Definition 5.2, the inversion of the integral and the derivative oper-
ators and then estimate (5.8) in Proposition 5.1. For the first assertion in (ii), we have by definition

of P̃ that the quantity
[

P̃ ξ
t,sϕ(·, ζ)

]

(s, x) does not depend on x so that Dxi

[

P̃ ξ
t,sϕ(·, ζ)

]

(s, x) = 0 for

i = 1, 2. Hence, the assertion follows from the following splitting:

∀ζ ∈ R
2d, ϕ = ϕ− ϕ(·, ζ) + ϕ(·, ζ).

The second assertion in (iii) follows from the same arguments. The last assertion (iii) of the Propo-
sition follows from the Gaussian decay of q̂. Indeed, by definition we have

[

P̂ ξ
t,s|(· − θt,s(ξ))i|

γ
]

(s, x)

=

∫

R2d

|yi − θit,s(ξ)|
γ q̂c(t, x; s, y)dy

=

∫

R2d

{

(s− t)(i−1/2)γ

∣

∣

∣

∣

∣

yi − θit,s(ξ)

(s− t)

∣

∣

∣

∣

∣

γ
c

(s− t)2d
(5.13)

× exp

(

−c

(
∣

∣y1 −m1,τ,ξ
t,s (x)

∣

∣

2

s− t
+

∣

∣y2 −m2,τ,ξ
t,s (x)

∣

∣

2

(s − t)3

))}

dy

Note that for all s in [t, T ], the mean (m1,t,x
t,s (x),m2,t,x

t,s (x)) satisfies the ODE (5.1) with initial data
(t, x). Hence, the forward transport function defined by (5.1) with the initial data (τ, ξ) = (t, x) is
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equal to the mean: θt,s(x) = mt,x
t,s (x) (recall that under our regularized setting (5.1) has a unique

solution). We deduce the result by letting (τ, ξ) = (t, x) and by using the following inequality:

∀η > 0, ∀q > 0, ∃C̄ > 0 s.t. ∀σ > 0, σqe−ησ ≤ C̄.

For the proof of the last assertion, note that on S we have for any measurable function ϕ : [0, T ]×
R
d ×R

d → R:
∣

∣

∣
Dx1

[

P̃ ξ
t,sϕ
]

(s, x1, x2)−Dx1

[

P̃ ξ
t,sϕ
]

(s, x1, z2)
∣

∣

∣

≤ sup
λ∈(0,1)

∣

∣

∣
Dx2

Dx1

[

P̃ ξ
t,sϕ
]

(s, x1, λx2 + (1− λ)z2)
∣

∣

∣
|x2 − z2|

≤ C(s− t)−2
[

P̂ ξ
t,s|ϕ|

]

(s, x1, x2)|x2 − z2|

≤ C(s− t)−1/2−3ν̄/2
[

P̂ ξ
t,s|ϕ|

]

(s, x1, x2)|x2 − z2|
ν̄ ,

for every 0 < ν̄ < 1. The last inequality essentially follows from the definitions (5.10) and (5.11), the
form of q̃ and convexity inequality (see also the computations done in the proof of Claim 4.4 p29 of
[4]). �

5.2 Estimation of the solution

Let us now expand the regularized solution of (1.6) to a a first order parametrix: we rewrite this
PDE as

(∂t + L̃τ,ξ)u(t, x) = −
(

L − L̃τ,ξ
)

u(t, x) + f(t, x),

on [0, T )×R
2d with terminal condition 0 at time T . Thus, using the definitions given in the previous

subsection, we obtain that for every (t, x) in [0, T ]× R
2d, the solution u writes

u(t, x) =

∫ T

t

{

[

P̃ ξ
t,sf
]

(s, x)−
[

P̃ ξ
t,s(F1 − F1(s, θt,s(ξ))) ·D1u

]

(s, x)

−
[

P̃ ξ
t,s(F2 − F2(s, θt,s(ξ))−D1F2(s, θt,s(ξ))(· − θt,s(ξ))1) ·D2u

]

(s, x)

−

[

P̃ ξ
t,s

1

2
Tr
[

(a− a(s, θt,s(ξ)))D
2
1u
]

]

(s, x)

}

ds (5.14)

=:

∫ T

t
I1,ξ
t,s (x) + I2,ξ

t,s (x) + I3,ξ
t,s (x) + I4,ξ

t,s (x)ds, (5.15)

by choosing τ = t. We made this choice for the freezing time τ in the following.

