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A Geometric Approach to the stabilisation of certain
sequences of Kronecker coefficients

Maxime Pelletier*

Abstract

We give another demonstration, using tools from Geometric Invariant Theory,
of a result due to S. Sam and A. Snowden in 2014, concerning the stability of Kro-
necker coefficients. This result states that some sequences of Kronecker coefficients
eventually stabilise, and our method gives a nice geometric bound from which the
stabilisation occurs. We perform the explicit computation of such a bound on two
examples, one being the classical case of Murnaghan’s stability. Moreover, we see
that our techniques apply to other coefficients arising in Representation Theory:
namely to some plethysm coefficients and in the case of the tensor product of rep-
resentations of the hyperoctahedral group.

1 Introduction

For a positive integer n, let G,, be the symmetric group over n elements. The complex
irreducible representations of this group are indexed by the partitions of n (i.e. non-
increasing finite sequences of positive integers -called parts- whose sum is equal to n). For
a partition « of n (for which the integer n is called the size, and denoted |a|), we denote
its length (i.e. the number of parts) by ¢(«), and write M, for the associated complex
irreducible representation of &,. An important problem concerning the representation
theory of this group is the understanding of the decomposition of the tensor product of
two such irreducible representations:

M, ® Mg = @M’?ga,ﬁﬁ’
yHEn

where the multiplicities g, g, are non-negative integers, which are called the Kronecker
coefficients. These coefficients appear in various situations, and are quite difficult to
study. Some of their properties are nevertheless known, one of which being that the
order of the three partitions indexing a Kronecker coefficient does not matter.

There are several different ways of studying the Kronecker coefficients, and we will be
interested in their asymptotic behaviour, in various senses. They hold indeed a remark-
able asymptotic property, noticed by F. Murnaghan in 1938: let «, 8, be partitions of
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the same integer; if one repetitively increases by 1 the first part of each of these partitions,
the corresponding sequence of Kronecker coefficients ends up stabilising. J. Stembridge,
in [Stel4], introduced two notions of stability of a triple of partitions in order to generalise
this Murnaghan’s stability:

Definition 1.1. A triple (a, 8,7) of partitions such that |a| = |5| = |y is called:
e weakly stable if gjq 45,4y = 1 for all d € N*;

e stable if g, 3., > 0 and, for any triple (X, i, v) of partitions such that |A\| = |u| = |v|,
the sequence of general term g da,+dg, +dy 1S eventually constant.

The terminology "weakly stable" is in fact used by L. Manivel in [Man14|. The notion of
a stable triple is made to generalise the Murnaghan’s stability: the latter simply means
that the triple ((1), (1), (1)) is stable. By introducing the notion of a weakly stable triple,
Stembridge hoped to find a more simple criterion to determine whether a triple is stable.
He indeed proved in [Stel4| that a stable triple is weakly stable, and conjectured that
the converse is true. S. Sam and A. Snowden proved shortly after, in [SS15|, that it is
indeed verified. In the first part of this article, we give another proof -more geometric
and completely different- of this result!, recalled here:

Theorem 1.2. If a triple (o, 5,7) of partitions is weakly stable, then it is stable.

A question then arises: given a stable triple, can we determine when the associated
sequences of Kronecker coefficients do stabilise? There has already been results on this,
at least in the case of Murnaghan’s stability: for instance, M. Brion -in 1993- and E.
Vallejo -in 1999- calculated bounds from which these sequences are necessarily constant.
In [BOR11], E. Briand, R. Orellana, and M. Rosas recall the two bounds from Brion and
Vallejo, and determine two other ones, still in the case of the stable triple ((1), (1), (1)).

The interesting aspect of our proof of Theorem 1.2 is that it gives a nice "geometric
bound" from which we can be certain that the sequence (gx{da,u+ds,v+dy)d is constant, if
the triple (a, §,7) is stable. Indeed, the Kronecker coefficients can classically be related
to the dimension of spaces of invariant sections from some line bundles: for all triples
(a, B,7) and (A, p, v), there exist a reductive group G acting on a projective variety X,
and two G-linearised line bundles £ and M over X whose spaces of invariant sections
respectively give -via their dimension- the coefficients g, g~ and g . (cf. Section 2.1).
Then, for d € N, gx{da utdsv+dy is the dimension of H(X, M + dL£)%, the space of
invariant sections of the line bundle M + d.L on X.

Proposition 1.3. We suppose that the triple (o, 8,7) is weakly stable. Then:

e there exists an integer D € N such that, for all d > D, X**(M + dL) C X**(L)
where, if N is a line bundle, X**(N') stands for the set of semi-stable points with
respect to N, i.e. the points x for which there exists an invariant section of a
positive tensor power of N whose value at x is not zero.

'"During the redaction of this article, there was a prepublication by P.-E. Paradan [Par15], who appears
to give a point of view much closer to ours.



e as soon as X**(M+dL) C X*°(L), the Kronecker coefficient gatda,j+dp,y+dy does
not depend on d.

In Section 3, we give a method allowing -at least for "small" weakly stable triples-
to compute bounds from which this inclusion of the sets of semi-stable points is re-
alised. We perform the calculations for two examples of triples (namely ((1), (1), (1))
and ((1,1),(1,1),(2))). It gives us:

Theorem 1.4. If we denote ny = £()\), ng = (1), and set 2

1 ni+ns—4
D, = [5 (—M + Ao — pi1 + p2 4+ 2(V2 — Vnyny) + Z (Vky2 — anz—ﬁ)} ;
=1

we have, for all d > D1, gayd(1),u+d(1),v+d(1) = 9r+Ds1(1),utD1(1)w+Di(1)-

(it is in this case legitimate to reorder the partitions A, p, and v to get the lowest bound
D, possible) and

Theorem 1.5. If m = max(—Ag — 1, —A1 — p2), and

_1 ni+ns—4
3 <m + X3+ a2 — V) + Y (Vhyo — angk)ﬂ if ni,ng >3
k=1
_1 no—1
Dy = §<m+ﬂ3+27/2—’/2n2+21/k+2>w if ng =2
k=1
_1 ni—1
§<m+)\3+21/2—1/2n1+zyk+2>—‘ ifn2:2
k=1

then for all d > Da, gxyd(1,1),utd(1,1),0+d(2) = I+ Da(1,1),u+Da(1,1)0+ D2 (2) -

An interesting thing to notice in this computation is that we can sometimes get a
bound slightly better than the one we obtained for the inclusion X**(M+dL) C X*°(L):
by an argument of quasipolynomiality (which is a known result, but we write a proof of
it in our case in section 3.4.1, inspired by [KP14]), we prove that the stabilisation of the
sequence (gxtda,utds,v+dy)d can sometimes happen one rank before the inclusion.

We then prove that our method allows to recover some of the bounds already existing
in the case of Murnaghan’s stability: we re-obtain Brion’s bound, as well as the second
one given by Briand, Orellana, and Rosas. Moreover, we get slight improvements for
these in some cases. The bounds we obtained are in addition tested on some examples,
in Section 3.6. We also make a comparison on these examples with the four already
existing bounds that we cited.

In Sections 4 and 5, using our method, we prove that weak stability also implies sta-
bility for some other coefficients arising in Representation Theory: at first for plethysm

2The notation [z] stands for the ceiling of the number z (i.e. the integer such that [2]—1 < z < [z]).



coeflicients, and then for the multiplicities in the tensor product of two irreducible rep-
resentations of the hyperoctahedral group, which is the Weyl group of type B,,.

Acknowledgements: 1 would very much like to thank Nicolas Ressayre for extremely
useful ideas and remarks during the preparation of this article.

2 Proof of Theorem 1.2 and Proposition 1.3

2.1 Link with invariant sections of line bundles

Thanks to Schur-Weyl duality, the Kronecker coefficients also appear in the decomposi-
tion of representations of the general linear group. If V; and V5 are two (complex) vector
spaces, « is a partition, and if we denote by S the Schur functor?,

(Vi @ Va) = @D (s°() @ §7(V3)
ap

)@Qaﬁm/

as representations of G = GL(V7) x GL(V2). Then, by Schur’s Lemma we have, for all
triple («, 8,7) of partitions (such that |a| = |8| = |y|) and all vector spaces V; and V;
such that dim(Vy) > ¢(a), dim(Va) > ¢(3), and dim (V1) dim(Va) > £(~):

. arr vk o B e
Go 5 = dim ((87V2)" @ (8712)" © (1 © V&)

Finally, we use Borel-Weil’s Theorem: if V' is a complex vector space of finite dimension,
we denote by F¢(V') the complete flag variety associated to V. We know that, if B is a
Borel subgroup of GL(V'), the variety F¢(V) is isomorphic to GL(V)/B. We can then
define particular line bundles over GL(V')/B: for any partition \ of length at most dim V/,
the finite sequence of integers —\ defines a character e~ of B, and this allows us to define
Ly = GL(V) xp C_), where C_) is the one-dimensional complex representation of B
given by the character e=*. The fibre product £ is a GL(V)-linearised line bundle over
GL(V)/B ~ F¢(V). Then Borel-Weil’s Theorem states that the representation (S*V;)*
is isomorphic to HY(F¢(V7), Ly), the space of sections of the line bundle £, over F¢(V7).
It is the same for (S%V3)*, and for Vi ® V4 it yields SY(Vy @ Vo) ~ HY(F(Vi ® V3), L3).

Hence, we have the important following proposition:

Proposition 2.1. For all triple (c, B,7) of partitions such that |o| = || = ||, there
exist a reductive group G, a projective variety X on which G acts, and a G-linearised
line bundle L, g~ over X such that

Yo,8,y = dim (HO(Xa Eaﬁ,v)G) .

3In other words, if V is a complex vector space of dimension n, and X\ a partition of length < n,
then S*(V) is the corresponding irreducible representation of GL(V). Moreover, all complex irreducible
polynomial representations of this group are obtained this way.




