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Injection of a relativistic electron beam into a high intensity optical lattice
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We present a numerical study of the injection and trapping process of a bunch of relativistic
free electrons into a transverse high intensity optical lattice. We unravel different injection regimes
depending on the characteristic length scale of the onset of the optical lattice, and explore how the
characteristics of the electron beam and of the high intensity lattice affect the trapping rate. The
average transverse kinetic energy, and the induced longitudinal energy broadening are studied. The
analysis of the transverse phase space exhibits a complex behavior, leading to inhomogeneities that
may affect the amplification dynamics of X-ray Free Electron Laser.

I. INTRODUCTION

The possibility to use intense laser to wiggle rela-
tivistic electrons and to trigger a free electron laser
process has stimulated a number of studies [1, 2]. The
undulator period is given by the laser wavelength, in
the micrometer range, which should allow one to obtain
X-ray beams on the basis of weakly relativistic electrons,
with typical energies of few tens of MeV only, making
this scheme extremely appealing in terms of compacity
and flexibility. Advanced optical schemes are currently
considered, in order to trigger the amplification of
backscattered radiation, either in a Thomson [3] or
Compton [4] regime. However, the practical conditions
on the electron bunch parameters, in terms of mono-
energeticity, emittance, divergence, and on those of the
laser beams: intensity constancy, are so stringent that
no practical realization of such amplification has been
achieved yet [3].

To overcome these limitations we have proposed a
new concept of compact XFEL based on a combination
between the physics of free electron lasers, laser-plasma
interaction, and nonlinear optics [5]. This conceptual
scheme, called ”Raman XFEL”, is based on the interac-
tion between relativistic free electrons and a transverse
optical lattice at laser intensities high enough to induce
the so-called strong field Kapitza-Dirac effect [6, 7]. As
depicted in Figure 1, the high intensity optical lattice
is obtained by crossing two laser beams, inducing an
interference pattern, on which the relativistic electrons
are incident. The physics of the interaction between
an electron bunch and such an optical lattice is of
interest by itself, with rich dynamical behaviours and
polarization-dependent phenomena [8, 9]. In particular,
the electrons may be transversely trapped within the
ponderomotive potential, oscillate at low frequency,
and thus induce a scattering process similar to the
stimuated Raman scattering in plasmas [5, 10]. In terms
of a parametric process, the wiggler – the light lattice
– represents the pump wave, the idler is the induced
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FIG. 1. Proposed configuration for a Raman X-ray Free Elec-
tron Laser: the two laser beams interfere creating a series of
potential wells, and the color code from black to yellow in-
dicates the height of the ponderomotive potential due to the
laser standing wave. The relativistic electron bunch is repre-
sented here with a group of green dots.

collective transverse electron oscillation or beam-plasma
wave mode, and the output signal is the daughter wave.

Analytical and numerical studies based on a kinetic
theory have demonstrated that this system can exhibit
a significant gain [11, 12], provided that one can inject a
sufficient number of electrons into the optical lattice and
maintain the stable interaction over a sufficient length.
Moreover, another lies in the fact that the electrons are
guided within the interaction region, that can be made
to extend over several typical divergence lengths.

The longitudinal and transverse temperatures and
the electron charge density are expected to play an
important role in the beam dynamics, and hence in
the X-rays amplification. For this, the present article
aims at studying numerically in more details how the
injection of free relativistic electrons into an optical
lattice depends on the collective parameters of the
relativistic electron bunch (divergence, electron kinetic
energy, energy spread, emittance), as well as on those of
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the optical lattice (intensity, interaction length, width of
the potential well).

This study is based on a dedicated numerical tool,
dubbed RELIC. We first present the specificities of the
physical situation. Then we summarize the approxima-
tions used and present the set of equations used for the
code. We focus on the electron trapping rate, mean trans-
verse energy and the induced longitudinal slowing down.
We explore the rich dynamics seen in phase space, and its
relations to the amplification process of a Raman XFEL.
A general discussion and our concluding remarks are pre-
sented in the last section.

II. DESCRIPTION OF THE PHYSICAL CASE

The conceptual scheme of the Raman XFEL is
illustrated in Figure 1. It implies to overlap in vacuum
two identical laser pulses with the same frequency,
identical linear polarisation vectors perpendicular to the
incidence plane, and crossing with an angle 2θ. The
beam interaction produces a spatially periodic light
potential resembling a series of parallel half-pipes, in
which free relativistic electron bunches issued from Laser
Plasma Accelerator (LPA) [14, 15] or traditional Linear
Accelerators (LINAC) [16, 17] can be trapped.

In this study of the electron dynamics, we consider
a relatively simple, generic laser intensity profiles and
concentrate on the essential features of the physics of
injection, independently of sophistications depending on
experimental implementations. The advanced optical
setups such as the so-called inhomogeneous waves [5],
and of spatial inhomogeneties due to real beam profiles,
will be addressed in future studies. We therefore
consider here an ideal optical lattice with a laser field
distribution consisting of an initial field-free zone by
which the relativistic electrons are incident, followed by
a ramp of linearly increasing intensity, whose length LR
corresponds to the growth of the lattice potential from
zero to its maximum value ( Fig 2(a)). The region at
the end of the linear ramp is assumed to be a plateau of
constant intensity (Fig 2(b)). For the sake of simplicity,
we will not consider the effect of the ponderomotive
force in the second transverse direction y, assuming an
infinite lattice along this transverse axis.

As a model case, let us consider a relativistic electron
bunch with an average Lorentz factor γ advancing along
the z-axis through an optical lattice. The electrons
interacting with a spatially non-uniform laser field are
subject to a ponderomotive force Fp = −5 Vpot, which,
for each interaction region can be expressed as:

Vpot(x, z) = 0 for z < 0,

Vpot(x, z) =
mec

2a0
2

2γ
(1− cos(2k⊥x))

z

LR
for 0 < z < LR,

Vpot(x, z) =
mec

2a0
2

2γ
(1− cos(2k⊥x)) for z > LR

where a0 is the normalized vector potential, me- the elec-
tron mass, γ- the electron Lorentz factor, c- the speed of
light and k⊥ = 2π

λ0
sin θ- the transverse wave vector.