We next assume without loss of generality that T < 1. We are now in position to prove the main
estimates of Theorem 3.1. This is done by proving the following results and then using a circular
argument: letting the time interval being sufficiently small to obtain each estimate separately.
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Proposition 5.4. There exists four positive constants C1, C2, C
′ and C ′′, and three positive numbers

δ, δ′ and δ′′, depending on known parameters in (H) only, such that:

||Dn
1 u||∞ ≤ CnT

δ
(

1 + ||D1u||∞ + ||D2u||∞ + ||D2
1u||∞

)

, n = 1, 2, (5.16)

||D2u||∞ ≤ C ′T δ′
(

1 + ||D1u||∞,∞,ν + ||D1u||∞,∞,ν

+||D2u||∞ + ||D2
1u||∞

)

, (5.17)

||D1u||∞,∞,ν ≤ C ′′T δ′′
(

1 + ||D1u||∞ + ||D2u||∞ + ||D2
1u||∞

)

, (5.18)

where || · ||∞,∞,ν is defined by (3.2) and such that:

ν = sup{I ∈ R : I < (1 + β1
1)/3}. (5.19)

Before entering in the (long) proof of this result, let us mention that one may guess that the bound
on the regularized solution depends on the regularity of the source term of the PDE f . This is indeed
true, and this is why there is a 1 in the bounds above.

The main strategy consists in estimating the derivatives of the time integrands Ij, j = 1, . . . , 4,
of the representation (5.14) and then to invert the differentiation and integration operators. Hence,
int the following, we estimate the derivatives of these time integrands and investigate their Hölder
regularity. Without loss of generality, we suppose in the following that T < 1.

Proof of estimate (5.16). Let n ∈ {1, 2} and s in (t, T ]. We have from (5.14) and Proposition 5.3
(assertions (i) and (ii)):

∣

∣

∣

∣

∣

Dn
x1

{

I1,ξ
t,s (x) + I2,ξ

t,s (x) + I3,ξ
t,s (x) + I4,ξ

t,s (x)
}

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Dn
x1

{

[

P̃ ξ
t,sf
]

(s, x)−
[

P̃ ξ
t,s(F1 − F1(s, θt,s(ξ))) ·D1u

]

(s, x)

−
[

P̃ ξ
t,s(F2 − F2(s, θt,s(ξ))−D1F2(s, θt,s(ξ))(· − θt,s(ξ))1) ·D2u

]

(s, x)

−

[

P̃ ξ
t,s

1

2
Tr
[

(a− a(s, θt,s(ξ)))D
2
1u
]

]

(s, x)

}
∣

∣

∣

∣

∣

≤ C(s− t)−n/2

{

[

P̂ ξ
t,s

∣

∣f − f(s, θt,s(ξ))
∣

∣

]

(s, x)

+
[

P̂ ξ
t,s

∣

∣(F1 − F1(s, θt,s(ξ))) ·D1u
∣

∣

]

(s, x)

+
[

P̂ ξ
t,s

∣

∣(F2 − F2(s, θt,s(ξ))−D1F2(s, θt,s(ξ))(· − θt,s(ξ))1) ·D2u
∣

∣

]

(s, x)

+

[

P̂ ξ
t,s

∣

∣

1

2
Tr
[

(a− a(s, θt,s(ξ)))D
2
1u
] ∣

∣

]

(s, x)

}

.
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By using the regularity of the coefficients assumed in (H), Lipschitz regularity on f and expanding
F2 around the forward transport θ:

F2(t, ·) = F2(t, θt,s(ξ)) +

∫ ·

θt,s(ξ)
D1F2(t, z)dz

we get that

∣

∣

∣

∣

∣

Dn
x1

{

I1,ξ
t,s (x) + I2,ξ

t,s (x) + I3,ξ
t,s (x) + I4,ξ

t,s (x)
}

∣

∣

∣

∣

∣

≤ C(s− t)−n/2

{

[

P̂ ξ
t,s

∣

∣(· − θt,s(ξ))1
∣

∣

]

(s, x) +
[

P̂ ξ
t,s

∣

∣(· − θt,s(ξ))2
∣

∣

]

(s, x)

+||D1u||∞

[

P̂ ξ
t,s

(

∣

∣(· − θt,s(ξ))1
∣

∣

β1

1 +
∣

∣(· − θt,s(ξ))2
∣

∣

β2

1

)]

(s, x)

+||D2
1u||∞

[

P̂ ξ
t,s

(

∣

∣(· − θt,s(ξ))1
∣

∣+
∣

∣(· − θt,s(ξ))2
∣

∣

)]

(s, x)

+||D2u||∞

[

P̂ ξ
t,s

(

∣

∣(· − θt,s(ξ))1
∣

∣

1+η
+
∣

∣(· − θt,s(ξ))2
∣

∣

β2

2

)]

(s, x)

}

.