Proof. According to what precedes, it suffices to take V4 and V5 two vector spaces of
large enough dimension, G = GL(V7) x GL(V3), X = F (V) x F(Va) x F(Vh @ Va), and
Eaﬂﬁ = Ea®£5®ﬁz. |

Thus, from now on, we consider a weakly stable triple («, 3,v) of partitions, and
another triple (A, i, ) of partitions (also satisfying |A\| = |u| = |v|). Then there exists a
reductive group G, acting on a projective variety X, and two G-linearised line bundles
L and M on X such that:

Ja,8 = dim (HO(X, E)G) and Iy = dim (HO(X, ./\/l)G)

(we denote by V; and Vs the two vector spaces used to define those). We are interested
in the behaviour of HY(X, M + d£)%, or rather its dimension, for d € N.

Remark 2.2. When we write M + dL, the operation denoted by "+" is the operation
in PiCG(X ), the group of G-linearised line bundles over X, i.e. the tensor product.

2.2 Semi-stable points
2.2.1 Definition and criterion of semi-stability

Definition 2.3. Given a G-linearised line bundle N over X, we define the semi-stable
points in X (relatively to A') as the elements of

X¥(W) ={z e X st. Ik e N*, Jo e H(X, N o(x) #0}.

The points which are not semi-stable are said to be unstable (relatively to A), and we
denote by X"$(N\) the set of unstable points.

Let us emphasise that this is not the standard definition of semi-stability (cf. for
instance [Dol03], Chapter 8): most often there is an additional requirement to fulfil for
a point to be semi-stable. The definition we gave coincides nevertheless with the usual
one in the case of an ample line bundle.

Proposition 2.4. If N is a G-linearised semi-ample line bundle over X, then
HO(X, M) = HY (X (V) N)©.

Proof. This result can be found for ample line bundles in [Tel00], Theorem 2.11(a). C.
Teleman gives it with the more usual definition of semi-stable points, which is not ours,
but coincides with it in this case. Then, in the case of a semi-ample line bundle N, there
exists a G-equivariant projection m : X — X (which is even a fibration with connected
fibres) such that A is the pull-back by 7 of an ample line bundle A over a projective
variety X.

Indeed, X is a product of flag varieties and, on such a variety, a semi-ample line bundle is
a L for 0 a partition. Moreover this L; is ample if and only if the type of the partition (i.e.
the indices i such that §; > d;11) coincides with the type of the flag variety. Henceforth,



for every partition §, there exists a projection as announced above, which consists simply
in forgetting in the flag variety the dimensions which do not appear in the type of 6.

Then, with the properties of ,
HY (X, ) ~ HO(X, N =~ HY(X™ (W), V) >~ HO (X (), V)€,
since 71X (V) = X35(N). O

There is an extremely useful criterion of semi-stability which is called the Hilbert-
Mumford criterion. It is generally stated for ample line bundles but, with the previ-
ously given definition of semi-stability, it holds for semi-ample line bundles (cf. [Res10],
Lemma 2), which is the case for all the line bundles we consider. We are going to rephrase
this criterion to get a more geometric one, in terms of polytopes. Let us begin with the
case in which a torus T" acts on X, and A is a T-linearised ample line bundle over X.

Then (see e.g. [Dol03], Section 9.4), as N is ample, we have a closed embedding of X
in P(V'), where V is a finite dimensional vector space, the action of T on X comes from
a linear action on V, and some positive tensor power of N is the restriction of O(1) to
X. Then, since T is a torus, V splits into the direct sum of eigensubspaces,

where X*(T") denotes the set of all characters of T" and, for all x € X*(T'), V, = {v €
Vst Vt € T, t.v = x(t)v} is the eigensubspace associated to the character y. Then,
forze X CP(V)andav =73 vy €V (v € V) such that x = Span(v), we define the
weight set of x as

Wt(z) = {x € X*(T) s.t. vy # 0}.

Note that Wt(z) is a finite subset of X*(T) ~ ZY c RV (N is the rank of T'). We finally
define the weight polytope of z as the convex hull conv(Wt(z)) of Wt(z) in RY. Then,
Theorem 9.2 of [Dol03]| states that the Hilbert-Mumford criterion means:

z € X*(N) <= 0 € conv(Wt(z)).

We want to express this in a way which does not use an embedding in a P(V'), and which
involves explicitly N. For this, one has to wonder what any object in P(V') corresponds
to in X:

In P(V) In X
P(Vy) (for V,, # {0}) fixed points of T'
U(]P’(VX) nx) XT = {fixed points of T"in X}
X
P(Vy) N X a union of some irreducible components X1, ..., X of X©
X~ character giving the action of 7' on Ny for i € [1,]



So we set, denoting by X7,..., X, the irreducible components of X7, for all i € [1, 5],

xi: Picl(X) — X*(T)
N — the inverse of the character giving the action of T on N/ X

Then, the Hilbert-Mumford criterion states:
x € X¥(N) <= 0¢€ conv({x;(N); i€[l,s] s.t. xi(N) is a vertex of conv(Wt(z))}).

And the only object left which uses an embedding of X in P(V') is Wt(z). But we can
get rid of it thanks to the following lemma:

Lemma 2.5. With the notations used above, if ¥ = Span (Zx Ux) e X CcP(V),

X is a vertex of conv(Wt(z)) <= P(V;) NT.z # 0.

Proof. Let us recall that there is a duality pairing between X*(7") and the one-parameter
subgroups of T, whose set is denoted by X,(T'): for all x € X*(T) and 7 € X.(T),
xot : C* — C* is of the form z +— 2™ with n integer. We set (x,7) = n. Then, according
to a classical property of convex polyhedra:

1) =0

X Is a vertex of conv(Wt(z)) <= 37 € Xi(T) s.t. { VX' € conv(Wt(z)) \ {x}, (X',7) >0~

As a consequence, if x is a vertex of conv(Wt(z)), we have such a 7 € X, (T). Moreover,

Vz € C*, 7(z).x = Span ZX’ oT(z)vy | = Span Z Z<XI’T>UX/
X’ X’

And thus lin%](T(z).x) = Span(vy ) € P(Vy) NT.x.
z—

Conversely, if we suppose that x is not a vertex of conv(Wt(z)), then for all 7 €
X.(T), there exists x(7) € conv(Wt(x)) \ {x} such that (x(7),7) = (x, 7). We want to
prove that P(Vy) NT.z = 0.

By contradiction, let us assume that P(V,) NT.x # (). Then there exists 7 € X,(T) such

that lin%(T(z).x) € P(V,). On the other hand,
2—

Vz € C*, 7(z).x = Span Z z<X/’T>vX/

!

X

So, for every X' € Wt(z) \ {x}, (X',7) > (x, 7). This contradicts the existence of x(7),
which is necessarily a convex combination involving at least one element of Wt(x

\
{x}- ]



Then,
T € X*¥(N) <= 0¢€conv({xi(N);i€ll,s]st X;NT.x+#0}),

which now does not involve anymore any embedding of X in P(V'). So this is also true
for line bundles which are semi-ample, and not necessarily ample (since Hilbert-Mumford
criterion holds for such ones). We now extend this to the case when G is reductive. Then
we take a maximal torus 7" in G and, using Theorem 9.3 of [Dol03], we finally get:

Proposition 2.6. In our settings (a reductive group G acting on a flag variety X ), if
N is a G-linearised semi-ample line bundle over X, then

x € X*¥WN)<=Vge G, 0econv({x;N);iecll,s] st X;NT.(g.2) #D}),

where T is a mazimal torus in G, and X1, ..., X, are the irreducible components of XT.

2.2.2 Inclusions of sets of semi-stable points

The following proposition could be deduced from well-known results on the GIT-fan.
(see e.g. [DH9S|, Section 3.4, or [Res00], Section 5), but we give another demonstration
specific to this case:

Proposition 2.7. There exists D € N such that, for alld > D, X**(M+dL) C X*5(L).

Proof. To all x € X and g € G, we associate E, , € P([1,s]) (i.e. a subset of [1,s]) as
follows:

E.qo={ie[l,s]st. X;NT.(g.¢)# 0}.
With this notation, we know that:
reX¥(L)<=Vge G, 0econv({xi(L); i€ Eyg}).

So we set A = {E,4s.t. 0¢ conv({x;(L); i€ E;4})}, which is finite since contained
in P([1,s]). Then, for all E € A, there exists ¢ € (R™)* such that, for all i € F,
or(xi(£)) > 0 (by Hahn-Banach Theorem). Moreover?,

, M +dL
VE € A, Vi€ E, pgox; < y > . vE(xi(£)) >0,

acr
so there exists Dy € N* such that, for all d > Dg, for alli € E, ppox; (ML> > 0.

d
We then set D = max{Dg ; F € A}. Let d € N, d > D. Let ¢ X*5(L), which
means that there exists g € G such that 0 ¢ conv({x;(L) ; i € E;4}). In other words,
Eyg€ A. So,asd>D > Dg, ,, vg,,(xiiM +dL)) = deg, , o Xi <%> > 0 for
all i € E, 4. Hence (once again by Hahn-Banach Theorem),
0¢conv({xi(M+dL) ;i€ Eyz}), ie. @ ¢ X¥*(M+dL).

Thus, X*(M + dL) C X*5(L). O
4the applications ¢ o x; : PiCG(X) — R can be extended without problem to Pic® ®,Q




2.3 Use of Luna’s Slice Etale Theorem

Let us recall that we considered a triple of partitions («, 3,) such that, for all d € N*,
9da,dg,dy = 1. This means that,

vd e N*, HO(X, 5D ~ C.
Then, using Proposition 8.1 of [Dol03], as X is projective,
X*(L) ) G ~ Proj(C[t]).

So X*%(L) J G is a point. Thus X**(L) contains exactly one closed G-orbit, denoted by
G.xp. Moreover, X*°(L) is affine (since the canonical projection X*°(L) — X*(L) J G
is affine). So we can use Corollary 2 to Luna’s Slice Etale Theorem (cf. [Lun73|): there
exist a reductive subgroup H -which is in fact the isotropy subgroup Gy,- of G' and an
affine H-variety S such that

SH = {zo}
VeeS, zg € Hx
X*#(L)~GxpgS

Furthermore, S is a (complex) vector space of finite dimension on which H acts linearly.

2.4 Proof of Theorem 1.2

We are now ready to prove Theorem 1.2. We still have our weakly stable triple («, 3,7)
and another triple of partitions (A, u,r), which give rise to the two (semi-ample) line

bundles £ and M.