(a)Schematic representation of the linear ramp. The potential
grows from zero (blue) to its maximum value a0 (red) on a

scalelength LR.

(b)Schematic representation of a trapped electron trajectory in
a ponderomotive potential well. LO is the spatial electron

oscillation period; LW is the width of the optical well; the total
interaction length Li = LR + zplateau is the sum of the linear

ramp length LR and of the plateau length area zplateau

FIG. 2. Schematic representation of the two interaction re-
gions: linear ramp and plateau area.

In the transverse plane, the interaction geometry de-
pends in the most general case on the relative sizes and
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positions of the bunch and the optical lattice. The trans-
verse size of the relativistic electron bunch is defined as:
σx = εN/(γΣ), where εN and Σ are the normalized emit-
tance and the RMS divergence at the accelerator end, re-
spectively. We introduce a divergence length along which
the electron bunch remains collimated, as:

Ldiv = γσx
2/εN . (1)

This length must be considered for electron bunches of
large divergences, in which case it may fall short with
respect to the ramp length LR.

Owing to both the initial size σx and to the electron
divergence, a part of electrons may therefore not see
the optical lattice which is limited by the spot size of
the laser. We do not attempt to describe this obvious
geometric factor, and we will consider that the optical
lattice is infinite in both transverse directions x and y.
The height of the effective energy of the potential wells
after the injection area (z > LR) is considered uniform
and equal to a2

0/γ.

The electron bunch can be injected into a single well
or in multiple wells depending on the ratio σx/LW ,
where LW = λ0/2 sin θ is the width of the potential well.
Recent developments in laser plasma acceleration have
shown a reduction in divergence of electron bunches
using a plasma lens [18, 19]. This could help to have a
low divergence electron bunch and achieve a single well
injection.

The spatial oscillation period of an electron in the pon-
deromotive potential well is given by LO = c ·Ω−1

0 where
Ω0 is the electron oscillation frequency given by Eq. 7.
If the length of the injection region is much longer than
LO, injection proceeds in a smooth, adiabatic fashion;
conversely, if the injection region is much shorter than
LO, then the beam is interacting in a very sudden way.
We thus define an adiabatic parameter as:

Γad =
LR
LO

. (2)

This parameter allows us to separate two injection
regimes, namely fast injection, and adiabatic injection
[10]. It will also appear as instrumental to study how the
transverse energy and the amplification depend on the
injection regime.

The injection regime is directly related to the ramp
length which modifies significantly the electron dynam-
ics in the tranverse phase space. The distribution of elec-
trons in the phase space is particularly connected to the
trapping of an electron in the potential well and to the
electron oscillation frequency. This allows us to define the
optimum parameters for a better trapping rate of elec-
trons in the ponderomotive potential wells and to link
them to the Raman X-ray amplification.

III. NUMERICAL MODEL

A. RELIC code

We have developed a particle simulation code, dubbed
RELIC, to study the dynamics of a relativistic electron
bunch issued either from LINAC, or obtained by LPA in
the laboratory frame. The code describes the dynamics
of all electrons of a macroscopic bunch, including the
broadening induced by the entrance into an interaction
region. It is simple enough requiring a relatively small
computing time, and is capable to cope with future
refinements, such as the spatial inhomegeneities of real
laser beams. It describes the electron motion in the pon-
deromotive potential accounting for the relativistic mass
increase in the three-dimensional phase space. The code
provides access to macroscopic beam parameters such as
the emittance or the Twiss parameters (see section IV B).

RELIC is a particle tracker code similar to the ones
used in the accelerator codes to model the particle
beam transport such as PARMELA [20] or ASTRA
[21]. RELIC can simulate the particles transport in
different laser geometries, and successive steps (free
propagation, standing-wave, travelling wave-structures)
in either two and three space dimensions. As an output,
the code gives the physical parameters of the electron
beam, which can then be used in the Particle-In-Cell
(PIC) modeling of the scattered light amplification.
In our study we will use the code EWOK designed to
simulate the coupling between electron oscillations, laser
and scattered electromagnetic fields in the electron rest
frame [11].

In this paper we use the 2D version of RELIC to study
the injection effect in an optical lattice. We consider
a standing laser-wave with a geometry described in
section II. For the considered electron bunch densities
the Coulomb repulsion is negligible, namely, the pon-
deromotive forces exceed by far the space charge forces
in the bunch frame. This condition can be written as
Ω0

ωpe
>> 1, where Ω0 is the electron oscillation frequency

in the optical lattice, and ωpe- the plasma frequency.
Initial conditions follow a standard Monte Carlo ap-
proach: we randomly draw a Maxwellian electron bunch
distribution, centered at a Lorentz factor γ with an
energy spread δγ/γ, let it interact with the pondero-
motive potential of the optical lattice, and follow in
time the relevant macroscopic averaged quantities, such
as transverse kinetic energies, emittance, longitunidal
dispersion, etc.

RELIC operates with reduced units, where the trans-
verse and longitudinal positions of electron are normal-
ized respectively as: χ = 2k⊥x, ζ = k‖z. The time is nor-
malized to the laser frequency τ = ω0t, and the momen-
tum Ψχ,ζ = Px,z/mec. The laser intensity is related to
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the normalized vector potential as a0 = 0.85 · 10−9λ0

√
I

with I in W/cm2 and λ0 in micron. We assume that
the square of the momentum in the vertical direction y is
equal to a0

2(1− cos(χ)). With these considerations and
normalisation the dynamic equations are written as:

dζ

dτ
=

Ψζ

γ
,

dχ

dτ
=

2 sin(θ)Ψχ

γ
,

dΨζ

dτ
= −dVpot(χ, ζ)

ζ
,

dΨχ

dτ
= −dVpot(χ, ζ)

dχ
.

