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ABSTRACT
As image processing and analysis techniques improve, an increas-
ing number of procedures in bio-medical analyses can be automated.
This brings many benefits, e.g improved speed and accuracy, leading
to more reliable diagnoses and follow-up, ultimately improving pa-
tients outcome. Many automated procedures in bio-medical imaging
are well established and typically consist of detecting and counting
various types of cells (e.g. blood cells, abnormal cells in Pap smears,
and so on). In this article we propose to automate a different and dif-
ficult set of measurements, which is conducted on the cilia of people
suffering from a variety of respiratory tract diseases.

Cilia are slender, microscopic, hair-like structures or organelles
that extend from the surface of nearly all mammalian cells. Motile
cilia, such as those found in the lungs and respiratory tract, present
a periodic beating motion that keep the airways clear of mucus and
dirt.

In this paper, we propose a fully automated method that com-
putes various measurements regarding the motion of cilia, taken with
high-speed video-microscopy. The advantage of our approach is its
capacity to automatically compute robust, adaptive and regionalized
measurements, i.e. associated with different regions in the image.
We validate the robustness of our approach, and illustrate its perfor-
mance in comparison to the state-of-the-art.

Index Terms— frequency analysis, periodic motion, biomedical
imaging, mathematical morphology, image stabilization.

1. INTRODUCTION

Muco-ciliary clearance is a crucial mechanism of defense against
aerial environmental attacks such as micro-organisms or pollution.
This clearance is achieved by the coordinated beating of the cilia
covering the nasal epithelium. Cilia motility impairment can be ei-
ther of genetic (primary ciliary dyskinesia) or acquired origin due
to environmental attacks and may entailing chronic diseases such as
chronic sinusitis and bronchitis. It is of interest for practitioners to
evaluate ciliary beating motion (CBM), in particular the cilia mea-
surements and the beating frequency, easily, robustly and reliably.
The estimation of ciliary beating frequency has been a research topic
since the middle of the 20th century. One of the first method of ref-
erence for measurement of cilary beating frequency was proposed in
1962 and used a photo-sensitive cell [1]. Stroboscopic methods have
been replaced by more accurate techniques that use photomultiplier,
photodiode and high-speed imaging. Those methods are described
and compared in [2]. Analysis via high-speed video-microscopy is
now considered the most accurate method. Hence, the most com-
monly used technique today for evaluating ciliary function in hu-
man being consists of collecting ciliated cells from nasal or tracheo-
bronchial surface mucosa, to observe them under a microscope and
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to record their motion via high-speed video acquisition. Evaluation,
via these records, of ciliary beating patterns was reported helpful in
the diagnosis of primary ciliary dyskinesia [3, 4, 5].

In clinical research, there exist several methods that estimate
ciliary beating motion, but typically only the beating frequency, and
nearly all are semi-automated. Cinematic analyzis [6] manually
counts the number of frames required to complete 10 ciliary beat
cycles. It is a time-consuming and user-dependent method, which
has to be repeated several times to obtain a reliable result.

Kymograph analysis [7, 8] is a ”linescan” method where grey
level variations over a line drawn by the user are analyzed semi-
automatically. This method is sensitive to illumination, vibrations,
proper cell motion and depends on the location of the line, the shape
of the ciliated cells, as such it is only really suitable for straight cell
borders. It is also user-dependent.

In the literature, only a few articles tackle the CBM problem.
In [9] we presented an automated, region-based solution to measure
only the cilia beating frequency using optical flow. A semi auto-
mated method also using optical flow is proposed in [10]. In that
article, optical flow features are used to distinguish between healthy
and unhealthy cells. Unfortunately it is currently not possible to
compare the flow features with clinical measurements and so these
features have limited diagnostic capability.

In the current paper, we propose a fully automated approach for
the analysis of cilia motion that adapts to the cell shape. Our ap-
proach is an improvement on the straight linescan techniques cou-
pled with cilia segmentation, which we term ”curvescan”. In the
following sections we present the material and methods; the pre-
processing steps; our proposed adaptive curvescan technique; our
results and discussion; and finally a conclusion and future work.