By letting ξ = x we obtain from estimate (5.12) in Proposition 5.3 that

∣

∣

∣

∣

∣

Dn
x1

{

I1,ξ
t,s (x) + I2,ξ

t,s (x) + I3,ξ
t,s (x) + I4,ξ

t,s (x)
}

∣

∣

∣

∣

∣

≤ C(s− t)−n/2

(

(s− t)1/2 + (s− t)3/2 + ||D1u||∞

(

(s− t)β
1

1
/2 + (s− t)3β

2

1
/2
)

+||D2
1u||∞

(

(s− t)1/2 + (s− t)3/2
)

+ ||D2u||∞

(

(s− t)(1+η)/2 + (s− t)3β
2

2
/2
)

)

,

where all the time-singularities in the right hand side are integrables. Therefore

|Dn
x1
u(t, x)| ≤ CT 1−n/2

(

T 1/2 + T 3/2 + ||D1u||∞

(

T β1

1
/2 + T 3β2

1
/2
)

+||D2
1u||∞

(

T 1/2 + T 3/2
)

+ ||D2u||∞

(

T (1+η)/2 + T 3β2

2
/2
)

)

.

�

Proof of estimate (5.17). We now estimate the derivative of the solution in the degenerate direction.
We are unfortunately not able to repeat the previous strategy since the Gaussian smoothing (see eq.
(5.13)) of part of the coefficients are not strong enough to smooth the time singularity coming from
the derivative (of order −3/2) in the degenerate direction. To overcome this problem we are lead to
re-center some of the terms around the solution of the PDE (i.e. to use the second estimate in (ii) of
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Proposition 5.3 on the function D1u): namely, I2 and I4 in (5.14). In order to clarify our exposition,

we hence estimate each term Ij,ξ
t,s , j = 1, . . . , 4 defined in (5.14) separately.

From Proposition 5.3, (ii) and by using the Lipschitz regularity of f and the regularity of the
coefficients assumed in (H)

∣

∣

∣
Dx2

I1,ξ
t,s (x)

∣

∣

∣
=

∣

∣

∣
Dx2

[

P̃ ξ
t,s(f − f(s, ·, θ2t,s(ξ)))

]

(s, x)
∣

∣

∣

≤ C(s− t)−3/2
[

P̂ ξ
t,s

∣

∣(· − θt,s(ξ))2
∣

∣

]

(s, x), (5.20)

∣

∣

∣
Dx2

I2,ξ
t,s (x)

∣

∣

∣

=
∣

∣

∣
Dx2

[

P̃ ξ
t,s(F1 − F1(s, ·, θ

2
t,s(ξ)))D1u

]

(s, x)

+Dx2

[

P̃ ξ
t,s(F1(s, ·, θ

2
t,s(ξ))) − F1(s, θt,s(ξ)))(D1u−D1u(s, ·, θ

2
t,s(ξ))

]

(s, x)
∣

∣

∣

≤ C(s− t)−3/2||D1u||∞

[

P̂ ξ
t,s

(

∣

∣(· − θt,s(ξ))2(·)
∣

∣

β2

1

)]

(s, x)

+C(s− t)−3/2||D1u||∞,∞,ν

[

P̂ ξ
t,s

(

∣

∣(· − θt,s(ξ))1
∣

∣

β1

1∆2
ν(· − θt,s(ξ))

)]

(s, x), (5.21)

where ||D1u||∞,∞,ν is defined by (3.2) and ∆2
ν is defined by (5.9) and where we used the second

estimate in (ii) of Proposition 5.3 on D1u. We also have

∣

∣

∣
Dx2

I3,ξ
t,s (x)

∣

∣

∣
(5.22)

=
∣

∣

∣
Dx2

[

P̃ ξ
t,s(F2 − F2(s, θt,s(ξ))−D1F2(s, θt,s(ξ))) ·D2u

]

(s, x)
∣

∣

∣

≤ C(s− t)−3/2||D2u||∞

[

P̂ ξ
t,s

(

∣

∣(· − θt,s(ξ))1
∣

∣

1+η
+
∣

∣(· − θt,s(ξ))2
∣

∣

β2

2

)]

(s, x).