Due to the potential variation in the linear ramp area,
the Lorentz factor is calculated from the condition of mo-
mentum conservation as:

γ =

√
1 + Ψχ

2 + Ψζ
2 + a2

0(1− cos(χ))
ζ

ζR
for z < LR,

γ =

√
1 + Ψχ

2 + Ψζ
2 + a2

0(1− cos(χ)) for z ≥ LR

where ζR = k‖LR and for z = 0 is considered as the
beginig of the ramp. The ratio ζ/ζR is added in the
linear ramp area (z < LR) to take into account the
electron deceleration in this step.

Several numerical diagnostics are available: 2D
electron longitudinal or transverse phase spaces, in-
stantaneous 1D or 2D electron distribution function,
instantaneous electron trajectory or velocity and its
correlation with other particles.

B. Interaction parameters

We consider twin laser pulses propagating as presented
in Figure 1, each propagating at a grazing angle θ with
respect to the electron beam direction taken as the
z-axis. Both laser pulses are linearly polarized along the
transverse y direction, allowing for perfect interferences.
The laser intensities at focus are in the range from 1015

to 1018 W/cm2, and laser wavelengths are typically 800
nm or 1.05 µm. The laser pulse duration has a value
varying from a few femtoseconds or a few hundreds of
femtoseconds. This allows one to obtain a sufficiently
large interaction region enabling electron to make several
oscillations and trigger the Raman instability.

The electron bunch, it can be delivered either by a
laser plasma accelerator or by a conventional RF linear
accelerator (LINAC). The major advantage of laser
acceleration is to provide extremely short bunches of

electrons, with a corresponding energy of a few ten to
hundreds MeV with a low divergence typically around
2 to 6 mrad, an emittance around 1 mm mrad and a
very high current density. Moreover, a synchronization
of the traveling optical lattice with the electron beam is
very easy if the twin beams are derived from the same
laser system, or at least from the same laser oscillator,
as the intense laser inducing the wakefield acceleration.
At the same time LPA allows one to place the lattice at
a short millimeter distance from the accelerator which
strongly limits the effects of transverse divergence of
the electron bunch. A LINAC system, can deliver a
low energy electron bunch around a few tens MeV with
energy spreads below 1%, and a normalized emittance
down to below 1 mm mrad. Moreover, a LINAC system
allows one to control the electron focal position of
electrons and has a good position stability. However, the
coupling between the incident electron bunch, and the
interference region of the twin laser beams may present
a challenge for the synchronization.

For the numerical tests, we consider an electron bunch
of 30 MeV with an energy spread δγ/γ = 0.01, an emit-
tance around 1 mm mrad and a divergence of 2 mrad
propagating along the z axis. This corresponds to a
transverse size of electron bunch σx = 8.33 µm at the
begining of the ramp. Such an electron bunch is not
achievable at this time with the LPA technology, but the
rapid progress in this area will allow in future to make
a monoenergetic electron bunch with low divergence and
high stability using injection into a density gradient [22]
and plasma lenses [18, 19]. The intensity of the optical
lattice is considered ∼ 1 · 1017 W/cm2 with the wave-
length λ0 = 800 nm. The incidence angle of the laser
waves to the electron propagation direction are chosen
to be θ = 10◦, which gives a width of potential wells
LW = 2.3 µm. With these simulation parameters, the
ratio σx/LW = 3.61 corresponds to a multi-wells injec-
tion at the begining of the ramp zone.

IV. ELECTRON TRANSVERSE PHASE SPACE
DYNAMICS

A. Electron trapping rate

From the theory and numerical studies of the Raman
XFEL, both the gain and the scattered field at saturation
depend on two basic quantities: the charge density of
electrons in the wells, and their average transverse kinetic
energy. Before injection, the charge density depends only
on the total bunch charge, duration, and spatial cross-
section. The ponderomotive force can trap an electron
in the bottom of the potential wells if:

γ

2

(vx
c

)2

+
a2

0

γ
sin2(2k⊥x) <

a2
0

γ
(3)
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FIG. 3. Electron trajectories in the transverse phase space
(x, vx/c). Simulation parameters: εN = 1 mm mrad, Σ = 2
mrad, a0 = 0.3, LR = 200 µm, θ = 10◦, λ = 800 nm.

where vx is the transverse electron velocity and
a20
γ the

maximum height or effective energy of the potential well.

Figure 3 shows the phase space trajectories of 80 test
particles chosen randomly after the injection into the op-
tical lattice. Particles satisfying the trapped condition
(3) are confined inside the ponderomotive potential well
and follow elliptical closed orbits, while those whose en-

ergy is equal to
a20
γ follow the separatrix in phase space

(x, vx/c). The maximum width of the separatrix in the

vertical direction is
√

2a0/γ is in good agreement with
the trapped condition (3). Electrons are trapped in the
potential wells, or pass through the maxima of another
lateral well where they can be trapped and then con-
tribute to the amplification process. In the case where the
electron transverse velocity is much higher than the max-
imum poderomotive potential well i.e (vx/c >

√
2a0/γ),

the electron follows an open orbit, and can then escape
either left or right depending on its initial velocity.

We want to know the dependence of the trapping rate
on physical parameters of the optical lattice and on those
of the electron bunch. The trapping rate at the end of
the interaction area is defined as:

η0 =
nt
ne

(4)

where ne is the total number of electrons injected into
the optical lattice, and nt is the total number of electrons
which satisfies the trapped condition (3).

Figure 4(a) shows the trapping rate as a function of
the normalized vector potential of the optical lattice for
different electron energies. The trapping rate grows lin-
early with a0 and can reach values close to 100% for
low electron energies. According to Figure 4(b), the
trapping rate decreases with electron bunch energy for a

(a)Electron trapping rate as a function of laser intensity for
different electron energies. Simulation parameters: εN = 1 mm

mrad, Σ = 2 mrad, LR = 200 µm, θ = 10◦, λ = 800 nm.