2. MATERIAL AND METHODS

Cilia are tiny structures of 6µm in length and 0.3µm in diameter. To
be able to observe them, ciliated cells were taken from nasal biop-
sies and placed under a high-power bright field optical microscope.
Sequences were acquired with a spatial resolution of 0.13µm and a
temporal resolution of 356 frames per second with a high speed cam-
era. The high speed camera exerts a grid-like sensor pattern which
degrades the image. Since cells have to be kept in liquid serum to
stay alive, the entire cells move due to their beating cilia. Artefactual
motion of the whole field of view can sometime be observed due to
vibrations.

We note that since the origin of the cilia motion is biological in
nature, it is not perfectly periodic. The frequency of the beating may
vary slightly over a short timespan. Also different cilia in the same
spatial group may beat at different frequencies. For these reason, we
refer to the cilia motion as pseudo-periodic.
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Fig. 1. Removal of sensor pattern. (a) is the initial frame I of the se-
quence S, (b) is the sensor pattern obtained by subtracting Gσ=1(S̄)
to the average S̄, (c) is the result Iclear of the subtraction between the
sequence and the sensor pattern I −

(
S̄ − Gσ=1(S̄)

)
(d) is the ex-

traction of the moving parts of the sequence Imov = Ireg − S̄3, using
registered images Ireg.

3. PRE-PROCESSING STEPS

Let S be the sequence acquired under the microscope. We used a
pre-processing similar to [11]. It consists of 3 main steps:

Sensor pattern removal:

∀I ∈ S : Iclear = I −
(
S̄ − Gσ=1(S̄)

)
(1)

where Gσ=1 is a gaussian filter with standard deviation σ = 1 and S̄
is the average of the sequence S. We called S2 the sequence of the
resulting Iclear.

Sequence stabilization: To register the sequence, we are looking
for a rotation R =

(
cos θ sin θ

− sin θ cos θ

)
and a translation T = (dx, dy)

such that;

∀(x, y) ∈ Iclear : Ireg(x, y) = Iclear(x
′, y′) (2)

and [x′ y′]> = R[x y]> + T .
We estimateR and T using a robust iterated regression :

P1 = P2 ×R+ T (3)

where P1 and P2 are matching sets of points, extracted using
SIFT [12] or SURF [13]. We call S3 the resulting stabilized se-
quence of Ireg

Motion zone estimation: We detect the zones with motion using

∀Ireg ∈ S3 : Imov = Ireg − S̄3 (4)

S4 is the sequence of Imov. These steps are illustrated on Fig. 1.

4. ADAPTIVE CURVESCAN

Because cilia beat in 3D, they come in and out of focus during their
motion. They also beat in groups. This makes tracking an individual
cilium very challenging. The idea of the ”linescan” technique is to
only observe the variations of intensity in a given narrow, elongated
region (typically a line) encompassing the perceived cilia motion.
Since the cilia motion is pseudo-periodic, so should be the intensity
variation. Here we seek to specify this scanning region automati-
cally, and we do not limit ourselves to a linear region. Cilia located
on biopsy cells are rooted along the surface of the cell. Contrary
to the experimental conditions of [8], where cultured ciliated cells
are located on an even surface, the beating extremity of cilia form a
curve. Since cilia may be of varying lengths, it is useful to consider
not just a single curve but several from the root to the tip of the beat-
ing region. By analogy to the linescan technique, we call this new
one the adaptive curvescan.

4.1. First step: motion zone segmentation

After pre-processing, beating cilia are the only moving part in the
sequence. The temporal variance V of this sequence (Fig. 2.b) thus
highlights the zones with motion.

V = Gσ=1 ∗
L−1∑
t=1

(∇tI −
1

L− 1

L−1∑
t=1

∇tI)2, (5)

where∇tI = It−1 − It is the temporal gradient. We use a classical
watershed-based morphological procedure [14] to segment the dif-
ferent areas of motion. The markers are selected fromM, a thresh-
olding of a smoothed dilated image of the variance:

M = (Gσ=5(δB3(V)))>0.3∗max(V) (6)

where δB3(I) is the dilation of I by an Euclidian ball B of radius 3.
I>θ denotes the thresholding of image I above θ.
Internal markers are provided by εB(M) and external marker by
εB3(X \M), where εB is the erosion by an Euclidian ball B and X
is the image domain.

The watershed of the variance leads to a mask denoted byML.
Figure 2 shows an example of such a mask, in which all the con-
nected components are distinguished by a different (color) label.