We now deal with the term I4 which is the delicate part. We first define for all measurable function
ϕ : [0, T ] × R

d × R
d → R, for all t < s in [0, T ]2, ξ, x in R

2d and l = 1, . . . , d:

[

P̃
′,l,ξ
t,s ϕ

]

(s, x) =

∫

R2d

ϕ(s, y)Dy1l q̃(t, x; s, y)dy, (5.23)

where y1l denotes the lth component of the d-dimensional variable y1. Note that the derivative in the
integral above is w.r.t. the integration variable.

Now we can split a− a(s, θt,s(ξ)) as a− a(s, ·, θ2t,s(ξ)) + a(s, ·, θ2t,s(ξ)) − a(s, θt,s(ξ)) so that

Dx2
I4,ξ
t,s (x) = −Dx2

[

P̃ ξ
t,s

1

2
Tr
[

(a− a(s, ·, θt,s(ξ)))D
2
1u
]

]

(s, x)

−Dx2

[

P̃ ξ
t,s

1

2
Tr
[

(a(s, ·, θ2t,s(ξ))− a(s, θt,s(ξ)))D
2
1u
]

]

(s, x).
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Applying now an integration by parts on the second term in the right hand side leads to

Dx2
I4,ξ
t,s (x) = −Dx2

[

P̃ ξ
t,s

1

2
Tr
[

(a− a(s, ·, θt,s(ξ)))D
2
1u
]

]

(s, x)

+

d
∑

l=1

Dx2

[

P̃ ξ
t,s

1

2

[

(D1la·l(s, ·, θ
2
t,s(ξ))) ·D1u

]

]

(s, x)

+

d
∑

l=1

Dx2

[

P̃
′,l,ξ
t,s

1

2
[(a− a(s, ·, θt,s(ξ)))·l] ·D1u

]

(s, x),

where a·l denotes the lth column of the matrix a. Hence, by using Proposition 5.3 (ii) with D1u we
obtain

Dx2
I4,ξ
t,s (x)

= −Dx2

[

P̃ ξ
t,s

1

2
Tr
[

(a− a(s, ·, θt,s(ξ)))D
2
1u
]

]

(s, x)

+

d
∑

l=1

Dx2

[

P̃ ξ
t,s

1

2

[

(D1la·l(s, ·, θ
2
t,s(ξ))) ·

[

D1u−D1u(s, ·, θ
2
t,s(ξ))

]]

]

(s, x)

+
d
∑

l=1

Dx2

[

P̃
′,l,ξ
t,s

1

2
[(a− a(s, ·, θt,s(ξ)))·l] ·

[

D1u−D1u(s, ·, θ
2
t,s(ξ))

]

]

(s, x).

We can finally deduce that:

∣

∣

∣
Dx2

I4,ξ
t,s (x)

∣

∣

∣
≤ C(s− t)−3/2

{

||D2
1u||∞

[

P̂ ξ
t,s

(

∣

∣(· − θt,s(ξ))2
∣

∣

)]

(s, x)

+||D1u||∞,∞,ν

(

[

P̂ ξ
t,s

(

∆2
ν(· − θt,s(ξ))

)]

(s, x) (5.24)

+(s− t)−1/2
[

P̂ ξ
t,s

(

∣

∣(· − θt,s(ξ))1
∣

∣∆2
ν(· − θt,s(ξ))

)]

(s, x)

)

}

,

Where ||D1u||∞,∞,ν is defined by (3.2) and ∆2
ν is defined by (5.9).
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Hence, collecting all the previous estimates ((5.20), (5.21), (5.22), (5.24)) we eventually deduce

∣

∣

∣

∣

∣

Dx2

{

I1,ξ
t,s (x) + I2,ξ

t,s (x) + I3,ξ
t,s (x) + I4,ξ

t,s (x)
}

∣

∣

∣

∣

∣

≤ C(s− t)−3/2

{

[

P̂ ξ
t,s

∣

∣(· − θt,s(ξ))2
∣

∣

]