Proposition 2.8. If D € N is such that, for alld > D, X**(M + dL) C X*5(L), then
vd > D, H'(X, M +dL)% ~H(S, M)H.

Proof. Let D € N be as in the statement, and d € N, d > D. Then, thanks to Proposition
2.4,
HO(X, M +dL)% ~ HO(X*(M +dL), M + dL)°.

Consequently, since X*(M + dL) C X**(L) C X,
HO(X, M +dL)% ~ HO(X*(L), M + dL)C.
Now, using the consequence of Luna’s Slice Etale Theorem:
HY(X, M +dL)Y ~HY(G x5 S, M +dL)¢ ~H(S, M +dL)H.

We are almost done; it only remains to prove that HO(S, M +dL)H does not depend on
d. For this, we demonstrate that £ is trivial on S, using the following lemma:



Lemma 2.9. The application

Y: X*(H) — Picf(9)
X — Ly

)

where L, is the trivial bundle S x C whose H-linearisation is given by the character x,
s an isomorphism.

Proof. The only non trivial thing to prove is the surjectivity of 1. Let N € Pic?(S). We
have seen that zg is a point of S fixed by H. So, H acts on the fibre A,,. This action
gives x € X*(H). Moreover, N is trivial because S is a vector space. Necessarily, its
linearisation is given by the character x. O

We consider the character xq given by the action of H on £,, and we want to prove
that yo is trivial. As zo € X*5(L), there exist k € N* and ¢ € H(X, £L®*)¢ such
that o(zg) # 0. Moreover, dim(H?(X,£)%) = dim(H°(X, £LZ*)%) = 1 so, if we take
oo € HY(X, £)% \ {0}, we have o5* = to with t € C*. As a consequence, 03" (xq) # 0
and so og(zg) # 0.

Furthermore,

Vh € H, 0'0(1'0) = O'o(h.m'o) = h.O’Q(.%'o) = XQ(h)O'o(.%'o),

and then xo(h) =1 for all h € H. Thus, xq is trivial and so is £ over S.

Finally,
vd > D, HY(X, M + dL£)¢ ~ H(S, M),

O

Proposition 2.7 and Proposition 2.8 together conclude the proof of Proposition 1.3, and
as a consequence of Theorem 1.2.

3 Explicit bounds in some specific cases

We saw in the previous section that the sequence (g>\+da,u+d5,y+d7)deN stabilises as soon
as X**(M +dL) C X*(L). We now would like to see if one can compute the rank D
from which this inclusion is realised. The computation of the D from Proposition 2.7
appears to be too tricky, and so in the following we focus on two examples in which we
can do explicit computations using another method.

3.1 Steps of the computation

The inclusion X* (M +dL) C X**(L) we are interested in is equivalent to the following:
X" (L) C X" (M +dL). Here we are rather looking to prove this last one, principally
because we find that the fact of being an unstable point has -thanks to the Hilbert-
Mumford criterion- a more practical description. Here are the different steps we are then
going to carry out on the two examples:

10



The first step is to consider the projection 7 : X — X onto the product of partial
flag varieties such that L is the pull-back of an ample line bundle £ over X.

The second step is to study the set X (£) of unstable points in X. More precisely,
we want to express this set as the union of some orbit closures: cl(G.77),...,
c(G.zp).

Then one can prove that, thanks to good properties of the projection 7, X"5(L)
is the union of the closures of 771(G.77),...,7 1(G.T,). As a consequence, since
X" (M+dL) is closed and 7 is G-equivariant, to prove that X"*(£) C X"$(M+dL)
we only need to show for all i € [1,p] that 7—(z;) C X“$(M +dL).

In the fourth step we want to use the Hilbert-Mumford criterion. Let us write it
in a way different from before:

Definition 3.1. Let Y be a projective variety on which a reductive group H acts,

and N a H-linearised line bundle over Y. Let y € Y and 7 be a one-parameter

subgroup of H (denoted 7 € X,(H)). Since Y is projective, }ir% 7(t).y exists. We
_)

denote it by z. This point is fixed by the image of 7, and so C* acts via 7 on
the fibre A,. Then there exists an integer /Y (y,7) such that, for all t € C* and
zeN,,

r(t).r =t W)z,

The Hilbert-Mumford criterion can then be stated as (see e.g. [Res10|, Lemma 2):

Proposition 3.2. In the settings of the previous definition, if in addition N is
semi-ample, then:

yeY® W) <« VreX.H), Ny, <o.

Set i € [1,p]. Since T; € YjS(Z), we can find a destabilising one-parameter
subgroup for T;: 7; such that u* (73, 7;) > 0.

Let us keep in mind that we want to get 7~ 1(z;) C X% (M + dL). By Hilbert-
Mumford criterion, this will be true when, for all x € 7=(z3), p™M+%(z,7;) > 0.
But, for such an z, we have:

P (@) = M (@) + dpt (@5 ).
So we only need to calculate pM(z, ;) for all z € 7~ 1(77):

— From the definition of the integers u™(.,7;), we see that we can restrict to
the case when x € 7~ 1(;) is a fixed point of 7;. Then at first we determine
the form of such a fixed point.

— Finally we calculate explicitly the action of 7; on the fibre of M over such a
point.
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e As a conclusion, as soon as
M
d > - =
e, i)

for all i € [1,p] and 2 € 7~1(Z;)™, we have the inclusion we were looking for.

x77—i)

3.2 Case of Murnaghan’s stability
3.2.1 Reduction to ample line bundles

In this case, the stable triple we are interested in is simply ((1),(1),(1)). It has been
known for a long time that it is a stable triple. Consider

denoted X

™ X s PV x P(Va) x (Vi @ Va)") -
(W10)is Way)is, W))i) — (Wig,Wan,{p € (Vi ®Va)* sit. kero =W} .. 1})

Since a = 8 = v = (1), we have that £ = L, ® Lz ® L2 is the pull-back of O(1) @ O(1) ®
O(1) (denoted £ from now on) by 7. Moreover,
H(X, L) ~ (Vo VsV, V)¢ ~C.

So X**(L) = {z € X s.t. Go(x) # 0} for any 7o € HO(X, L)% \ {0}. A simple non-zero
section on X is
Cv1 ® Cvy ® Co — p(v1 ® v2).

And
X(L) = {(Cvy,Cuy,Cy) € X s.t. v) @ vy ¢ ker @}
3.2.2 Determination of X (L)

Let us take (eq,...,en,) a basisin V; (with ny > 2), and (f1,..., fn,) & basis in V5 (ng >
2). Their dual bases are denoted with upper stars. Moreover, we set n = min(n,ns).

Proposition 3.3. The set YUS(Z) consists in the closure of the orbit of the element
T = (Cey1,Cfa,Copyp,), where o, =30 e @ fFe ViF@ Vs ~ (V1 @ Va)*.

Proof. At first, since X (L) = {(Cvy,Cus,Cy) € X s.t. o(v; @ vg) = 0}, X (L) is
pure of codimension 1.

Then P((V1 ® V2)*) ~ P(V}* ® V') ~ P(Hom(V7, V5")). So we consider (I1,ls,Ct)) €
P(V1) x P(V2) x P(Hom(V1, V5")). The action of G is then:

V(g1,92) € G, (91,92)-(I1,12,C¥) = (g1(l1), g2(l2),Clg5 oo g1 ).

12



So we know that the orbits of the action on the third part (Ct)) are classified by the rank
of 1. Moreover, this triple (I1,l2, Ct)) defines several subspaces:

inVj ‘ in V5 ‘ in V* ‘ in Vo
I Iy Hy =1{ Hy =15
ker 1) ker tqp Im?) = (ker¢p)t | Imep = (kerte)) L
T (Ha) | TN (HY) | (1) = o7 (Ho) T | p(l) = " (H) S
and the different possible positions of i1 and Iy with respect to kere, ~!(Hs), and

respectively ker ‘4, tp=1(Hy), shall help us to describe the orbits. Furthermore, ker vy C
¢ (Hy), ker'yp C 'p~ 1 (Hy), and Iy C ¢~ (Hy) < lp C '~ (H).

First case: ny = ng (so n = nj; = na).
Let us first assume that rk = n. Then, kert¢) = {0} and ker’y) = {0}. So this leaves
two possibilities for the positions of [; and ls:

o Iy C 71 (Hy) and Iy C b~ 1(Hy). One can check that such (I1,l, Ct)) form one
orbit, Oy.

eIy ¢ v Y(Hy) and Iy ¢ Yy~ 1(Hy). One can also check that such triples form a
second orbit, Os.

We can see that O is unstable, whereas O, is semi-stable.

What if rk¢) < n — 17 The closed subset Y = {(I1,l2,Ct) s.t. k¢ < n — 1} satisfies
codim(YNX"*(£)) > 2 because, for all I; and lo, {Ct); rkep < n—1 and (l;)(l2) = {0}}
has codimension 2 in P(Hom(V1, V5")). So the complementary of Y N X “*(£) intersects
every irreducible components of X (£). Thus, Y¢ = {(I3,l,Ct) s.t. rkt) = n} inter-
sects every irreducible components of X (L)

Conclusion for this case: X (L) = cl(Oy), the closure of orbit ©;. Furthermore, a
representative of Oy is T = (Cey, Cfa, Cyy,).

Second case: n1 < ngy (and then n = ny).
In this case, {Ct¢ s.t. rk¢) < n — 1} has codimension at least 2 (because the minors of
rank n must be zero, and there are at least 2). So, as in the previous case, it suffices to

consider the case where rk 1) = n, for which ker+ = {0} and ker e # {0}. This leads to
three possibilities for I; and Is:

ol C Y Y(Hy) and Iy C ker’sp C “p~!(Hp). One can check that such (Iy,ls, C))
form one orbit, O;.

e[| C 1/1*1(H2) and Iy ¢ kertip, but Iy C ti/Fl(Hl). Once again, one can check that
this gives only one orbit, O,.

o Iy ¢ v (Hy) and Iy ¢ ‘b1 (Hy). One can still check that these triples form one
orbit, Os.