(b)Electron trapping rate as a function of electron kinetic
energy for different divergences of electron bunch. Simulation

parameters: εN = 1 mm mrad, a0 = 0.3, LR = 200 µm,
θ = 10◦, λ = 800 nm.

FIG. 4. Trapping rates for different physical parameters. The
green dashed lines delineate the cold and hot electron regimes.

constant laser intensity. It also decreases as the electron
beam divergence Σ increases. These figures illustrate the
difference between two regimes, a ’hot electron’ regime
where the average transverse kinetic energy in a bunch
higher than the height a2

0/γ of the potential well, and
a cold electron regime in the opposite case. The light
potential being inversely proportional to the Lorentz fac-
tor, the curve in Figure 4(b) starts in a cold regime on
the left part, with almost full trapping, and moves grad-
ually to a hot regime on the right part, with a vanishing
trapping rate. Similarly, the divergence Σ of a bunch in-
creases quadratically the transverse kinetic energy. The
upper curve in Figure 4(b) corresponds to coldest elec-
trons. The transition between the cold (low transverse
velocity) and hot particle regimes corresponds to a typi-
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cal trapping rate of 50%. Empirically, this limit can be
shown to be characterized by the parameter :

Υ =
2a0

γΣ
, (5)

and that a typical trapping rate of 50% corresponds to
Υ = 10−3, where Σ should be given in mrad.

We have checked numerically that the trapping rate
is almost independent on the electron bunch dispersion
δγ/γ, which is an essential parameter of Free Electron
Lasers. Note that the trapping condition (3) is valid
only if the total interaction length, sum of the length
of the ramp and plateau area (Li = LR + zplateau),
is greater than the spatial electron oscillation period
LO (see Figure 2(b)). Otherwise, the particles are
compressed by the ponderomotive force, but it is no
longer possible to define a clear separatrix in phase space.

Trapping is defined here only with respect to the x-
direction. It would be straightforward to generalize this
to a two-dimensionnal trapping. Indeed, it is conceivable
in the future studies to use another couple of laser beams
which would confine electrons along the open direction of
the lattice y. The coupling between the 4 waves provide
a special geometry of the optical lattice with multiple op-
tical channels. This would strongly improve the electron
trapping rate, and result in a more collimated electron
beam. In addition it would offer the advantage of adding
a degree of freedom to control the polarization of X-ray
light, by controlling the polarization and dephasing of
the y-direction lasers.

B. Phase space dynamics

The electron bunch dynamics in time can be rep-
resented by the particle coordinates- the position and
the velocity in the transverse plane. Moreover, we can
track the particle motion in the optical lattice and its
propagation from diagnostic plane. Finally, we estimate
the electron bunch parameters: emittance and the
energy exchange between the electron bunch and the
Raman scattered wave over the interaction time.

Figure 5 shows the evolution of the electron bunch
in the transverse phase space for different interac-
tion times in a single potential well. At the initial
state, electrons with the same transverse velocities are
uniformly distributed in the transverse phase space
(x, vx/c) between (−LW /2, LW /2) Fig. 5(a). The
electron beam begins to oscillate under the influence
of the ponderomotive force in Figure 5(b). After one
electron oscillation period, the trapped particles are
confined inside the ponderomotive potential well while
those with the transverse energy much higher than
the maximum poderomotive potential well escape ei-

ther left or right from the potential well (see Figure 5(c)).

One can see in Figure 5(c) that the transverse phase
space is filled inhomogeneously with several narrow arms.
To explain how the electron phase space evolves with the
interaction length, we evaluate the electron oscillation
frequency. Under the trapping condition (Eq. 3), the
total transverse Hamiltonian H of an electron can be
presented as the sum of the transverse kinetic energy and
the effective potential energy:

H =
γmev

2
x

2
+
mec

2a2
0

γ
sin2(2k⊥x). (6)

By solving the electron dynamic equations, we find the
frequency of small-amplitude electron oscillations as:

Ω0

ω0
=

2a0 sin(θ)

γ
. (7)

Large amplitude electron oscillations are anharmonic, the
frequency depends on the excursion parameter ξ, which
characterizes the initial electron energy and depends on
its initial position and transverse velocity as:

ξ2 =
γ2

a2
0

(vx
c

)2

+ sin2(2k⊥x), (8)

with ξ < 1 for the trapped particle. The electron oscilla-
tion frequency can then be written as: Ω = Ω0·f(ξ) where
f(ξ) is a scalar function [12]. The trapped particles with
different energies, oscillate at different frequencies. The
particles with lowest values of ξ are confined at the bot-
tom of the potential well while those with a higher ξ are
found on the edges. The oscillation frequency decreases
as the particle energy (Hamiltonian) increases. The par-
ticles at the bottom follow short closed elliptical trajec-
tories while thoses trapped at the edges of the potential
well follow larger closed elliptical trajectories limited by
the separatrix (see Figure 3). A differential rotation of
the trapped particles at the bottom of the potential well
and those trapped on the edges causes the galactic-like
arms which can be seen in the transverse phase space
(x, vx/c) Fig ( 5(c), 5(d)). The number of arms nr is
equal to the number of rotation periods nr = Li

LO
. A

new arm is created on each mean oscillation period of
the total number of the trapped particles and for long
interaction length, the transverse phase space (x, vx/c)
can be completely filled (see Figure 5(d)).
According to our numerical study, a criterion to reach
almost homogeneous electron distribution in the phase
space is:

Li
LW

> 6
γ

a0
.

One then define the minimal homogenization time as :

ts = 6
γLW
a0c

. (9)
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(a)Transverse phase space (x, vx/c) after 50 µm in a single
potential well.

(b)Transverse phase space (x, vx/c) after 160 µm in a single
potential well.

(c)Transverse phase space (x, vx/c) after 1.5 mm in a single
potential well.