4.2. Second step : specifying the scan curves

Each segmented motion zone a of ML is smoothed by a closing fol-
lowed by an opening of radius 15, resulting in af = γB15ϕB15(a),
where γ is the opening and ϕ the closing. An interior Euclidean dis-
tance map [15] Df is then computed from af . The value of 15 was
chosen to correspond to a diameter smaller than the smallest cilia,
so they are all preserved by the filtering. This filtering simplifies the
region contours, removes regions that are too small to contain cilia,
separates regions containing different groups of cilia and guarantees
that the first 15 level lines of Df are connected. Each level-line of
Df allows us to ”unroll” the region af at a different distance from
the ciliated cell (see Fig. 3.a). Starting from an arbitrary point of
a level line Lv at distance v in Df , we follow this curve around
af in an 8-connected fashion, recording the pixel coordinates as
we go. We stop when we encounter the edge of the image or the
initial point after one loop. We create a new image ILv of size
(length of the curve) × (number of frames in the sequence), where
each column m corresponds to the grey level values of Lv in the
frame m.



(a) (b)

(c) (d)

Fig. 2. Adaptative curvescan. (a) Initial frame from S4. (b) Variance
V of S4. (c) MaskML of the zones of movement, obtained with a
watershed of (b). (d) Distance map Df inside the green zone of (c),
yielding concentric lines.

ILv [n,m] = Immov[Cv[n]] (7)

Where Immov corresponds to the frame number m of Imov, Cv[n] =
[n′,m′] is the coordinates of the point number n of the line Lv in
Immov. We subtracted the output of a spatial median filter with a win-
dow size of 11 × 11 to eliminate illumination variation and only
retain thin objects. We denote Iv this resulting image (see Fig. 3.b).

4.3. Parameters estimation

The purpose of our method is to allow the estimation of several pa-
rameters that are discriminant for diagnosis. In this section, we pro-
pose procedures for frequency estimation and cilia length measure-
ment.

(a)

(b)
Fig. 3. Example of grey level extraction.(a) Schematic example of
unrolling of the first line in distance map (b) ImedLv (= Iv) is an
example of curvescan result after median filtering subtraction.
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Fig. 4. Power spectra examples (a) a single frequency present, with
harmonics, (b) Two distinct frequencies present.

Frequency estimation We estimated the power spectrum S = |F|2
by a power spectral density method, exemplified in [8]. It consists of
computing the Fourier transform Fn on each line n of Iv and aver-
aging the square modulus of all the Fn. The cilia beating frequency
was then estimated using a parabolic approximation of the main peak
and its potential neighbors, in the range of plausible frequencies for
cilia (i.e. 0-30Hz).

∀k ∈ [0,M − 1] : Fn(k) =

M−1∑
g=0

Iv[n, g]e−j2π
gk
M (8)

S(k) = |F(k)|2 =
1

N

N−1∑
n=0

|Fn(k)|2 (9)

where M is the number of columns of Iv (number of frames of the
sequence), and N is the number of pixels of Lv . For each sequence,
we estimated the cilia beating frequencies over the level linesLv 2, 7
and 14 of Df , which are all connected by construction thanks to the
filtering of section 4.2, and we took the average as our estimation.
Note that the fact that different level lines have differing length has
no bearing on the frequency estimation since the time axis has the
same length. Also note that we do not need to discriminate on the
image Iv along the vertical axis for portions that correspond to zones
close to the root or near the tip of the cilia, since by continuity of the
cilia, the pseudo-periodic motion occurs consistently.
Cilia length measurement The regions of cilia motion segmented
in section 4.1 represent the zones where cilia are located. The length
l in µm of cilia are represented by the width of the mask. In order
to obtain precise measurements, we computed a distance map DQ

f

on labels of Ml using a quadratic Euclidian distance [15]. The max-
imum value of DQ

f inside the region of interest is the square of the
radius of the largest inscribed disk, and thus using this value we can
obtain a good approximation of the width of the region, and there-
fore of the length of the cilia beating in it, by using the following
formula:

l =
√

max(DQ
f )× 2× 0.13 (10)

where 0.13 is the spatial resolution (1 pixel = 0.13µm).