13



The orbit O3 is semi-stable, whereas @1 and Os are unstable. In addition, @7 C cl(Os)
because, if kv = n and (1,1, Ct) is unstable, (I1,lz,Cy)) € O1 & tah(ly) = {0} and
(ll, ZQ,CT/J) €0y & t?/)(lQ) 75 {0}_ .

Conclusion for that case: Here, X (L) = cl(O3) and a representative of Oy is the same
T as before: T = (Cey,Cfa,Cyp).

Third and last case: ny > no.
Everything happens similarly to the previous case, if we exchange the roles of Vi and V5.
So we have also the orbit of T = (Cey, Cfa, Ce,) which is dense in X - (L). O

3.2.3 Restriction to 7~ !(Z)
The projection m we use is of the form

7:G/B — G/P,
with G a complex reductive group, B a Borel subgroup, and P a parabolic subgroup
containing B. So the fibres are all isomorphic to P/B ( is even a fibration). This is also
true for its restriction to X“*(£) = 7~ (X **(£)). Thus, since G.T is dense in X (L),
77 1(G.T) is dense in X“$(L). As a consequence, X%(L) C X*(M+dL) if n~1(G.Z) C

XU (M+dL) (because X% (M +dL) is closed). And finally, if 771(Z) C X% (M +dL),
then 7~1(G.7) C X% (M + dL) since 7 is G-equivariant. Hence the following lemma:

Lemma 3.4. If dy € N is such that, for all d > do, 7~ 4(T) C X"“(M + dL), then
Vd > do, gryd(1),putd(1),v+d(1) = Irtdo(1),utdo(1)v-+do(1)-

3.2.4 Computation of the bound

We identify GL(V1), GL(V2), and GL(V; ® V,) respectively with GL,, (C), GL,,(C),
and GLy,,n,(C) thanks to the bases given in section 3.2.2. The basis in V; ® V3 is then
(ei ® fj)i . ordered lexicographically. Moreover we use the following notation for one-
parameter subgroups of some GLy,, (C) X - -+ x GLy,, (C):

7: C° — GLp, (C) x - x GLp, (C)

i’ o”
pas” o’
b . )
faim £
is denoted by 7 = (aﬁl),ag),---,a% ‘agp)’ e ,a(mp27>'

Destabilising one-parameter subgroup for z: We set the following one-parameter sub-
group of G:

0= (1,-1,0,...,0 | = 1,1,0,...,0).
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Then, since the action of 74(¢) on the lines Cey, Cfs, and Cy,, is the multiplication by ¢,
t, and 1 respectively, we have

pF (T, 70) = 2.
Let now 2 € 7~ 1(Z). We want to calculate p™ (2, 7). Thanks to the way u is defined
(first, one has to take the limit when ¢ — 0 from 79(¢).z and gets a fixed point of 79),
and since T is fixed by 79, it suffices to calculate p™(z, 1) for z € 7~1(Z)™. So we take
r € m HT)™.

Form of an element x € 7—(Z)™: First of all, the action of 79 on V; has three different
weights: 1,-1, and 0, whose corresponding subspaces are

W1 = Ceq, W_1 = Cey, and Wy = Ceg + - - - —|—(Cen1.

Thus, the component of x in F¢(V}) is a flag given by a basis of V; composed of: e;
at first, eo in a position ¢ between 2 and ni, and ny — 2 vectors forming a basis of Wj.
For the same reasons, there exists an integer j between 2 and ng such that the second
component of x (in F¢(V3)) is a flag given by a basis of V4 composed of fo at first, fi in
position 7, and na — 2 vectors forming a basis of Cfs + -+ Cfp,.

For the third component (in F¢(V; ® V2)) of x: the action of 79 on Vi ® V5 has now
five different weights, 2, -2, 1, -1, and 0, whose respective corresponding subspaces are

Wy = Ce1®fa, W_g = Cea®f1, W1 = Ce1® f3+- - -+Ce1® fr, +Ces® fo+- - -+ Cep, @ fo,

W_1=Cer® fs+ - +Cea® fp, +Ces @ f1 + -+ Ceyp, @ f1,
Wp spanned by the rest of the e; ® f;.
Thus, the component of x in F¢(V; ® V3) is a flag given by a basis of V] ® V5 of the form:

e ¢1 ® fo at a position ko between 1 and nine — 1,
® ¢o ® f1 at a position k_o between 1 and nino — 1,

(1) (1)

e n1+ny—4 vectors forming a basis of Wy at positions my”’,...,m, "\ 4 (between
1 and nyng — 1),
e 11 + ng — 4 vectors forming a basis of W_; at positions m(fl), e ’mgjr)ng—zl (be-

tween 1 and nijng — 1),

e the other vectors forming a basis of Wj.

Calculation of the action of 7 on the fibre of M over z: (We denote this fibre by M,).
Let us recall another description, for § a partition, of the line bundle L5 over a flag variety
FL(V) (with dim V =n > £(J)). We have the embedding
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L FUV) — [Ir, PA"V) _
(Cv1,Cv1 & Cog,...,C1 & - B Cvy) > (Cv1,C(vr Ava),...,Clog A+ Awy)

Then L is the pull-back of the line bundle O(6; — §2) ® - - @ O(6p—1 — 0p,) @ O(d,,) by
¢ (for all the partitions that we use, we take the convention that, if i > ¢(0), ¢; is simply
0). Using this description and the form of an element x € 7= ()™, we can easily get
the following:

Lemma 3.5. For x € n~1(Z)™, there exist i € [2,n1], j € [2,n2], and 2(ny + nz — 3)

distinct integers k‘g,kz,g,mgl), R m£11)+n274,m§71), e ’mgjr)ng—zl € [1,n1ng — 1] such
that
ni+ns—4
pM (@, 70) = M= i+ — g+ 20, — Vi) + Z (V,,n<—1) - V;Lu))’
k=1 k k
with (V1. Viny) = Wnings - -->v1). Moreover, all the possibilities for i,j,ky, k_o, the

(1)

-1 . R
my,”’s, and the m,g )’ arise when © varies in T L(z)m.
As a consequence,

ni+ns—4

max (—,UM(CU,TO)) = =M1+ Ao —p1 + pi2 + 2(V2 — Vnyny) + Z (Vek+2 = Vnyng—k)-

zeT—1(T)

k=1
Finally, Lemma 3.4 leads to the following result:
Proposition 3.6. If we set
1 ni+ns—4
do =5 (—)\1 + A2 — p1 + p2 + 2(Ve = Vpyny) + (Vkt2 — Vrnngk)) ;
k=1

we have for all d € N such that d > dy,
IA+d(1),u4+-d(1),v+d(1) = A+ |do+1|(1),u+|do+1](1),v+|do+1](1)"

Proof. For all z € 7~ 1(%) and all d > do,
M (2 1) = Mz, o) + duz(f, 70) = pM(z,70) +2d > 0

1
because d > dy > —5//\4(36, 70). Thus, by Hilbert-Mumford criterion, z € X“(M+dL),

and we conclude using Lemma 3.4. U

Remark 3.7. We even have the inclusion X*°(M + dL) C X**(L) which is true for all
d > dy, d € Q. Indeed, the definition of X**(N) (and the one from pV(.,79)) can be
extended to N € Pic%(X) ®z7 Q:

X*(N) = {z € X |3k € N* s.t. N € Pic®(X) and 3o € H'(X,N®*)C o(x) # 0}.
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3.3 Case of the triple ((1,1),(1,1),(2))
We now have a look at the triple ((1,1),(1,1),(2)) which is also stable (cf. for instance
[Stel4]). We consider

denoted X

X — F(Vi51,2) x FU(Va;1,2) x P((Vy @ Va)*) -
(Wi W))iy (W)i) — (W, Wa), (W], W3),{p € (Vi ®V2)"/ kerp =W} _1})

Similarly as before, the line bundle £ is the pull-back by 7 of £ = L, ® L ® O(2). The
same things that we have done throughout the previous section are also going to work
here. The only changes will be the orbits of G in X which are unstable:

Proposition 3.8. If ny > 3 or ny > 3, then the set YUS(Z) of unstable points consists
in the union of the closures of two orbits: the one of T1 = ((Cey,Ceq + Ces), (Cf3,Cfs+
Cf1),Cey) and the one of Ta = ((Cey,Cey + Ceg), (Cfa, Cfa 4+ Cf3),Coy).

Proof. 1t is completely similar to the proof of Proposition 3.3. O

We then set two destabilising one-parameter subgroups of GG for the two elements Ty
and To (we still consider the case when nq,ng > 3):

= (0,1,-1,0,...,0 | 0,-1,1,0,...,0)
and
7= (1,0,-1,0,...,0 | - 1,0,1,0,...,0),
which give _ _
pE T, ) =2 = p (T2, 7).

As before, we only have to get a bound from which 7=1(z1) € X“$(M + dL) and
77 1(Ta) C X (M +dL). We have already seen the form of elements of 7—!(Z;)™ and
771(Z)™, and as a consequence we get:

Lemma 3.9. If nqy > 3 and ngy > 3,

ni+ngo—4
max_ (—pM(21,71)) = —Ao + Ay — i1+ pi3 + 2(Vs — Vnyny) + (Vk42 = Vnino—k)
1€m—1(Z1) 1
and
ni+ns—4
_ M - _ _ — —
Jnax )( pM (@2, 7)) = =M+ A3 — o+ 3+ 22 = Vnma) + Y (Vkt2 = Vagna k).
ro€m—1(ZTo 1

What remains to be seen is what happens when n; = 2 or ng = 2. Let us focus on
the case where nqy = 2 and ny > 3. Then, m and 75 become:

n=(0,1]0,-1,1,0,...,0), 2= (1,0 -1,0,1,0,...,0).
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We still have 2 (zZy, ) = 2 = p£ (T2, 72), but this time
no—1

max (—MM(wlaTl)) = =Xy — p1 + p3 + 20 — vop, + Z Vi42,
1€~ (T1) Py

and
no—1

max (_IU'M(x%T?)) =—A1— o + u3 + 2v9 — Vopy + Z Vk+2-
zo€T—1(T2) —

By exchanging the roles of V; and V3 (that is to say A and p), we easily get the result
for the case n; > 3, no = 2. Only the case n1 = 2 = ny remains, and we could do exactly
the same. But the result we would get would be exactly the formula for n; = 2, nyo > 3
in which we take us to be zero. Finally we have:

Proposition 3.10. If we set m = max(—Ay — p1, —A1 — p2) and

1 ni+ns—4
5 <m+A3+M3+2(V2_Vn1n2)+ Z (Vk‘-i-Q_anng—k;)) 7;fnlyn2 >3
k=1
1 no—1
do = 3 <m+u3+21/2—1/2n2+ I;ka) ifny =2 ;
1 nl_—l
B <m+)\3+2V2—V2n1+ I;Vk—i—Z) if ng =2

then we have, for all d € N such that d > dy,

IN+d(1,1),pd(1,1) p+d(2) = I+ [do+1](1,1),p+[do+1](1,1)v+[do+1](2)-
Proof. Tt is exactly in the same way as the proof of Proposition 3.6. U

Remark 3.11. We can notice that, in the cases where n; = 2 or ny = 2, we have two
possible bounds: the one which concerns only these cases, or the general one, which we
can use by considering A (respectively ) of length 3 by setting A3 = 0 (respectively
w3 = 0). We will come back to this in Remark 3.16.