(d)Transverse phase space (x, vx/c) after 4 mm in a single
potential well.

FIG. 5. Transverse phase space (x, vx)/c for differents interaction length . Simulation parameters: γ = 60, εN = 1, Σ = 2
mrad, a0 = 0.3, LR = 200 µm, θ = 10◦, λ = 800 nm. Note: free propagation a0 = 0.

We can compare the electron bunch distribution for
cases of free propagation and through the optical lattice.
Figure 6 shows the transverse electron distribution af-
ter 1.5 mm free propagation (blue curve) and interaction
with the optical lattice (red curve). The peaks in the lat-
ter case are due to the electron bunch oscillations in the
optical lattice. Electrons are compressed in the potential
wells and each peak appearing on the transverse distri-
bution function is interpreted as a trace of the trapped
electrons in the potential well. Each peak in the red curve
in Figure 6 corresponds to the position of an arm in the
transverse electron phase space in Figure 5(c). The po-
sition of peaks can be explained as follows. For a long
interaction distance through the optical lattice, electron
distribution becomes smoother rassembling a large Gaus-
sian distribution with several peaks which correspond to

a filled transverse electron phase space by arms (see Fig
5(d)). For a constant interaction length, the electron ro-
tation frequency increases with the laser intensity thus
making several arms in the transverse phase space and
smoothing the electron distribution over a short interac-
tion distance.

C. Phase space dynamics : Twiss parameter
analysis

Evolution of macroscopic features of electron bunches
in conventional accelerators or storage rings is discussed
in papers and textbooks. A particle beam can be repre-
sented by an elliptical distribution in phase space. The
surfaces of these ellipses in the transverse phase space
(x, vx/c) define the beam emittance. It increases with
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FIG. 6. Transverse electron distribution. Blue curve: trans-
verse distribution in the case of free propagation. Red curve:
transverse electron distribution through optical lattice after
interaction area Li = 1.5 mm.

the propagation distance because electrons with different
energies rotate with different velocities in the transverse
phase space [23, 24]. In accelerator physics, the emit-
tance evolution over time is characterized by the Twiss
functions. This formalism was applied for studies of LPA
in Refs. [24, 25]. The ellipse fitting the beam distribution
of the trapped electrons can be written as:

εn,RMS = γTx
2 + 2αTx · (vx/c) + βT (vx/c)

2,

where (γT , αT , βT ) are the Twiss parameters, which can
be found through the normalised emittance as:

βT =< x2 >t /εn,RMS ,

γT =< (vx/c)
2 >t /εn,RMS ,

αT =< x · (vx/c) >t /εn,RMS ,

where the Twiss parameter αT describes the correlation
between the transverse position and velocity.
The same description can be used to get quantitative in-
sights into the evolution of the fraction of electrons that
remains trapped in each of the light potential wells. For
a simple analytical model, one can write the electron dis-
tribution function of the trapped particles nt in a single
well as a function of the mean electron excursion Eq.(8):

< ξ0 >=
∑
nt

ξ.

For a homogeneous electron distribution function in
the longitudinal direction, it can be written as:
f(x, vx, z, vz) = f(< ξ0 >, z, vz), where

< ξ0 >=

[
γ2

a2
0

nt∑
i=1

(vxi/c)
2

nt
+ 1−

nt∑
i=1

cos(2k⊥xi)

]1/2

(10)

The trapped electrons are limited by the separatrix in the
transverse phase space (x, vx/c), then one can estimate
the mean root square emittance into a single optical well
(−LW

2 ≤ x ≤ LW

2 ) as:

εn,RMS =

√
< x2 >t · < (vx/c)2 >t −< x · vx/c >t2

< x · vx/c >t=
∑nt

i=1 xi · (vxi/c)
nt

−
∑nt

i=1 xi ·
∑nt

i=1(vxi/c)

n2
t

where the index “t” indicates that the sum is performed
over the trapped particles.

Figure 7(a) shows the evolution of the mean root
square electron excursion ξ0 as a function of the ramp
length for two different electron bunches. The maximal
value of ξ0 does not exceed 1. The excursion ξ0 exhibits
damping oscillations for Γad =]0, 1] and then remains
constant. The variation of the excursion ξ0 in the first
electron oscillation period is mainly due to the correlation
parameter αT . The evolution of the Twiss parameter in
time for γ = 60, is illustrated in Fig 7(b). The ampli-
tude of αT is the highest in the first oscillation period
LO = 650 µm, is exhibits damping oscillations and then
tends to its minimum value exponentially. The red curve
in the inset shows the analytical fit described by the fol-
lowing equation: αT (z) = Ae−D·z + E, where A is the
amplitude at z = LO, c is the speed of light, D = tsc is
the damping factor and E is the minimum value.
Numerically the lowest value of αT is obtained approx-
imately after 8 electron oscillation periods which is in
good agreement with Equation (9).

D. Transverse and longitudinal electron bunch
kinetic energy: from fast to adiabatic injection

In this part, we study the transverse phase space
at the end of the ramp for two injection regimes: fast
injection Γad < 1 and adiabatic injection Γad ≥ 1.

Figure 8 shows transverse phase spaces for different
adiabatic parameters obtained by varying the ramp
length. The electron beam here occupies the width of
three optical wells. Figure 8(a), shows the the transverse
phase space at the end of the ramp length for a typical
case of fast injection ΓAd = 0.16 and Figure 8(b)-for an
adiabatic one ΓAd = 1. The electron beam is totally cut
and most electrons are trapped in potential wells in the
ramp region before reaching the plateau for an adiabatic
injection. In contrast, in the case of fast injection the
beam oscillates homogeneously in the transverse phase
space (x, vx/c).