(s, x)

+||D1u||∞

[

P̂ ξ
t,s

(

∣

∣(· − θt,s(ξ))2(·)
∣

∣

β2

1

)]

(s, x)

+||D1u||∞,∞,ν

[

P̂ ξ
t,s

(

∣

∣(· − θt,s(ξ))1
∣

∣

β1

1∆2
ν(· − θt,s(ξ))

)]

(s, x)

+||D2u||∞

[

P̂ ξ
t,s

(

∣

∣(· − θt,s(ξ))1
∣

∣

1+η
+
∣

∣(· − θt,s(ξ))2
∣

∣

β2

2

)]

(s, x)

+||D2
1u||∞

[

P̂ ξ
t,s

(

∣

∣(· − θt,s(ξ))2
∣

∣

)]

(s, x)

+||D1u||∞,∞,ν

(

[

P̂ ξ
t,s

(

∆2
ν(· − θt,s(ξ))

)]

(s, x)

+(s− t)−1/2
[

P̂ ξ
t,s

(

∣

∣(· − θt,s(ξ))1
∣

∣∆2
ν(· − θt,s(ξ))

)]

(s, x)

)

}

.

By letting ξ = x we obtain from estimate (5.12) in Proposition 5.3 that

∣

∣

∣

∣

∣

Dx2

{

I1,ξ
t,s (x)− I2,ξ

t,s (x)− I3,ξ
t,s (x)− I4,ξ

t,s (x)
}

∣

∣

∣

∣

∣

≤ C(s− t)−3/2

(

(s− t)3/2 + ||D1u||∞(s− t)3β
2

1
/2

+||D1u||∞,∞,ν(s− t)β
1

1
/2+3ν/2 + ||D2u||∞

(

(s− t)(1+η)/2

+(s− t)3β
2

2
/2
)

+ ||D2
1u||∞(s− t)3/2 + 2||D1u||∞,∞,ν(s− t)3ν/2.

Since β2
j > 1/3 (condition (2.1)), and ν is given by (5.19), all the time-singularities of the right hand

side above are integrable on (t, T ]. Hence, we deduce from (5.14) and the estimate above that there
exists a positive δ′, depending on known parameters in (H) only, such that:

|Dx2
u(t, x)| ≤ CT δ′

(

1 + ||D1u||∞,∞,ν + ||D1u||∞ + ||D2u||∞ + ||D2
1u||∞

)

.

�
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Proof of estimate (5.18). Finally, we compute the Hölder semi norm of Dx1
u. Let x2 6= z2 belong to

R
d. We have from (5.14):

Dx1
u(t, x1, x2)−Dx1

u(t, x1, z2) (5.25)

= Dx1

∫ T

t

{

4
∑

j=1

Ij,ξ
t,s (x1, x2)− Ij,ξ

t,s (x1, z2)

}

ds.

We first estimate for any s in (t, T ] the quantity:
∣

∣

∣

∣

∣

Dx1

4
∑

j=1

Ij,ξ
t,s (x1, x2)− Ij,ξ

t,s (x1, z2)

∣

∣

∣

∣

∣

. (5.26)

To do this, we split the time interval w.r.t. the characteristic time-scale of the second space variable:
let S :=

{

s ∈ (t, T ] : |x2 − z2| ≤ (s− t)3/2
}

. Note that on S, the result is quite obvious: from the last
assertion of Proposition 5.3 we have from (H) that (5.26) is bounded on S by (see the computations
already done for the proof of (5.16)):

C ′(s− t)−1/2−3ν̄/2

(

(s− t)1/2 + (s− t)3/2 + ||D1u||∞

(

(s− t)β
1

1
/2 + (s− t)3β

2

1
/2
)

+||D2u||∞
(

(s− t)(1+η)/2 + (s− t)3β
2

2
/2
)

)

|x2 − z2|
ν̄

++ ||D2
1u||∞

(

(s− t)1/2 + (s− t)3/2
)

, (5.27)

where we chose ξ = x. Note that this term is integrable on (t, T ] for all ν̄ < (1 + β1
1)/3.