Remark 3.12. As after Proposition 3.6, we have also here that the inclusion X*%(M +
dL) C X*5(L) is true for all d > dy, d € Q.

3.4 Slight improvement of the previous bounds

In Propositions 3.6 and 3.10, we got an integer or half-integer dy such that the sequence
(9x+da,u+dB,v+dy)d 1s constant for all integers strictly greater than dy. We now want
to prove that, if this dy is an integer, this sequence of Kronecker coeflicients already
stabilises for our bound dy. We need at first, in the following subsection, to expose a
well-known result of quasipolynomiality.

18



3.4.1 Piecewise quasipolynomial behaviour of the dimension of invariants in
an irreducible representation

This part of the paper is quite disconnected with the others. The inspiration for the
proofs given here is the article [KP14], in which the case of T-invariants is studied. The
following settings concern this subsection and only this one.

Let G be a complex reductive group, and H be a subgroup of G, also reductive.
We consider a maximal torus 7', a Borel subgroup B of G such that T' C B, and the
corresponding flag variety X = G/B. We denote by X*(T') the (multiplicative) group of
characters of T, and by @ and A respectively the root lattice and the weight lattice. AT
(resp. ATT) denotes the dominant (resp. dominant regular) weights.

Let us recall that X*(7T') can be embedded as a sublattice of A (let set ¢ : X*(T') < A)
and that
Q C uX*(T)) C A

Set X*(T)" = «(X*(T)) N AT, and

m: X*(T)* — N
A s dim V(A

where V/(A) is the irreducible G-module with highest weight X\. The result we want
to show is that m is piecewise quasipolynomial. For a more precise statement, let us
consider X*(R) = 1(X*(T)) ®z R, X*(R)" the cone spanned by X*(T)*, and X*(R)**
the relative interior of this cone.

Here we use the more standard definition of semi-stability: if £ is a H-linearised line
bundle over X, a point z € X is said semi-stable (with respect to L) if there exist
n € N* and o € H(X, £L8")H such that {y € X s.t. o(y) # 0} is affine and contains x.
To avoid confusion with the notion of semi-stability that we use everywhere but in this
subsection, we denote by X5°(L) the set of these semi-stable points with respect to L.
Finally let us denote by Ci,...,Cy the chambers in X*(R)™", i.e. the GIT-classes of
maximal dimension. Let us recall that the chambers are the relative interiors of convex
rational polyhedral cones in X*(R)™" (see [Res00]). For all k, denote by X3(Cy) the
set of semi-stable points common to all £y for A € C}.

Lemma 3.13. There exists a sublattice T' of «(X*(T)) of finite index such that, for all
k € [1,N], for all X € T, the H-linearised line bundle Ly = G xpg C_) descends to a
line bundle on X5 (Cy) /) H (i.e. the restriction of Ly to X55(Cy) is H-isomorphic to
the pull-back of a line bundle on X3(Cy) J H).

Proof. For better readability we have divided this demonstration into four steps.

First step: we want to prove that, for all k& € [1, N], there exists a sublattice I'j of
((X*(T)) of finite index such that, for all A € 'y N Cf, (where Cf = Cy N o(X*(T))), L
descends to X3 (Cy) J H.

19



Let k € [1,N]. We set
A = {\ € Cf st. Ly descends to X35 (Cy) J) H}.

Then it is clear that Ay is stable by addition. Thus consider I'y, the lattice generated by
Ay. It satisfies Ay =Ty N C’ﬁ and so, for all A € 'y N C’ﬁ, L descends to X3°(Cy) J H.
Let us now check that 'y is of finite index in ¢(X*(T)). It suffices to prove that there
exists n € N* such that, for all A € Cf, nA € T'y, i.e. L, =~ LY" descends to X5 (C) J H.
For all A € Cf = CpyNu(X*(T)) and z € X3 (Cy) C X5 (L)), by definition we know that
there exist n, » € N* and o0, ) € HO(X, E%n“)H such that o, \(x) # 0. Let X € Cﬁ.
Then the algebra
R=uo(x, MM
n>0

is of finite type. Let us set o1,...,0, a system of generators of R (we can choose
o; € HO(X, L") for some n; € N*). Write ny = [[/_; n; € N*. Then, for x € X5 (Cy),
there exists

Our = O.i@al R ® 0—?%

with ai,...,a, € N not all zero such that o, \(z) # 0. So there exists i € [1,r]
such that o;(z) # 0. Hence g ™™=t (g) £ () with gy ™" — 60 ¢
HO(X, LA,

Thus, if we denote by x the character by which H, acts on the fiber (E%"k)x, we have

Vh € Hy, x(h)oo(x) = h.og(x) = og(h.z) = op(x),

and so y is trivial. We have just proven that, for all z € X5°(Cy), H, acts trivially on
(L’%"A)x. In other words, by Kempf’s Descent Lemma, L, descends to X3°(Cy), i.e.
AN EL]C.

Now, Cﬁ is finitely generated, since it is the intersection of a lattice and a closed convex
rational polyhedral cone (see e.g. Section 5.18 from [Sch03| on Hilbert bases). So if we
take A1,..., A\, generators, by setting n = [[5_; n), € N* we get:

VYA e Cf, nh ey,

Thus I', is of finite index in «(X*(T)).

Second step: Now we set

N
I = ﬂ Ty
k=1
It is a sublattice of «(X*(T)) of finite index, since I'y,...,I'y are. Moreover, for all

ke [1,N], for all A e 'NCy C T'y N Ck, Ly descends to a line bundle denoted ﬁg\k) on
X5 (Ch).
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Third step: Let k£ € [1, N]. We can notice that I' N Cy is a semigroup: it is the
intersection between a lattice and the interior of a convex rational polyhedral cone. Let
us consider Zj, the subgroup of I' generated by I' N Cy. Let A € Z;. It can be written as
A1 — Ao, with A1, Ao € ' C). Then we define

£ = 29 @ (£9) "

which is a line bundle over X5 (Cy) J/ H. It A = N — X} also (A}, A\, € T'N Cy), then

M+, =N+ X eI'NCj and so Eg\ )+X ~ E;/)JFA Moreover, by uniqueness of the

line bundle to which a line bundle can descend (cf. [Tel00], §3), £g\k)+>\, o~ E(k) ® E(k)

and similarly for Eg/)jL Ao Thus,
A (k) AR)\* L AR A(k)\*
£V 0 (L) =28 e (£7) .

and our ﬁg\k) is well defined. As a consequence L) descends to a line bundle on X3°(Cy) /

H for all \ € Z,.

Fourth step: To conclude, let us prove that Z;, = I". We consider 71, ...,7, a system
of generators of I', and a norm ||.|| on X*(R). Set d = max{|y;||; i € [1,7]}. Then there
exists A € I'N Cy, such that B(\,d), the closed ball of center A and radius d, is contained
in Ck. Hence A +~; € B(A,d) C Cy, for all i € [1,7].

So, for all i, A+ € I' N Ck, and thus v; € Z;. Hence Z; = I', which proves the
lemma. ]

The following result is then a classical one. The proof we write here is an adaptation
(but with less quantitative results) from the one by Kumar and Prasad in [KP14], which
was in the case of T-invariants.

Theorem 3.14. Let i = p+ T be a coset of T in o(X*(T)) and k € [1, N]. Then there
exists a polynomial fg 1 : X*(R) = R with rational coefficients such that,

YA € Cr N i, m(A) = far(N).

Proof. Let i and k be as in the above statement. Applying the Borel-Weil-Bott’s
Theorem we get that, for all A € X*(T)%, H*(X, L)) ~ V(\)* and, for all p > 0,
HP(X, L) = {0}. As a consequence, since dim (V(A\)¥) = dim ((V()\)*)H>,

m(\) = dim (H°(X, £,)7).

Let us begin by considering A € Cx N . Denote by 7 the standard quotient map
X5 (Ck) = X5(Ck) ) H and, for any H-equivariant sheaf S on X3°(Cy), by m.(S) the
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H-invariant direct image sheaf of S by 7 (it is then a sheaf on the GIT-quotient).
Then, by [Tel00], Remark 3.3(i),

HP(XSStS(Ck) //H,T('*(,C)\)) ~ { I{‘I%}(X,E)\)H igig .

And thus, if x is the Euler-Poincaré characteristic,

X(XE(Cr) [ Homu(£3)) = D (=1)P dim (HP (XS (Cy) /) H,m(£2))) = m(N).

p=>0

Take now A € C,Nfi. We consider P (containing B) the unique parabolic subgroup of
G such that £ descends as an ample line bundle Ef on G/ P via the standard projection
q: X =G/B— G/P. Let v € Cy, N (X*(T)).
Then, by [Tel00], §1.2, for any small enough rational ¢ > 0, the pull-back ¢*(LY) is
adapted to the stratification on X coming from ¢*(L£Y) + €£,. So, by [Tel00], Remark
3.3(ii),

VpeN, HP (X3 (q"(LY) +eLy) [ H,mulq" (£5))) = HP(X, ¢" (£X))".