To estimate the variation of the transverse velocity in
the linear ramp region, we consider the dynamic equa-
tion:

dvx
dt

= −dH
dx

(11)



9

(a)Variation of the electron bunch excursion as a function of
the ramp length for two different electron bunch energies. Blue
curve: γ = 60. Red curve γ = 90. The numbers on the curves

represent the corresponding adiabatic parameters Γad.
Simulation parameters: a0 = 0.3, εN = 1, Σ = 2 mrad,

LR = 100 µm a0 = 0.3, θ = 10◦, λ = 800 nm,

(b)Variation of the Twiss parameters αt over time. Simulation
parameters:a0 = 0.3, γ = 60, εN = 1, Σ = 2 mrad, LR = 100

µm a0 = 0.3, θ = 10◦, λ = 800 nm,

FIG. 7. Evolution of the mean electron excursion ξ0 and of
the Twiss parameter αt as a function of the ramp length.

where H is the transverse Hamiltonian defined in Equa-
tion 6. Integrating this equation over time we find the
electron transverse velocity at tinj = LR/c,

vx(tinj)

c
=

2a2
0

γ2
sin(2k⊥x) cos(2k⊥x)

LR
LW

(12)

As shown in Figure 8(a), the blue line, corresponding
to the analytical solution of Equation (12), is in good
agreement with the numerical simulation until Γad ∼ 0.5.
A higher order of the analytical description should be
considered to represent the evolution of the transverse
phase space in time for Γad > 0.5.

(a)Fast injection: Transverse phase space at the end of the
linear ramp. Simulation parameters: γ = 60, εN = 1, Σ = 2

mrad, LR = 100 µm, a0 = 0.3, θ = 10◦, λ = 800 nm,
Γad = 0.16

(b)Adiabatic injection: Transverse phase space at the end of
the linear ramp. Simulation parameters: γ = 60, εN = 1, Σ = 2
mrad, LR = 650 µm, a0 = 0.3, θ = 10◦, λ = 800 nm, Γad = 1

FIG. 8. Transverse phase space for fast and adiabatic injec-
tions at the end of the linear ramp region.

We now analyze the variation of the electron density
and the transverse energy for different injection times
tinj = LR/c. The numbers on the curves in Figure 9(a)
represent the corresponding adiabatic parameters Γad.
The electron density increases as a function of the injec-
tion time and becomes constant for Γad ∼ 1, whereas the
transverse kinetic energy, shown in Figure 9(b) decreases.
This behavior can be explained as follows: in the case of
fast injection, electrons are submitted violently to the
ponderomotive force. They are slowed rapidly, deflected
transversely and compressed in the potential well. They
gain the transverse velocity which modifies their trans-
verse kinetic energy which could then exceed the maxi-
mum effective energy of the potential allowing them to
escape from ponderomotive potential wells. Oppositely,
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(a)Trapping rate as a function of the ramp length for different
electron energies. Simulation parameters: a0 = 0.3; λ = 800

nm; θ = 10◦; Σ = 2 mrad;δγ/γ = 0.01; Macro-particles number
is 105.

(b)Transverse energy as function of the ramp length for
different electron energy. Simulation parameters: a0 = 0.3;

λ = 800 nm; θ = 10◦; Σ = 2 mrad;δγ/γ = 0.01; Macro-particles
number is 105.

FIG. 9. Electron trapping rate and transverse electron energy
as a function of the ramp length for different electron energy.

in the case of the adiabatic injection, where electrons are
slowly compressed while conserving their energy. Figure
9(b) shows a variation of the total kinetic energy for two
different electron beam energies. As shown the maxi-
mum value of the blue curve (γ = 60) is less than 0.5
which means that most electrons are trapped in the bot-
tom of the potential well, while the maximum value of
the green curve (γ = 90) is approximatly equal to 0.5
meaning that the electron beam is uniformly distributed
in the ponderomotive potential well.
From Equations (3) and (12), we calculate the RMS
value of the transverse velocity of the trapped particle,

< vx(tinj)/c >=
a2

0

γ2

LR
LW

=
√

2
a0

γ
(13)

The ramp length corresponding to transition from the
fast to adiabatic injection Γad = 1 reads

LR =
√

2
γLW
a0

(14)

which is in good agreement with numerical calculations.

Let us now estimate a variation of the longitudinal
kinetic energy of an electron assuming that vz >> vx. It
can be written as:

mec
2 dγ

dt
= −vz

dPz
dt

(15)

where Pz is the longitudinal momentum. According to
the expression for the force in the longitudinal direction
we have:

dPz
dt

= −mec
2a2

0

2γLR
(1− cos(2k⊥x)) (16)

Combining Equations 15 and 16, substituting vz by
dz/dt and integrating up to z = [0 LR] we find

γ2
f − γ2

i = −a2
0(1− cos(2k⊥x̃)) (17)

where γi and γf are the Lorentz factors at the beginning
and the end of the linear ramp and x̃ is the transverse
position of the particle at the end of the injection zone.
Assuming a small energy variation and summing over
all trapped particles, we find that the mean square root
of the maximum deceleration of the particle at z = LR
reads:

<
∆γ

γi
>= −G(

a0

γi
)2, (18)

where

G =
1

2nt

i=nt∑
i=1

Gi,

where nt is the total number of the trapped particles,
Gi = [0, 1] is a constant depending on the transverse
position x̃ of the particle at time t = LR/c. For Gi = 0,
the particle is trapped at the bottom of the potential
well without loss of longitudinal kinetic energy, while for
Gi = 1, the particle is trapped at the maximum edge of
the ponderomotive potential well and loses their kinetic
energy.