We now estimate (5.26) on Sc. On a first hand, we have from the computations done when estimating
Dx1

u that:

∣

∣

∣

∣

∣

Dx1

4
∑

j=1

Ij,ξ
t,s (x1, x2)

∣

∣

∣

∣

∣

≤ C(s− t)−1/2−3ν̄/2

{

(s− t)1/2 + (s− t)3/2 + ||D1u||∞

(

(s− t)β
1

1

+(s− t)β
2

1

)

+ ||D2u||∞

(

(s− t)(1+η)/2 + (s− t)3β
2

2
/2
)

+||D2
1u||∞

(

(s− t)1/2 + (s− t)3/2
)

}

|x2 − z2|
ν̄ , (5.28)

since for any positive number ν̄ on Sc we have 1 ≤ (s− t)−3ν̄/2|x2− z2|
ν̄ and since we chose ξ = x and

then used Proposition 5.3. We emphasize that this is the same bound as (5.27) so that all the time
singularity above are again integrables provided ν̄ < (1 + β1

1)/3. It thus only remains to estimate the
last part of (5.26) on Sc, namely
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∣

∣

∣

∣

∣

Dx1

4
∑

j=1

Ij,ξ
t,s (x1, z2)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Dx1

{

[

P̃ ξ
t,sf
]

(s, x1, z2)−
[

P̃ ξ
t,s(F1 − F1(s, θt,s(ξ))) ·D1u

]

(s, x1, z2)

−
[

P̃ ξ
t,s(F2 − F2(s, θt,s(ξ))−D1F2(s, θt,s(ξ))) ·D2u

]

(s, x1, z2)

−

[

P̃ ξ
t,s

1

2
Tr
[

(a− a(s, θt,s(ξ)))D
2
1u
]

]

(s, x1, z2)

}∣

∣

∣

∣

∣

.

The main issue here is that the Gaussian smoothing of Proposition 5.3 can not be applied immediately
(last part of (iii)), the semi-group being evaluating at point (s, x1, z2) and the freezing point being
previously chosen as ξ = (x1, x2). To smooth the time singularity our control has to be of the form

[

P̂ x
t,s|(· −mt,x

t,s (x1, z2))2|
γ
]

(s, x1, z2),

which is (see the proof of assertion (iii) of Proposition 5.3) bounded by C(s − t)3γ/2. To do so, the

main idea consists in re-centering all the terms above around m2,t,ξ
t,s (x1, z2). When choosing ξ = x, we

end with the remaining difference |θ2t,s(x)−m2,t,x
t,s (x1, z2)| which is, fortunately, bounded by |x2 − z2|

(this follows from the definition (5.1) and (5.3) of θ and m respectively).

Let us first begin with the term Dx1
I1,ξ
t,s (x1, z2) = Dx1

[

P̃ ξ
t,sf
]

(s, x1, z2). Splitting first f as

(

f − f(s, θ1t,s(ξ),m
2,t,ξ
t,s (ξ1, z2))

)

+ f(s, θ1t,s(ξ),m
2,t,ξ
t,s (ξ1, z2)),

we get from Proposition 5.3
∣

∣

∣
Dx1

I1,ξ
t,s (x1, z2)

∣

∣

∣
(5.29)

=
∣

∣

∣
Dx1

[

P̃ ξ
t,s(f − f(s, θt,s(ξ)))

]

(s, x1, z2)
∣

∣

∣

≤ C(s− t)−1/2

[

P̂ ξ
t,s

(

|(· − θt,s(ξ))1|+ |(· −mt,ξ
t,s(ξ1, z2))2|

)

]

(s, x1, z2).

Next, we consider the term

Dx1
I2,ξ
t,s (x1, z2) = Dx1

[

P̃ ξ
t,s(F1 − F1(s, θt,s(ξ))) ·D1u

]

(s, x1, z2).

Splitting (F1 − F1(s, θt,s(ξ))) ·D1u as

(

F1 − F1(s, θ
1
t,s(ξ),m

2,t,ξ
t,s (x1, z2))

)

·D1u+
(

F1(s, θ
1
t,s(ξ),m

2,t,ξ
t,s (x1, z2))

−F1(s, θ
1
t,s(ξ), θ

2
t,s(ξ))

)

·D1u,
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we get
∣

∣

∣
Dx1

I2,ξ
t,s (x1, z2)

∣

∣

∣

=
∣

∣

∣
Dx1

[

P̃ ξ
t,s(F1 − F1(s, θt,s(ξ))) ·D1u

]