Moreover, ¢*(£Y) = £y and X2 (q*(LY) + eL,) = X5 (Later) = XEH(Ck) (because
A+ ev € Cy if € is small enough), and thus

VpeN, HP(XS(Ch) ) H,m (L)) ~HP(X, Ly)H.
Consequently we have once again

m(A) = x(XF(Cr) [ H,m(L2))-

_ We now introduce a Z-basis (71, . ..,7r) of the lattice I'. For any A = p+ Yoy €
Cr N (ie. with aq,...,a, € Z),

(£3) = ma(L) © £

T A) = T 14 a1yi+--+aryr
by definition of the lattice I’ and the projection formula for 7, and with the notation £
defined in the proof of Lemma 3.13. Finally, for any such A we apply the Riemann-Roch
Theorem for singular varieties (see e.g. [Ful84|, Theorem 18.3), to the sheaf m,(L)) and
get
m(A) = x(XF(Cr) [ H,mu(L)))
. n
> et 2 aabll o o(c,),
n>0" X (Cr)/H n:

where, for all 4, ¢1(7;) is the first Chern class of the line bundle ﬁg’f), and 7(m.(L,)) is
a certain class in the Chow group A, (X5 (Ck) / H) ®z Q. Hence m(\) is a polynomial
with rational coefficients in the variables a;. O
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3.4.2 Improvement of the bounds of Sections 3.2 and 3.3

We now come back to the notations of Section 2.

Proposition 3.15. Ifdy € N is such that, for alld € Q such that d > dy, X**(M+dL) C
X*(L), then
dim (H°(X, M + do£)%) = dim (H°(S, M)H) .

Proof. Let us write £ = dim (HO(S, M)H ), consider a dy € N as in the statement above,
and denote by Ci,...,Cn the chambers (i.e. GIT-classes of maximal dimension) in
QLBQM for the action of G on X. Since, for all d > dy (d € Q), X*5(M+dL) C X*5(L),
and thanks to the results by N. Ressayre (cf. [Res00]) concerning the GIT-fan, the
situation is necessarily the following:

e the M + dL for d > dy are in a chamber, say for instance C1;
e L belongs to Cy, the closure of this chamber;
e M + dyL belongs also to Ci.

We can draw a picture of this situation: in QL @ QM, the set of semi-ample line bundles
is a closed convex cone. As a consequence, up to multiplication by a positive rational
number, this set can be represented by a line or a segment. The two cases can here be
treated in the same way, so we assume for instance to be in the case of a line. Then the
situation of the chambers is typically:

Ci Ci Cig Ci, Cis

| | | |
[ [ [ [

If M+doL € Cy, then X*(M + doL) C X*°(L) and Proposition 2.8 gives immediately
that dim HY(X, M + doL£)® = £. So we assume from now on that M + doL € C7 \ Cy:

Cq

N
M L doL C

(if £ belongs to the boundary of C1, this does not change what follows).

Applying Lemma 3.13 and Theorem 3.14, we get that there exists a sublattice T’
of ZL & ZM of finite index such that, for all y = v+ T' € (ZL ® ZM)/T, there is a
polynomial Py with rational coefficients such that

YN € C1 N (v + 1), dim (H(X,N)%) = P;(N).
In particular, if we denote 79 = (M + doL) + T,

dim (H(X, M + doL£)®) = P5, (M + doL).
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We then consider the polynomial function in one variable

P :d+—— Py (M +dL).
We want to prove that P is constant and we know that, for all integers d > dy such that
(M +dL)+T =7, P(d) = dim (H°(X, M + dL)¥) = ¢. It is consequently sufficient to
notice that there exist infinitely many such d’s: if we denote by N7 = a1 M + b1 L and

No = ao M + boL the elements of a Z-basis of T', each d € N(?lag — aibg) + dy does the
trick. Finally, P is constant and dim (H*(X, M + doL)%) = P(dp) = L. O

Thanks to this result we can improve slightly Propositions 3.6 and 3.10, and get
Theorems 1.4 and 1.5.

Remark 3.16. We had previously noticed that, in the case of triple ((1, 1),(1,1), (2)),
if ny =2 (or ny = 2), there was two ways to compute a bound:

e by using the formula in the previous theorem which is special to this case,

e by using the formula valid for ny,ns > 3, setting A3 = 0 (or ug = 0) and considering
A (or u) as a partition of length 3.

Let us compare the two bounds we can obtain. For instance for three partitions of the
form (A1,...,An;), (g1, p2), and (v1,...,v9,,) (with n; > 3), we obtain by the first
method:

1
Dy = [§(m+)\3+2VQ—V2n1 +V3+V4+"'+Vn1+1)w

And by the second method we get:

1
D) = ’V§(m—|—)\3+2y2—|—y3+y4+---+yn1+1)“.
So we have Dy < D} and D) — Dy = LVQ%J Similarly, for (A1, A2), (u1,p2), and
(v1,y...,v4),

1 1
Dy = [5(171 + 205 — vy + 1/3)-‘ , whereas D} = [5(771 + 205 + 3+ V4)-‘ .

Once again, Dy < D). And, this time, D} — Dy = vy.
As a conclusion, it is better to use the first way of computing the bound, and that is
what we do later on the examples.

3.5 Possibility of recovering already existing bounds by our method

In the case of Murnaghan’s stability, there are some already existing bounds for the
stabilisation of the sequence (see the Introduction). An interesting fact is that we can re-
cover (and sometimes improve) some of them by our method, if we choose one-parameter
subgroups different from the one that we had chosen. We focus only on two of the four
bounds we cited: Brion’s one (denoted by Dp), and the second one from Briand, Orel-
lana, and Rosas, which we denote by Dpogre. They are the ones who have a form similar
to our bound; the two other ones seem far too different to be obtained this way.
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3.5.1 Conversion to our settings

In the article [BOR11|, the settings are different from ours. So, if we want to recover
the bounds given here, the first thing is to convert them into our settings. For the
authors, the bound given (for a triple of partitions (a,3,7)) is the first integer n for
which @[n] = (n — |, a1, ..., &), B[n], 7[n] are partitions and the sequence

(ai(n) Bln] A1) I

reaches its limit value (we know that it is a stationary sequence). Whereas for us, our
bound for a triple (A, i, v) of partitions (such that |A| = |u| = |v|) is the first integer d
such that the sequence

(rt@) i+ (D+(@)
reaches its limit value.
The correspondence between the two points of view is then (we adopt the following useful

notation: for a partition ¢, d>2 denotes the partition obtained by removing the first -i.e.
biggest- part of §):

Oé:)\zg
B = p>2
Y=V

n=d+ ]\ =d+u = d+v]

M. Brion’s bound, which in [BOR11] notations is Mpg(«, 8;v) = |a| + |8] + 71, then
becomes
Dp(\p,v) = |pl — Adr — p + v

Similarly the bound Dpppro, which in their notations is

NQ(aaIBa’Y) = \‘|a|+|5|+|7|;a1+’81+’y1J ,

becomes

Dpora(\, 1, v) = {_)‘1 + |p>2| — V21 + Ao+ pg + VQJ |

3.5.2 One parameter subgroups corresponding to Dp and Dgogrs

Case of Dp: We define the following one parameter subgroup of G:
5= (1,0,...,0 | =1,0,—1,...,-1).

Thus 7 satisfies ,uz(f, 75) = 1 and, for all z € 7~ 1(Z),

M+dﬁ(waTB) >0<=d > maxmeﬂfl(f)(_:uM(x7TB))

— _)\1+N2+M3+"'+,Ufn2+V2_Vn1+n2_"'_anng-

7

Until now, we did not make any particular assumption on the flag varieties we considered.
We had always taken complete ones, but we could also consider partial ones. Here, let
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us consider the partial flag variety F¢(V; ® Va;1,2,...,n1+mng — 1) for the third factor of
X. This corresponds to forgetting the terms —v,,4n, -+ — Vpyn, in the right-hand side
of the inequality above. This way, this right-hand side is just Dp(A, u,v). Hence the
bound Dp can be recovered by our method, with the one-parameter subgroup 75.

Remark 3.17. We can thus have an improvement of Dp in the case of a "long" partition
v: if we keep on with complete flag varieties, we keep the terms —vp,4pn, -+ — Upyn, at
the end of the bound, and so it gives a lower value (and then better one) for partitions
v of length at least ni + no.

Case of B-O-R 2: We define the following one parameter subgroup of G:

meor2 = (1,-1,0,...,0 | —2,0,—1,...,-1).
This TgoR2 satisfies ,uz(f, TBOR2) = 2 and, for all z € 71 (Z),

1
MMerl:(x,TBORQ) >0<=d > 5 malxi (_:U‘M(x’TBOR2))
zen—H(T)

1
= 5(—>\1 + Ao + 2p0 + >3] — V1 + V2 — Vnygna—1

— -~ Vning—ni—no+2 — 2(Vn1n27n17n2+3 + ...
+Vnm2—1) - 3Vn17L2)'

Once again, considering the partial flag variety F¢(V; @ Va;1,2,...,n1 +ng —2) (slightly
different from the previous case), we can "forget" the terms concerning the last parts of
partition v (i'e' “Vni+ne—1 — " T Vnypng—ni—na+2 2(Vn1nzfn1fn2+3 +ooet Vn1n2*1) -
3VUnyn,) and thus recognise Dpogra (A, i, V) in the right-hand side of the previous inequal-
ity. Hence the bound Dpgopro can be recovered by our method, with the one-parameter
subgroup TBoR2.

Remark 3.18. As for Dpg, we can also have an improvement of Dpogrs by keeping the
complete flag variety F¢(V; @ Va): if £(v) > nq +ng — 1, our method gives a lower bound.

3.6 Tests of our bounds and comparison with existing results
3.6.1 Tests and comparison for ((1),(1),(1))

We are now going to test the bound D; from Theorem 1.4 on a dozen examples. We also
compare it to the four other bounds exposed in [BOR11]| (Vallejo’s bound is denoted by
Dy, and the first one from Briand, Orellana, and Rosas by Dpor1).