Figure 10 shows the logarithmic mean square root de-
celeration of an electron bunch injected into the optical
lattice as a function of electron bunch energy. The de-
celeration decreases when electron energy increases. The
numerical calculation results represented by dark dots
are in good agreement with the analytical estimations
represented by the red curve. The lost longitudinal en-
ergy in the ramp step is transferred to the transverse
electron energy. The electron transverse oscillations are
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FIG. 10. Longitudinal velocity deceleration as a function of
electron energy. Simulation parameters: a0 = 0.3; λ = 800
nm; θ = 10◦; Σ = 2 mrad;δγ/γ = 0.01; LR = 450 µm; the
number of macro-particles is 105.

origin of the radiation. In the case of single well injec-
tion, if the electron bunch is smaller than a half width of
the potential well σx/LW << 0.5, most of the electrons
propagate in the potential well without kinetic energy
loss. To fill completely the potential wells with electrons,
one can therefore adapt the corresponding optical lat-
tice geometry for each electron bunch. For example, for
higher electron energies, one can increase the laser inten-
sity to slow and trap electrons, and also increase the in-
cidence angle θ between the laser pulse and the electron
bunch. The increase of the incidence angle θ increases
therefore the traveling wave velocity of the optical lattice
as Vtw = c/ cos θ. This can be controlled by the delay be-
twen the laser generated electron bunch in LWFA and the
optical lattice or by reducing the traveling wave velocity
close to the speed of light by some specific rotation of
the grating compressors of Chirped Pulse Amplification
(CPA) lasers system [26].

V. INJECTION EFFECTS ON THE
SCATTERED FIELD AMPLIFICATION

We now explore the extent to which the dynamical
effects studied above may affect the coherent scattering
and amplification of X-ray radiation. We first recapitu-
late the main features of the Raman XFEL of relevance
for the study, obtained with the EWOK amplification
code [11], and present several numerical examples.

The Raman-XFEL can be viewed as a parametric four
wave interaction, involving two electromagnetic pump
waves with frequency ω0, a collective mode created by
electrons oscillating transversely in the potential well at
the frequency Ω ≈ Ω0, and an outgoing Stokes wave with
the frequency ωs. The beat between the incident laser

waves and the scattered wave in the electron rest frame
produces a ponderomotive potential oscillating at the
frequency Ω, that leads to a gradual electron bunching.
This loop triggers an instability, analogous to Raman
scattering in plasmas, with the difference that the
electron mode is not an electrostatic Langmuir wave but
a collective transverse oscillation in the light channels. It
is also and analogous to the Free Electron Laser effect in
the Compton regime, with the difference that bunching
is not purely longitudinal and static, but oscillating
and both transverse and longitudinal. Bunching is then
characterized by a specific antisymmetric profile inside
the each light channel [11].

The electromagnetic Particle-In-Cell code EWOK was
designed to handle the specificities of the Raman XFEL
scheme, especially the periodic boundary conditions for
both the incident and the scattered waves. Specifically,
any particle reaching one side of the calculation box is
re-introduced at the opposite side with the same velocity
vector. EWOK operates in the average electron frame,
while RELIC is written in the laboratory frame and
considers no specific boundaries. As a result, the ramp is
modelled in EWOK through a gradual increase in time
of the laser waves, that remain constant throughout
the box to respect the boundary conditions; this makes
EWOK unable to study the energy dispersion effects
as in section IV. However, the calculations presented
below were performed in the conditions where such
longitunidal dispersion effects are negligible.

The chosen conditions are similar to those of Ref. [11],
with an electron bunch occupying the entire width of
the optical lattice σx/LW = 1, an average Lorentz factor
γ = 10, an energy spread δγ/γ = 10−4 and a normalized
electron density ne/nc = 8 · 10−5. The optical lattice
is created by two laser beams with identical amplitudes
a0 = 0.1 and an incident angle θ = 10◦. The transverse
electron beam velocity is chosen not to exceed the
separatrix vx/c <

√
2a0/γ, so that the majority of

electrons satisfy the trapping condition (3). The size of
the simulation box is defined as (5λ0 × 70.2λ0) in the
transverse and longitudinal directions respectively. This
specific box size allows to satisfy the periodic boundary
conditions along the z-axis for the laser and scattered
waves, whereas the box boundaries are absorbing in the
x-direction. We use 2 · 106 macro-particles in the optical
lattice. For reproducibility, we do not let the scattered
signal start from numerical noise, but impose a low
initial seed, at a level of aseed = 10−6.

As a first test case, we simulate the effect on the am-
plification of a ramp of length LR = 20 cτ0, followed
by a plateau area of 2000 cτ0. Figure 11(a) shows the
evolution of the scattered field amplitude in time, in the
electron rest frame. One can see the exponential growth
of the signal in the normalized time t = [80, 650]τ0, mod-
ulations in the rising edge of the gain curve, correspond-
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FIG. 11. Amplification of the scattered field in time. Simula-
tion parameters: a0 = 0.1; λ = 1 µm; θ = 10◦; aseed = 10−6;
Σ = 3 mrad;γ = 10; β⊥ = 0.1; δγ/γ = 10−4; tinj = 20 τ0.
Normalized electron density is ne = 8 · 10−5. Macro-particles
number is 2 · 106.

ing to the beginning of the constant intensity interaction
area. Figure 11(b) presents a zoom on the time interval
t = [100, 650]τ0, showing two such oscillations superim-
posed on the exponential growth; the period can be mea-
sured to be 87τ0, corresponding almost exactly to the
period T = 2π/γΩ0 in the electron rest frame. Note that
the signal may actually decrease, implying that electrons
recapture energy from the electromagnetic wave during a
fraction of each period. A modulation at Ω0 of the signal
wave at frequency ω0 − Ω0 might correspond to signal
components at either ω0 − 2Ω0 or ω0; indeed, a time-
frequency analysis of the scattered wave shown in 11(a)
does exhibit a significant contribution of the Compton
mode ω0 . We observe therefore a competition between
the Raman and a Compton modes, even though the lat-
ter is not phase-matched. While a full discussion of the
mode competition, and a detailed comparison between
the features of Compton and Raman FELs with laser
undulators is beyond the scope of the present study, we
propose the following interpretation. Following injection
and the onset of amplification, one has simultaneously
two kinds of bunching phenomena. The first one is the
micro-bunching in real space, with the anti-symmetric
characteristics explained in [11]; the second one is the
bunching in transverse phase space (x, vx/c) resulting
from the injection, displaying an (x,−x) symmetry, and
rotating at angular frequency Ω0. The combined action
of the two bunching phenomena leads therefore to a vari-
ation in the amplification conditions, with an overall pe-
riod 2π/Ω0. The Raman mode eventually dominates,
in part due to the gradual homogenization of the phase
space distribution, and also due to the limited coherence
(dephasing) length of the Compton mode resulting from
its non-phase matched character. One may note that the
time at which amplification saturates, i.e. 650 laser peri-
ods for the first curves, turns out to correspond also the