(s, x1, z2)
∣

∣

∣

≤ C(s− t)−1/2||D1u||∞

[

P̂ ξ
t,s

(

|(· − θt,s(ξ))1|
β1

1 + |(· −mt,ξ
t,s(x1, z2))2|

β2

1

+|θ2t,s(ξ)−m2,ξ
t,s (x1, z2)|

β2

1

)

]

(s, x1, z2). (5.30)

We now deal with the integrand in I3,ξ
t,s (x1, z2), we split (F2 −F2(s, θt,s(ξ))−D1F2(s, θt,s(ξ))) ·D2u

as
(

F2 − F2(s, ·,m
2,t,ξ
t,s (x1, z2))

)

·D2u

+
(

F2(s, ·,m
2,t,ξ
t,s (x1, z2))− F2(s, θt,s(ξ))−D1F2(s, θt,s(ξ))

)

·D2u,

and we obtain

∣

∣

∣
Dx1

I3,ξ
t,s (x1, z2)

∣

∣

∣
(5.31)

=
∣

∣

∣
Dx1

[

P̃ ξ
t,s(F2 − F2(s, θt,s(ξ))−D1F2(s, θt,s(ξ))) ·D2u

]

(s, x1, z2)
∣

∣

∣

≤ C(s− t)−1/2||D2u||∞

[

P̂ ξ
t,s

(

|(· −mt,ξ
t,s(x1, z2))2|

β2

2

+|(· − θt,s(ξ))1|
1+η + |θ2t,s(ξ)−m2,t,ξ

t,s (x1, z2)|
β2

2

)

]

(s, x1, z2).

Finally, we deal with Dx1
I4,ξ
t,s (x1, z2). We write (1/2)Tr

[

(a− a(s, θt,s(ξ))D
2u1
]

as

1

2
Tr
[

(a− a(s, θ1t,s(ξ),m
2,t,ξ
t,s (x1, z2))

)

D2
1u
]

+
1

2
Tr
[(

a(s, θ1t,s(ξ), θ
2
t,s(ξ))− a(s, θ1t,s(ξ),m

2,t,ξ
t,s (x1, z2))

)

D2
1u
]

,

and we obtain

∣

∣

∣
Dx1

I4,ξ
t,s (x1, z2)

∣

∣

∣
=

∣

∣

∣

∣

Dx1

[

P̃ ξ
t,s

1

2
Tr
[

(a− a(s, θt,s(ξ))D
2u1
]

]

(s, x1, z2)

∣

∣

∣

∣

≤ C(s− t)−1/2||D2
1u||∞

[

P̂ ξ
t,s

(

|(· − θt,s(ξ))1| (5.32)

+|(· −m2,t,ξ
t,s (x1, z2))| + |θ2t,s(ξ)−m2,t,ξ

t,s (x1, z2)|
)

]

(s, x1, z2).
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Hence, putting the previous estimates together ((5.29),(5.30),(5.31),(5.32)), letting ξ = x we get
that on Sc

∣

∣

∣

∣

∣

Dx1

4
∑

j=1

Ij,ξ
t,s (s, x1, z2)

∣

∣

∣

∣

∣

(5.33)

≤ C(s− t)−1/2

{

{

(

(s− t)(1−3ν̄)/2 + (s− t)3(1−ν̄)/2
)

+||D1u||∞

(

(s− t)(β
1

1
−3ν̄)/2 + (s− t)3(β

2

1
−ν̄)/2

)

+||D2u||∞

(

(s− t)3(β
2

2
−ν̄)/2 + (s− t)(1+η−ν̄)/2

)

+||D2
1u||∞

(

(s− t)(1−3ν̄)/2 + (s− t)3(1−ν̄)/2

)}

|x2 − z2|
ν̄

+||D1u||∞|x2 − z2|
β2

1 + ||D2u||∞|x2 − z2|
β2

2 + ||D2
1u||∞|x2 − z2|

}

since 1 ≤ (s − t)−3ν̄/2|x2 − z2|
ν̄ and this holds for all ν̄ such that ν̄ < (1 + β1

1)/3]. Putting together
estimates (5.27), (5.28) and (5.33), we can invert the differentiation and integration operators in (5.25)
and we deduce that there exists a positive δ′′ depending on known parameters in (H) only such that

||D1u||∞,∞,ν ≤ CT δ′′(||D1u||∞ + ||D2u||∞ + ||D2
1u||∞),

where || · ||∞,∞,ν is defined in Theorem 3.1. �
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