The following array presents the results of these bounds on chosen examples. We
also added a column giving the minimal integer coming from all the bounds obtainable
by our method: ours, Dp (a little improved, by Remark 3.17), and Dgora (likewise, cf.
Remark 3.18). We denote this by D,,. Finally, we calculated with Sage® the first integer

Shttp://www.sagemath.org/
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-denoted Dyea1- from which the sequence (g)\-l—d(l),u-l—d(l),u—l—d(l))dEN actually stabilises.

triple A, p, v Dy | Dy | Dreat | D | Dv | Dpor1 | Dpore
(8,5,2),(6,5,2,2),(4,4,3,3,1) | 6 | 5 5 515 5 6
(4,3,3), (3, 23 1),(23,1%) 4 | 4 3 5| 5 4 4
(5,5,4,4), (6%),(3,3,2%,1%) 5|5 5 | 10 | 11 6 9
(6,5, ),(8 )(44332) 4 | 4 4 6 | 7 4 7
),( %), (24,112) 5 | 4 4 | 13| 14 6 10
(63), (36) (26,1%) 7|6 6 | 11 | 11 7 9
(5,5,4,4),(63),(3,25,13) 4 | 4 4 9 | 11 5 8
(7, 6),(6 5,2),(7,3,2,1) 31 3 3 3] 4 3 3
(8,4,3,3,1),(7,3%), (14,3, 2) 0] 0 0 0] 0 0 0
(8,5,3,1),(2,1%),(4,3,3,2,2,13) | 3 | 1 1 6 | 7 2 6
(6,6,4),(8,8),(5,5,4,1,1) 716 6 707 7 8
(8,6,6,2,1),(14,5,4), (5%, 3) 6 | 6 5 6 | 8 5 6

We can notice (see e.g. the third row in the array) that there exist cases in which
our bound is optimal whereas the other known bounds compared here are not. Ours is

of course not always better: see e.g. the last row.

3.6.2 Tests of the bound for ((1,1),(1,1),(2))

Here we compute the bound Dy from Theorem 1.5 for a dozen examples and compare
it, in the following array, to the first integer D,en from which the sequence actually

stabilises. This last integer was once again computed with Sage.

A M v D2 Dreal
(5,5,4,4) (63) (3,3,24,1Y) | 5 | 4
(5%) (4%) (2112) | 5| 4
(6,5,5) | (6,5,5) | (3,3,24,1,1) | 4 | 4
(8,5,2) |(6,5,2,2) | (4,4,3,2,2) | 4 | 4
(4,3,3) | (4,3,3) (23,1%) 3 3
(5,4,4) | (5,4,4) (3,23,1%) 3] 3
(6,5,5) (8,8) (4,4,3,3,2) | 3 | 2
(6,6,6) (9,9) (6,4,3,3,2) | 3 | 1
(10,8,6) | (12,12) |(6,5,4,4,3,2) | 1 1
(8,2) (6,4) (5,4,1) 1 1
(6,6) (8,4) (6,4,2) 0| 0
(20,5) (13,12) | (11,10,3,1) | 2 | 1

4 Application to plethysm coefficients

The aim of this section is to adapt the techniques we used on Kronecker coefficients to
the plethysm coefficients, introduced by J. Littlewood in 1950.
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4.1 Definition and some known stability properties

We still denote by S the Schur functor. For any partition A, we also denote by n) the
dimension of the representation S*(V'). By Weyl Dimension Formula, if £(\) < dim(V),

H )\i—)\j—i—j—i

ny = P
j—1

1<i<j<e(N)

(see e.g. [GWO09]). The difficult problem of the composition of Schur functors gives rise
to the plethysm coefficients.

Definition 4.1. Let X and p be partitions such that £(\) < n, and V' a complex vector
space such that n = dimV > ¢(u). Then S*(S¥(V)) is a representation of GL(V') and
thus splits as a direct sum of irreducible ones:

SNV = P as,SUV).

vs.t L(v)<n
The coefficients ay. . are called the plethysm coefficients.

Remark 4.2. There is a necessary condition (known since the work of Littlewood) on
the sizes of the partitions for these coefficients to be non zero: if |A|.|u| # |v|, then
ay , =0.

A p

There exist for those coefficients some stability properties similar to the ones we
studied concerning Kronecker coefficients. The following four are for example given in
[Col15]:

Proposition 4.3. For any partitions A\, u, and v, such that |A|.|u| = |v|, the following
four sequences of plethysm coefficients are constant for n sufficiently large:

v+(lpln)
1. (a/\Hf),# Ins

2 o

v+(|1Aln)
3. (aA,;H-(n) )ns

/. (au+n\)\|7r)

Npitnir )n for any partition .

Furthermore, the first one has limit zero when £(p) > 1, and the second and fourth are
non-decreasing.
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4.2 Link with invariant sections of line bundles

Starting from Definition 4.1 we get, thanks to Schur’s Lemma:
ay , = dim(S}S*(V)) ® (§*V)*)¢
(denoting GL(V') by G). Then, Borel-Weil’s Theorem gives
(8"V)" ~ H(FU(V), Lo)

and

SMSM(V)) = HA(FU(Su(V)), £3)-

Let us keep in mind that, as a vector space, S#(V') is simply C™. So we obtain the
following proposition:

Proposition 4.4. If V is a complex vector space of dimension n and X\, u, v are three
partitions such that {(\) < ny, £(p) < n, and €(v) < n, then

ay , = dim (H(X,,, £1,)9)
where G = GL(V), X, = F(V) x F(C™), and Ly, = L, ® L.
For instance, it gives interesting things for two of the sequences cited earlier:

v+d, . G
ay i, = dim (HO(Xy, Ly, +dLay ) )

and
v(dul) _ g 0 G
Ay (ay e = dim (HY(X, Lay +dLa) 1)) -
As, in these cases, the projective variety X, does not depend on d, we can apply our
techniques. For comparison, for the two other sequences cited, it would give a variety

depending on d and so it would be a lot different.

More generally, we are going to consider sequences of general term

aiiilll,u = dim (H*(X, L, + dLay))

where « and v are partitions such that |al.|u| = |7].

4.3 Application of our previous techniques

Using exactly the same method as for Kronecker coefficients, we get the following result
(Sam and Snowden obtained the same in [SS15], by completely different methods):

Theorem 4.5. Let A\, p, v and «, v be partitions such that |\|.|u| = |v| and, for all
d e N*, QZZW = 1. Then the sequence <a§i‘cﬁ7u) Jen is non-decreasing and stabilises for

d large enough.
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Proof. The fact that this sequence is non-decreasing is, as in the case of Kronecker
coefficients, quite easy: let og € H(X,, Lo~)¢ \ {0} (such a section exists because

ad,n = 1). Then, for all d € N, we have the following injection:

i HY (X, Lay +dLay)Y — HY (X, Ly, + (d+1)Lar)C
o — o0 ® oy

)

v4dry v+(d+1)y

and thus Uyt dop < Uy (@ 1o’

For the fact that it stabilises, since it is exactly the same method as for Kronecker
coefficients, we are not going to write every details. But here are the principal steps of
the proof. First of all,

HY(X,,, L, + dLay)¢ HO(X3 (Lo + dLap); Loy + dLa )

HY(X5*(Lay), Loy + dLay)C  ford>>0

1R

(because X;*(Ly, +dLay) C stgﬁaﬁ) for d > 0). Then, since H(X,, ﬁgﬁly)a ~ C for
all d € N* and using Luna’s Slice Etale Theorem,

HY(G xy S, Ly, +dLo)C
HO(S, Ly, +dLo )

HY (X, Loy + dLa )"

1R

(notations are the same as in the Kronecker coefficients’ case). Finally, we have also here
that the line bundle £, - is trivial on S. Thus

HY(X,, Ly, +dLo~)C = HY(S, Ly,)T  ford > 0.

O

This theorem applies to one of the examples given above: the sequence (aii?g),u)dEN'

To see that, one just has to check that, for all d € N*, a?g) by = 1. Let us set d € N*. The

coefficient a® is by definition the multiplicity of the irreducible representation S#(V)

(d),p
in the decomposition of Sym?(S#(V)) (Sym denotes the symmetric power).

o First, if v € S¥(V) is of weight 41 (denoted v € S¥(V),,), then v? € Sym?(S*(V)) is
of weight dp. So dim (Sym(S#(V))g,) > 1.

e Moreover, dimS#(V'), = 1 and the set of weights in S*(V') is Wt(SH(V)) = {u} U
{weights < u}. So, since a well-known (and easy to understand) fact is that the
weights of Sym?(S#(V)) are among {x1 + - + Xd ; X1,--->Xd € Wt(SH(V)},
dim (Sym®(S#(V))a,) = 1.

e Finally, Wt(Sym?(S*(V))) C {x1 + -+ Xd; X1,--->Xa € Wt(SH(V))} also gives
us that Wt(Sym?(S#(V))) = {du} U {weigths < du}.

dp
Thus we have Uy =
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4.4 Other example, where Theorem 4.5 does not apply

Now what about the other sequence cited as example: (aKJrEzll')“ )})deN? When /() =1, it

is the same as before. So assume £(pu) > 1.

Let us set d € N* and compute agl)“ ;L)' This coefficient is the multiplicity of Sym®*! (V)

inside Sym?(S#(V)). If Sym»# (V') appears in Sym?(S#(V)), then there exist vectors of
weight (d|p|) in Sym?(S#(V)). But we already explained what weights of Sym<(S#(V'))
look like. So, if Sym™* (V') appears in Sym?(S#(V')), then (d|u|) = x1 + --- + xq With
X1s---5Xd € Wt(SH(V)). Then, for all ¢ € [1,d], x; = (|u]). But (|u|) is not a weight of
S#(V') (because £(p) > 1 and the weights of S#(V') are in the convex hull of W.u, where

W denotes the Weyl group of G). Thus Sym?*/(V) does not appear in Sym?(S*(V)),

which means that a(dM) =0.
(d),p

As a consequence, Xﬁs(ﬁ(l),(mn) = () and there exists D € N such that, for all d > D,
X/is(ﬁ)\,,/ + dﬁ(n(\m)) = 0. Thus, for all d > D,

v+(d . ss
a>‘+gd‘)/fl‘i) = dim (HO(XM ('C)‘vy + dﬁa,’y)’ E}\,l/ + dﬁa,“{)G) = 0.

We recover the result from Proposition 4.3.