FIG. 12. Scattered field growth for different characteristic
durations of injection of the electron bunch into the optical
lattice. Simulation parameters: a0 = 0.1; λ = 1 µm; θ = 10◦;
aseed = 10−6; Σ = 3 mrad;γ = 10; β⊥ = 0.1; δγ/γ = 10−4.
Normalized electron density is ne = 8 · 10−5. Macro-particles
number is 2 · 105. Blue curve: time injection tinj = 20 τ0.
Red curve: time injection tinj = 400 τ0.

homogenization time as defined in Eq. (9). This is also
consistent with the gradual disappearance of oscillations
in the growth curve in the upper part of the latter.

Let us now study the injection effect on the growth
rate. For this we keep the same simulation parameters
as above, vary the duration of injection, and then allow
for identical length of interaction Li . Figure 12 shows
the scattered field amplitude for the case of fast injec-
tion (blue curve) and of adiabatic injection (red curve).
Two major observations can be made: the growth rate
appears higher for fast injection than for adiabatic injec-
tion, leading to an earlier onset of saturation; and the
saturation level itself is higher. Least-square fits of the
amplification yield a growth rate of 1.46 · 10−2ω0 for the
fast injection curve and 6.83 · 10−3ω0 for the adiabatic
one; and a saturation level at 2 ·10−4 for the former, and
6.95 · 10−5 for the latter. These features are explained
with the kinetic theory of the Raman amplification [12].
This model takes into account the finite longitudinal en-
ergy spread, the bunch density of electrons trapped in the
wells, and the relativistic parameter a0 of the incident
twin laser beams. The electron distribution function in
transverse phase space is considered to be a ‘water-bag’,
that is, a unit step function between 0 and a maximum
excursion ξ0; the final expressions are however derived for
ξ0 = 1, meaning a homogeneous and total fill up of the
phase space volume within the separatrix. The spatial
gain from this kinetic theory reads as :

g =
4π
√

3

λ

(
a2

0n0

12πγ3(1− cos θ)2

)1/3

. (19)

The gain increases with the field amplitude a0, and
the bunch density n0, which is directly proportional to
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the trapping rate displayed in figure 9(a). However,
the trapping rate is higher in the case of adiabatic
injection, which is opposite to that of the gain. The
dominant effect therefore is not the density effect, but
the transverse temperature of the electron bunch.

We have shown in Figure 7(a) that the mean excursion
decreases as the ramp length is increased. That is, the
electron bunch is better confined close to the bottom of
the potential well in the adiabatic case, while the elec-
trons occupy the quasi-total height of the potential well
in the fast injection case. We therefore conclude that fast
injection induces a larger spread of trapped electron ex-
cursions, which enables them to oscillate over the entire
height of the potential well, although at expense of a re-
duced trapping ratio. This stimulates the energy transfer
between particles and scattered wave, and has therefore
a beneficial effect on the growth rate and on the level of
coherently scattered light at saturation. These numerical
findings demonstrate that injection has a strong effect on
the amplification process itself. The full distribution in
phase space however requires a kinetic theory. The gain
formula (19) should then be revised to take into account
the more complex effects resulting from the injection pro-
cess, such as the reduction of the mean excursion, or re-
maining inhomegeneities.

VI. SUMMARY

We have presented a numerical study of a relativistic
electron bunch, injected into and guided by a high
intensity optical lattice. The electron injection plays
an important role to set the phase space distribution
of the trapped electrons inside ponderomotive channel.
The essential parameter is the electron population
actually trapped in the optical wells. We studies the
trapping rate variation in terms of the main physical
parameters, showing a transition between a cold and a
hot regime in the transverse dynamics of the electrons.
Two main interaction regimes for the injection were
unraveled, namely, fast injection and adiabatic injection.
Depending on the adiabaticity parameter, we have
studied the evolution of the trapping rate, and of the

average transverse energy. We have shown that the
entrance into the interaction region leads to a reduction
of the average longitunidal velocity, accompanied with a
broadening (Eq.(18)).

The particle tracing code RELIC was used to find the
best injection regime for a set of electron bunch and
optical lattice parameters. A use of the particle-in-cell
code EWOK then allows us to evaluate the amplifi-
cation of the Raman X-ray radiation. Our numerical
findings point out a need for a more complex kinetic
theory for accounting the various injection regimes
and the inhomogeneities of the electron distribution
function in the optical well. This study can also be
used for design of a diagnostics system, very similar
to Shintake monitors [27] as used in circular or linear
accelerators, based on the spontaneous photons emit-
ted during the electron transverse oscillations. The
electron bunch characteristics should then be retrieved
with radiation emission from the trapped electron, pro-
vided all kinetic effects studied here are taken in account.

Several additional theoretical developments can be en-
visioned: the light polarisation vector may be an ad-
ditional degree of freedom for controlling of the elec-
tron dynamics. A three-dimensional study is also nec-
essary to take into account the force in the open direc-
tion y, leading to possible vertical trapping effects. Beam
inhomegeneities, synchronization issues, spatio-temporal
effects within so-called inhomogeneous waves, should all
be coped with, to match the experimental constraints.
Our numerical findings thus present a basis for the future
development of a compact Raman X-ray Free Electron
Laser, whether from laser-plasma accelerated electrons,
or from traditional Radio-Frequency LINACs.
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