5. RESULTS AND VALIDATIONS

Frequency We computed our curvescan results on 11 annotated se-
quences of beating cilia. We tested our method on cilia exhibiting
a variety of beating frequencies, between 6Hz and 14Hz. As stated
above, for each sequence, we measured frequencies from 3 different
level curves of the distance map, one at the border, one in the center
and one in between them. We hence had 33 measurements for 11
sequences.
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Fig. 5. Validations of our method for frequency estimation. (a) Mean
and standard deviation of our error measurement (b) Validation of
the robustness : frequencies estimated on several lines of DQ

f are
similar. (c) Validation of the accuracy : frequencies obtained with
our method correspond to ground truth.

The frequency analysis of the power spectrum may reveal several
frequencies present in a region. It may be a single real frequency
and its harmonics, or several similar frequencies corresponding to
cilia group beating at different frequencies (see Fig. 4). In all cases
we only considered the frequency with the highest power in the spec-
trum.

We validated our results in two steps: we first checked the ro-
bustness of the method by comparing the values obtained for each
line (see Fig. 5(b)). Then we validated the accuracy of our method
by comparing our frequencies with those carefully estimated by ex-
perts (see Fig. 5(c)). We measured the average error rate in the clas-
sical way with the formula AverageError = 1

J

∑J
j=1

|mj−tj |
tj

with
mj our measurement and tj the corresponding ground truth .
We measured the error rate of each measurement separately first, and
then the error rate of the averaged estimations. Results obtained are
shown in Fig 5(a).The mean errors are similar, about 2.2%.
Among our 33 measurements, 30 (or 91%) are within the confidence
interval of 95%. However, if we consider the averaged frequency es-
timations and compare them to the expert estimations, the main fre-
quency is estimated correctly in 100% of sequences. These results
are promising for both the robustness and accuracy of our proposed
method.
Cilia Length We computed cilia length measurement on our se-
quences using the method described in section 4.3. A unique value
is obtained for each sequence. An expert manually measured the
length of cilia in a region. Their manual measurement was repeated
3 times. We took the average as ground truth for our validations.
We compared our measurements in two different ways (see Fig 6).
The first is the equivalent of the frequency validation: we con-
sidered the expert measurement as perfect and we measured the
AverageError rate. In this way, we obtained an error rate of 2.13%,
with one measurement out of 11 outside the 95% confidence interval
and a standard deviation on the error of 2.91%. The second way
is the total least square regression method, which seeks a propor-
tionality factor between the manual and automated measurements,
taking into account the fact that there could be variability in the ex-
pert measurements too. With this method, assuming equal variance
between the automated and expert measurements, we achieved an
error rate of only 0.8%. The real error rate may be in between these
two values. In any case these error rates are reasonably low and so
our results are again promising.
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Fig. 6. Validations of our method for cilia length measurement. (a)
Validation of the robustness : frequencies estimated on several lines
of Df are similar. (b) Validation of the using expert variation with
total least squares regression method yields a line which fits our mea-
surements better. (c) Error estimation with the two methods of val-
idation : our mean error may lay somewhere between 0.08% and
2.13%.

6. DISCUSSIONS AND CONCLUSION

We have proposed a novel method for the automated analysis of beat-
ing cilia, which are of crucial importance for patients suffering from
various forms of severe respiratory diseases. Our method is capa-
ble of analyzing entire images consisting of several beating regions.
We use the shape of the beating regions to estimate the length of the
cilia. Each region of beating cilia may include the presence of multi-
ple beating frequencies (see Fig. 4). We have shown that our estima-
tions are precise, robust and repeatable by validating them against a
human observer.

Our method currently records only the main frequency in a beat-
ing region but can be easily extended to record all relevant frequen-
cies. We are working on a new segmentation method taking fre-
quency into account to obtain more homogeneous and more pre-
cisely defined beating regions. At present we only estimate fairly
simple characteristics, however our curvescan results opens the way
for more interesting ones. We are currently working on estimating
the beating amplitude, regularity, symmetry, and so on. The idea is to
analyze the tracks of cilia (see Fig. 7) in the curvescan. With respect
to this diagram, we are already measuring Tx and a subset of Dx, the
distance crossed by cilia. For a more complete set of measurements,
we would need to estimate Ax corresponding to the amplitude of
beating cilia, and Px the pause duration in the cilia motion. The
combination of these parameters with Tx and the cilia length that we
already measure, will provide most of the parameters necessary for
disease characterization currently used in clinical practice [5].

Fig. 7. Ilustration of future work, on synthetic image where we can
see two patterns.
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