5 Application to the case of the hyperoctahedral group

5.1 Notations and coefficients studied in this case

For n > 2, we consider the group W,, = (Z/2Z)" x &,,, which is the Weyl group in
type By, (if we see the root system of type B,, in R™ with basis (e1,...,&,), &, acts by
permuting the ¢;, whereas 1; = (0,...,0,1,0,...,0) € (Z/2Z)"™ acts just by &; — —¢&;).
It is called the hyperoctahedral group, and it is known (cf. [Will4] or [GP00]) that its
rational irreducible complex representations can be built up from the ones of &,, and are
classified by double partitions of n. These are ordered pairs of partitions (o™, a™) such
that |a™| +|a™| =n.

When (at,a”) is a double partition, we choose to denote by M.+ the associated
irreducible representation of W), (where |a*| stands for |at|+|a~]). Given two double
partitions (o™, a~) and (8%, 37) of the same integer, consider the non-negative integers

Cli,ﬁi such that
@cli s
Mo: ® Mge = (P M_,"7,
(vt

where the direct sum runs over all double partitions of |a™*|.
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5.2 Schur-Weyl duality for W,

Let V* and V™~ be two complex vector spaces and set V = V™ @& V~. Then the groups
GL(V*) = GL(V*) x GL(V™) and W, act on V®". (For W,, &, acts simply by
permuting the factors in V®" and 1; € (Z/2Z)" acts by multiplying by —1 the i-th
factor in V®".) Furthermore, these two actions commute and thus GL(V*) x W,, acts
on V&,

Proposition 5.1. As a representation of GL(VE) x W, V&" decomposes as a direct
sum of irreducible representations in the following way:

VI = P Vor(GL(VF)) ® My,

(at,a7)

where the direct sum runs over all double partitions of n such that £(a™) < dim(V™T)
and ((a”) < dim(V ™). Moreover, V,+(GL(V®)) denotes the irreducible representation
ST(VH) @8 (V) of GL(VF).

Proof. This result comes from [SS99]. O
We now consider complex vector spaces V; = VfL @V, and V5 = V;L @V, and we

set GL(V) = GL(V;") x GL(Vy"), GL(V55) = GL(V,") x GL(V, ). Then, on the one
hand,

VeVt = | @ Var(GLOK)) @ Mex | ® | @D Vi (GL(V;)) ® Mg
(at,a™) (B+.,67)
— - @C’Y
= @ (s mHes () es (G esT (G ML)
a:l:75i,pyi

with the direct sum concerning all triples (o™, a™), (8%, 87), (y",v) of double partitions
of n.

On the other hand,
VeVt = (Ve Wh)® = @ Vi (GL(VY) ® M,
(rr7)

where GL(V*) = GL(VH) xGL(V ) and VT = V" @Vt eV oV, , V- =V eV, @
Vi @V, (then Vi @ Vo=V a V™).
Moreover, one has a branching

GL(V]") x GL(V;) x GL(V5") x GL(V, ) — GL(V*1) x GL(V ™)

denoted by G denoted by G
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and then a decomposition
ot o . L \®-
VeGLE) = @ (sTmhesT (1) esT () es (1)
(at,am),(B%,87)
Thus, by identification:

+
Proposition 5.2. The coefficients Cli gt are also the coefficients in the branching situ-

ation G = G, i.e. for all double partition (y*,~v7),

+
_ _ _ ®c”
STVHesT ()= @ (ST es () o8 (G est (1)) T
(af,am),(81,87)

This new expression yields, by Schur’s Lemma,
,yi . ’Y+ + ~~ _ at 4\ % o~ N\ % ﬁ+ 4\ % B~ Nk G
i pe = dim (ST (V) @87 (V) @8 (V) @8 () @87 (5) @87 (1))
And finally we prove the following proposition:

Proposition 5.3. Let (a™,a7), (87,87), and (y",7~) be three double partitions of the
same integer. Then there exist a complex reductive group G acting on a projective variety
X, and a G-linearised line bundle L+ g+ .+ over X such that

¢ e = dim (HO(X, Lo ge2)9) .

aiﬁi -
Proof. According to what precedes and thanks to Borel-Weil’s Theorem, it is sufficient
to consider complex vector spaces V;", Vi, Vo', and V;~ such that dim(V;") > ¢(a™),
dim(V;") > £(a™), dim(V,") > £€(87), and dim(V, ") > ¢(87). Then one sets
X = FUVH < FUV ) FUV;H ) < UV ) FUVEE @ Vst & Vi @ Vi )x AUV @ Vy @ Vi 0 V),

(% V-

G = GL(V;") x GL(V;") x GL(V;") x GL(Vy),

and
Lottt =Lt Ly~ ® L+ ®Lg- RLLL @ L.

5.3 Stability results and analogue of Murnaghan’s stability
5.3.1 General result and examples

According to the previous section, we find ourselves in the same situation as for Kronecker
coefficients. As a consequence, the same demonstration as in Section 2 can be applied
here.
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Theorem 5.4. If a® = (at,a7), % = (BT,87), and v* = (yT,~v7) are three double
partitions such that
+
vd € N*, 47 =1L,

then the triple they form is stable in the sense that, for every double partitions \* =
(AT, A7), pwt = (ut,u), and vt = (v, v7), the sequence
cl/jt-l—dvi
At tdot pE+dfE ) gy
stabilises for d large enough.
Example 1: There is in this situation an analogue of Murnaghan’s stability. It has

already been observed and proven in [Will4|, and we retrieve it here: according for
instance to Proposition 5.3, we notice that

((.0)

“(09), () ~ OO0

(0 here stands for the empty partition, of size and length zero). Then we can apply
the previous theorem to conclude that, for all double partitions (A*, A7), (1™, ™), and
(vt,v7) of the same integer, if we increase repetitively by one the first part of the
partitions AT, uT, and v, the associated sequence of coefficients ¢ eventually stabilises.

Example 2: Let us consider the following triple of double partitions:

(@, ). (. 2), (2, 2))

Lemma 5.5. For all d € N*,

d((2,2) B
C =
d((2,2).4(2).2)
s i . d(2.9) . .
roof. Let us set d € N*. We proved that the coefficient ¢ is the multi-
d((2,2).4(2.2)
plicity of

Sym2d(V1+) ® Sym2d(V2+) ® Sym2d(V1_) ® Sym2d(V2_)
in
Sym* (it @Vt e Vi @ V) @ Sym* (VF e Vy oV @ V)

(if Vfr, Vi, V2+, and V, are large enough vector spaces). But we have (cf. for example
[FH91|, Exercise 6.11)

sym*(Vir e VeV eVy) = D sym™(Vi e V) esym"(V @)
m-+n=d
= @  mhHestm)
m4n=d, A\TFm, A=Fn
88 (V) @8 (V).
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And the same kind of formula exists for Sym*!(V;" @ V,” @ V" @ V). Hence,
Sym* (Vif @ ;F @ Vim @ Vy ) @ Sym* (ViF @ V- @ V™ @ Vy')

= P SNV @ s () @ SN (VH) @ S (V1)
(>\+,>\__),(}L+,}L_) S't; |>‘i‘:|“i‘:2_d .
&S (V) @S (Vi) @S (Vo ) @S (Vy)

- o, (S (V) @ 872 (V) @ 87 (V) @ 8% (V) Tk

AT ATt v ve,vs,0s
where this last sum runs over partitions verifying |\*| = |u*| = 2d, and

ML — (LR x (LR) - x (LR)Y - x (LR)YE .

(LR) denoting the Littlewood-Richardson’s coefficients. Henceforth, the multiplicity of
Sym*(V1") @ Sym*!(V,") @ Sym*! (V") @ Sym*! (V) is

d d d d
Do (LR < (LR x (LR)Y) < (LR)YY),

At u=
AT ATt
where we take the sum over partitions such that |AT|+ A7 = [ut|+|u” | = |A\T|+|pt] =
XL+ ] = |+ ] = | | = 2d, e, 3] = [A7] = [u| = || = d. Then
a((2),(2) 2d 2d 2d 2d
@) =Y R, < IR x IR x (LRY

d(@.@)d(@.@) |, i

Finally, Littlewood-Richardson’s rule shows that (LR)E\Q? =0 unless A = p = (d). And
in that last case, the coefficient is 1. This concludes the proof of the lemma. U

Proposition 5.6. For every triple (A\T,\7), (", 1), (v*,v7)) of double partitions,
the sequence

( vE+d((2),2) )

c

ME+d((2),2) wE+d(2).2) ) gen
stabilises for d large enough.

Proof. 1t is a direct consequence of the previous lemma and of Theorem 5.4. U

5.3.2 An example of an explicit bound

We can also here compute in some special and not too difficult cases a bound for the sta-
bilisation of the sequence of coefficients. We do this in the case analogous to Murnaghan’s
stability (Example 1). As before we set £ = L((1).0),(1),0),(1),0) and M = Lyx + = If
we consider the usual projection (cf. Section 3.1)
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such that £ is the pull-back of an ample line bundle £, we notice that X and L are
exactly the same as in Section 3.2. Then we know that it is sufficient to determine when
77 1(T) C X% (M+dL) (same notation as in 3.2 for T). As a consequence, if we consider
for instance the one-parameter subgroup

0= (1,-1,0,...,0] 0,...,0 | —=1,1,0,...,0 | 0,...,0)

of G, we have as before uz(f, T0) = 2. And
max,ep—1(z) (—pM(@,70)) = AT+ A —pf +pg 42 (V2+ - Vitv)e(w)w(x—)z(u—))

LT +e(ut)—4

+ +
+ <”k+2 - VZ(/\Jr)@(u*)H()\‘)Z(u‘)*’f)
k=1
EAT) ()

+ > (w _V;(A*)f(;r)+€(A*)f(u+)—k+1)'
k=1

A7), (uT,n7), and (vT,v™) be double partitions of the same

Theorem 5.7. Let (AT,
(AD)(p™) + L)), no=LAT)(™) + 6(A7)e(pT), and

integer. We set m =

. (O )+t 4 (O )+
D = B A A o g 2 - )+ Z (Vo = Vi) + Z e =) | |-
k=1 k=1
Then, for alld > D (d € N),

L)) _ D))
@At +(d) ™) — CNFHD)AD), (D))
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